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Abstract. Salient Object Detection (SOD) is a challenging problem
that aims to precisely recognize and segment the salient objects. In
ground-truth maps, all pixels belonging to the salient objects are posi-
tively annotated with the same value. However, the saliency level should
be a relative quantity, which varies among different regions in a given
sample and different samples. The conflict between various saliency levels
and single saliency value in ground-truth, results in learning difficulty. To
alleviate the problem, we propose a Saliency Hierarchy Network (SHNet),
modeling saliency patterns via generative kernels from two perspectives:
region-level and sample-level. Specifically, we construct a Saliency Hier-
archy Module to explicitly model saliency levels of different regions in a
given sample with the guide of prior knowledge. Moreover, considering
the sample-level divergence, we introduce a Hyper Kernel Generator to
capture the global contexts and adaptively generate convolution kernels
for various inputs. As a result, extensive experiments on five standard
benchmarks demonstrate our SHNet outperforms other state-of-the-art
methods in both terms of performance and efficiency.

Keywords: Salient object detection, Saliency hierarchy modeling, Region-
level, Sample-level, Generative kernel

1 Introduction

Salient Object Detection (SOD) aims to accurately detect and segment the most
eye-catching area in a given image, mimicking the human visual perception. In
recent years, deep learning based SOD methods have achieved huge success by
introducing dense feature interactions [6, 27, 45], various attention modules [11,
36,54], and multi-task learning pipelines [43,51,53]. In essence, these approaches
leverage the strong abilities of the deep neural networks to learn a mapping
function from raw images to ground-truth saliency maps, in which the whole
salient object is positively annotated with the same saliency level.
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Fig. 1: The illustration of saliency hierarchy. Although all pixels in the salient
objects are positively annotated with the same value in ground-truth maps (GT),
the saliency levels (Sal Level) of different regions are inherently hierarchical.

However, it shows evident saliency divergence among different regions (in a
given sample) and samples, due to various colors, sizes, layouts, etc. For example,
in the first row of Fig. 1, the fruits, cake and plate obviously possess diverse
saliency levels. Similarly, in the second row, different regions inside the cat also
show different saliency levels. It is difficult to learn a mapping function from
pixels with divergent saliency levels to the same value in a ground-truth map.
To solve this problem, we propose a novel framework modeling the hierarchical
saliency levels with generative kernels for different regions and samples.

In order to model the region-level hierarchical saliency, a straightforward
solution is to learn annotated hierarchical labels. As a matter of fact, there is no
acknowledged standard for saliency level division in the literature. Therefore, we
explore several saliency level decomposition strategies and generate sub-saliency
masks of different saliency levels. Based on these sub-saliency masks, we design
a Saliency Hierarchy Module (SHM). Firstly, the SHM extracts local features
within regions of different saliency levels. An SHM contains multiple branches
and regions of features belonging to the same saliency level are processed in an
independent branch. Then, it aggregates all the region level features together
forming an integrated feature map. Through cascading several SHMs together,
we achieve a hierarchy saliency modeling scheme at every stage of our framework.
In this way, we not only depict the saliency levels explicitly, but also model
hierarchical saliency levels with different patterns.

Moreover, considering the sample-level saliency divergence, we propose to
adaptively generate convolution kernels for different samples. We design a Hyper
Kernel Generator (HKG) to capture a global view of the input image. Specifi-
cally, we introduce a Transformer decoder [38] to generate a set of hyper-kernels
by constructing dense attention between several learnable queries and flattened
image patches. Through sufficient interactions, the hyper-knowledge of different
saliency patterns are embedded in the hyper-kernels. Each hyper-kernel corre-
sponds to a specific saliency level in SHMs. With these hyper-kernels, HKG
further produces different convolution kernels for all branches in SHMs. Differ-
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Fig. 2: Mean F-measure against GFLOPs on DUTS-TE [40]. Our SHNet (Red
Stars) outperforms other SOTA approaches on both performance and efficiency.

ent from previous works [4, 7], who utilize transformer to predict task-specific
elements, our HKG aims to generate convolutional kernels for the decoder, im-
proving the capacity and flexibility of our framework. As a result, we generate
convolutional kernels to model saliency divergence among different samples with
the proposed HKG, and model region-level saliency with SHMs. Our framework
achieves the state-of-the-art performance, as shown in Fig. 2.

The main contributions are summarized as follows:

– We propose a novel framework to model salient objects hierarchically from
the perspective of regions and samples.

– We design Saliency Hierarchy Modules (SHM), which model the region-level
saliency hierarchy within a given sample.

– We introduce a Hyper Kernel Generator (HKG) to generate adaptive kernels
to model the saliency divergence among samples.

– Extensive experiments on five widely used benchmarks demonstrate our method
achieves SOTA results w.r.t., performance and efficiency.

2 Related Work

2.1 Salient Object Detection

Early SOD methods [1, 2, 15, 18, 19, 26, 41] mainly focus on the hand-crafted
features to detect and segment the salient objects, such as color contrast [2],
frequency prior [1], etc. Recently, deep learning based SOD approaches [5, 16,
32,48] have achieved a qualitative leap in performance due to the powerful feature
extraction capability in visual representation. The existing SOD approaches can
be roughly divided into architecture based methods [12, 25, 27, 30, 36, 39, 42, 56]
and regularization based methods [21,24,37,43,47,48].
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Architecture based methods. The architecture based methods mainly con-
centrate on designing novel models for the complex feature interaction. For ex-
ample, Pang et al. [30] used mutual learning and the self-interaction module to
reduce the noise during feature fusion. Wei et al.(F3Net) [42] used the cascaded
feedback decoder to release the feature redundancy between various levels. Ma
et al. [27] proposed a pyramidal feature shrinking network to aggregate adja-
cent feature nodes in pairs and discard interference information. Other meth-
ods [12,25,36,39,56] also verify the effectiveness of dense interaction for SOD.

Regularization based methods. As for the regularization based approaches,
they improve the performance by building auxiliary supervision. For example,
Wei et al. [43] (LDF) used the body map and detail map as auxiliary supervision
to avoid the interference between the center area and boundary. Liu et al. [24] in-
troduced edge detection and skeleton extraction, trying to solve them with SOD
jointly. Tang et al. [37] designed an uncertainty-based saliency map to disentan-
gle high-resolution SOD into two tasks and achieve good results. With similar
purpose, various auxiliary loss functions [21,47,48] are proposed for regularizing
the training of deep SOD models.

Different from these methods, which directly map the whole images to cor-
responding binary saliency maps, we focus on hierarchically modeling saliency
patterns and alleviating the learning difficulty caused by the saliency divergence.

2.2 Hypernetworks and Transformers.

Hypernetworks. Hypernetwork [13,17] can directly generate instance-wise pa-
rameters for the network with another independent weight generation model at
test time. It is a powerful modeling tool providing the network adaptivity in a
parameter-efficient manner. Similar design is used for many tasks, such as image-
to-image translation [17], semantic segmentation [29], 3D reconstruction [23], and
so on. Inspired by hypernetworks, we utilize a shared HKG module for gener-
ating sample-adaptive kernels for all the HSMs, improving the model capacity
with a computational-efficient manner.

Transformers. Vaswani et al. [38] proposed the first transformer encoder-
decoder architecture for NLP tasks. Recently, various computer vision tasks
introduce transformer models and achieve exciting results, including image clas-
sification [9], semantic segmentation [57], object detection [4] and saliency ob-
ject detection [25]. Different from CNN-based models, transformer relies on the
attention mechanism to model the long-term dependencies from a sequence per-
spective. VST [25] first introduces the transformer architecture to SOD task
for capturing the global contexts and contrast, which achieves huge success. In
this paper, our HKG can be treated as a meta block or hypernetwork, which
aims to generate unique convolution kernels for per image and per saliency level,
modeling the sample-level saliency divergence adaptively.
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Fig. 3: An overview of our proposed Saliency Hierarchy Network. The whole
network consists of a CNN backbone with embedding layers, a Hyper Kernel
Generator and five stacked Saliency Hierarchy Modules.

3 Method

In this section, we illustrate our Saliency Hierarchy Network (SHNet) in detail.
The proposed SHNet mainly consists of two modules, Saliency Hierarchy Mod-
ule (SHM) and Hyper Kernel Generator (HKG), as shown in Fig. 3. Within an
SHM, we produce several sub-saliency masks through a saliency level classifier
and utilize these masks to decompose the input features into several parts for
hierarchical saliency modeling in respective branches. Note that the sub-saliency
masks are regularized by prior knowledge to depict the hierarchy decomposition
process explicitly. Within an HKG, we utilize a transformer decoder to generate
sample-adaptive hyper-kernels, which are further parsed into convolution kernel
groups corresponding to all the cascaded SHMs. We utilize the traditional CNN
backbone (e.g., ResNet [14], VGG [35]) as the encoder, containing K-layer con-
volution blocks. Formally, we denote the number of saliency levels as N and the
outputs of each encoder layers as {F1, F2, ..., FK}.

3.1 Saliency Hierarchy Module

In this section, we describe the detail of Saliency Hierarchy Module in detail.
The SHM focuses on region-level hierarchical saliency modeling within a given
sample. As shown in Fig. 4, an SHM includes two processes: Saliency Feature
Decomposition and Hierarchical Saliency Modeling.

Saliency Feature Decomposition. In order to decompose the input features
according to their different saliency levels, we propose to depict the saliency
hierarchy with generated sub-saliency masks. Specifically, we introduce an N-
class classifier to predict the pixel-wise saliency levels:

P̂k = softmax(Conv3×3(Hk)), (1)
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Fig. 4: The detailed depiction of our proposed Saliency Hierarchy Module.

where Hk is the input features of k-th SHM, P̂k is the stacked sub-saliency
masks, softmax(·) is the softmax normalization along the channel dimension,
and Conv3×3(·) is a learnable convolution layer. Then, we unfold the obtained

P̂k and get N predicted sub-saliency masks {p̂1k, ..., p̂Nk }, corresponding to N
different levels in the salient objects.

Moreover, to assign different saliency patterns to various regions, we decom-
pose the input features into sub-features corresponding to respective saliency
levels under the guidance of the obtained sub-saliency masks:

Hn
k = (p̂nk ⊗Hk), n = 1, 2, ..., N, (2)

where ⊗ denotes the element-wise multiplication and Hn
k is the obtained sub-

feature for the n-th saliency level.

It has to be mentioned that several prior knowledge is introduced for pro-
viding pseudo-labels {p1k, ..., pNk } to regularize the predicted sub-saliency masks.
During the regularization, we explicitly guide the learning process of the sub-
saliency masks and inject the prior knowledge into our framework to mimic the
saliency hierarchy.

Hierarchical Saliency Modeling. In order to detect salient objects in differ-
ent levels, we input the decomposed features {H1

k , ...,H
N
k } in multiple branches.

Specifically, we use the different convolution kernels to extract features from
different levels, achieving more dedicated saliency modeling schemes as:

Hn
k
′ = Hn

k ∗Wn
k , n = 1, 2, ..., N, (3)

where Wn
k is the n-th kernel of the input Generative Kernel Groups, ∗ is the

convolution operation, and Hn
k
′ indicates the features from different regions.

Finally, we aggregate all regional features {H1
k
′
, ...,HN

k

′} with the input feature
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Fig. 5: The detailed depiction of our proposed Hyper Kernel Generator.

Fk from the k-th CNN block. The whole process can be formulated as:

Hk−1 = Conv3×3(Concat(

N∑
n=1

Hn
k
′, Fk)), (4)

where Concat(·) is the concatenation operator and Hk−1 is the output of SHMk.
Overall, SHM not only explicitly depicts the hierarchical saliency levels inside

an image based on sub-saliency masks, but also models the saliency patterns of
different saliency levels to capture more details within respective branches.

3.2 Hyper Kernel Generator

In this section, we illustrate the proposed Hyper Kernel Generator (HKG), which
further promotes our hierarchy saliency modeling scheme adaptive to different
samples, as shown in Fig. 5. Inspired by hypernetworks, we utilize a unified HKG
to generate the cascaded Generative Kernel Groups for all the HSM modules.
First, the shared hyper-kernels are produced by a transformer block. Each hyper-
kernel corresponds to a saliency level. Next, these shared hyper-kernels are parsed
into different kernel groups prepared for the cascaded SHMs.

Hyper-Kernels. In order to get the hyper-kernels, we introduce transformer
architecture to establish dense attention between several learnable queries and
flattened image patches. The transformer block is composed of L stacked trans-
former decoding layers. Each layer of the transformer constructs interactions
between the learnable saliency queries Q0 and the flattened image patches. In
this way, the l-th transformer decoding layer is formulated as:

Ql =MLP(MCA(MSA(Ql−1), T )), (5)

where MSA(·) is the multi-head self-attention, MCA(·) is the multi-head cross-
attention, and MLP(·) is the multi-layer perceptron blocks. T stands for the
flattened input FK with standard positional encoding. Denote QL as the output
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of the last transformer layer. We use a shared MLP to project the output feature
QL into hyper-kernels:

Sn = MLP(Qn
L), n = 1, 2, ..., N, (6)

where Qn
L is the n-th token in QL and Sn is the hyper-kernel for the n-th saliency

level. By utilizing transformer, we achieve a group of sample-adaptive hyper-
kernels {S1,S2, ...,SN} for a given sample.

Transition Layers. After that, we assign K transition layers parsing the gen-
erated hyper-kernels, i.e., Sn, into K different kernel groups:

Wn
k = ϕk(Sn), k = 1, 2, ...,K, n = 1, 2, ..., N, (7)

where ϕk(·) is the k-th transition layer. Each transition layer is prepared for a
specific decoder block (i.e., SHM). Finally, the k-th Generative Kernel Group
Gk = {W 1

k ,W
2
k , ...,W

N
k } is fed into SHMk to conduct the sample-adaptive con-

volution operations. It is worth noting that the hyper-kernels are shared across
the all SHMs.

Overall, our HKG module learns the hyper-knowledge of diverse saliency
patterns to generate the cascaded sample-adaptive kernel groups for decoder
blocks, enhancing the flexibility and capacity of the framework dramatically.

3.3 Optimization

Sub-saliency Masks Regularization. As a matter of fact, it is a daunting
task to generate sub-saliency masks in a completely unconstrained situation. To
alleviate the learning difficulty, we introduce a prior guidance Gsal to divide
the salient objects of a ground-truth label into several parts {p1, p2, ..., pN}. pn
denotes the sub-saliency label of the n-th saliency level, and all pixels belong
to the n-th saliency level are annotated as positive, otherwise negative. For
example, we use Grad-CAM [34] to obtain the gradient response map of the
input sample and divide the ground-truth label according to the level of the
gradient response. More prior algorithms and corresponding experiments are
discussed in Section 4.4.

Objective Function. Based on the obtained sub-saliency labels {p1, p2, ..., pN},
we propose to regularize the predicted sub-saliency masks {p̂1, p̂2, ..., p̂N}. Note
that we only regularize the pixels that belong to the salient objects ypos, i.e.,
white and black regions in the sub-saliency mask p̂n in Fig. 4. Those pixels in
gray are ignored. Thus, the saliency hierarchy loss for n-th saliency level in the
k-th SHM is denoted as:

Ln,k
hierarchy =

∑
(i,j)∈ypos

(p̂nk (i, j)− pn(i, j))2, (8)
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where p̂nk (i, j) and pn(i, j) are pixels at location (i, j) from the predicted sub-
saliency mask and sub-saliency label, respectively.

Finally, the overall objective function is the combination between Ln,k
hierarchy

and a pixel position aware loss Lppa [42], denoted as:

Ltotal = Lppa(ŷ, y) + ρ

K∑
k=1

N∑
n=1

Ln,k
hierarchy, (9)

where ρ is a hyper-parameter, ŷ and y are the predicted and ground-truth
saliency maps, respectively.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. We perform experiments on five widely used benchmark datasets,
including DUTS [40], ECSSD [49], HKU-IS [20], DUT-O [50] and PASCAL-
S [22]. DUTS contains 10,553 training images (DUTS-TR) and 5,019 test im-
ages (DUTS-TE). ECSSD contains 1000 images with structurally complex nat-
ural contents. HKU-IS is composed of 4,447 complex scenes that contain mul-
tiple salient objects. DUT-O contains 5,168 images with complex backgrounds.
PASCAL-S consists of 850 challenging images.
Evaluation Metrics. To comprehensively and fairly evaluate various methods,
we employ three widely used metrics, including mean F-measure (Fβ) [1], mean
absolute error (M) [3] and E-measure (Eξ) [10]. Specifically, the mean F-measure
can evaluate the overall performance based on the region similarity. The Mean
Absolute Error represents the average absolute difference between the saliency
map and ground truth. The E-measure can jointly utilize image-level statistics
and local pixel-level statistics for evaluating the binary saliency map. Besides, we
also report the floating point of operations (FLOPs) to evaluate their complexity.

4.2 Implementation Details

Our method is implemented with PyTorch toolbox [31], and can be conducted on
a single NVIDIA GTX 1080Ti GPU. The proposed model is trained on DUTS-
TR and tested on the above mentioned five datasets. As for training, we adopt
ResNet-50 [14] and VGG-16 [35] as our backbone networks, which are pretrained
on the ImageNet [8] dataset. To reduce overfitting, we utilize image augmentation
techniques (i.e., random flipping, rotating, cropping and color enhancing). The
maximum learning rates are set to 2e-5 for the convolution backbone network
and 2e-4 for other parts, with warm-up and linear decay strategies. Training
batch size and epochs are set to 16 and 100, respectively. Totally, the whole
network is trained in an end-to-end manner using Adam optimizer. For more
fair comparison, we conduct experiments on two kinds of resolutions (i.e., 256 ×
256 and 352 × 352) with different channel settings. As for testing, each image is
simply resized to the corresponding resolution and then fed into our network to
get the saliency prediction without any post-processing.
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Table 1: Performance comparison of SOTA methods over 5 datasets. MAE (M ↓,
smaller is better), mean F-measure (Fβ ↑, larger is better) and mean E-measure
(Eξ ↑, larger is better) are used to measure the model performance. ’†’ means
inputs of 256 resolution. ’∗’ means inputs of 352 resolution. The best two results
are marked in red and blue. Our method outperforms other approaches on both
performance and efficiency.

Method GFLOPs
DUTS-TE ECSSD HKU-IS DUT-O PASCAL-S

M Fβ Eξ M Fβ Eξ M Fβ Eξ M Fβ Eξ M Fβ Eξ

VGG-Based methods

CPD∗ [45] 118.86 .043 .813 .902 .040 .915 .938 .033 .896 .940 .057 .745 .845 .074 .825 .882

AFN [11] - .046 .812 .893 .042 .905 .935 .036 .888 .934 .057 .742 .846 .071 .824 .883

MLMS∗ [44] 256.81 .045 .802 .893 .038 .914 .943 .034 .893 .942 .056 .742 .853 .069 .838 .890

EGN† [53] - .043 .826 .898 .044 .910 .936 .034 .894 .938 .056 .752 .853 .076 .818 .877

CAGN∗ [28] 154.25 .044 .823 .904 .042 .915 .939 .033 .906 .947 .057 .744 .860 .077 .831 .881

GateN [55] 216.47 .045 .817 .893 .041 .905 .932 .035 .891 .934 .061 .733 .840 .070 .826 .886

MIN [30] 292.52 .039 .823 .912 .036 .922 .943 .030 .906 .955 .057 .741 .864 .065 .843 .898

ITSD [58] 114.93 .042 .833 .905 .040 .910 .937 .035 .894 .938 .063 .752 .853 .074 .831 .891

DCN∗ [47] 411.25 .041 - .918 .032 - .945 .034 - .949 .055 - .871 .069 - .892

AMSF† [52] 87.71 .039 .842 .920 .036 .924 .951 .029 .908 .955 .056 .763 .866 .068 .840 .899

SHNet† 44.97 .035 .851 .926 .033 .926 .950 .028 .913 .955 .054 .765 .868 .060 .842 .906

SHNet∗ 95.02 .034 .861 .928 .031 .930 .952 .026 .917 .957 .056 .769 .868 .058 .849 .910

ResNet / Transformer-Based methods

CPD∗ [45] 35.48 .043 .805 .898 .037 .917 .942 .034 .891 .938 .056 .747 .847 .072 .824 .882

EGN† [53] 157.21 .039 .839 .907 .041 .918 .943 .031 .902 .944 .052 .760 .857 .074 .823 .881

SCRN∗ [46] 30.13 .040 .833 .900 .038 .916 .939 .034 .894 .935 .056 .749 .848 .064 .833 .892

CAGN∗ [28] 47.47 .040 .838 .914 .037 .921 .944 .030 .910 .950 .054 .753 .862 .067 .847 .896

GateN [55] 162.13 .040 .837 .906 .040 .913 .936 .033 .897 .937 .055 .757 .855 .069 .826 .886

F3N∗ [42] 32.86 .035 .852 .920 .033 .928 .948 .028 .910 .952 .053 .766 .864 .061 .830 .898

MIN [30] 174.06 .037 .828 .917 .033 .924 .953 .028 .908 .956 .055 .756 .873 .064 .842 .899

LDF∗ [43] 31.02 .034 .855 .910 .034 .930 .925 .027 .914 .954 .051 .773 .873 .060 .848 .865

VST† [25] 46.32 .037 .845 .919 .034 .920 .951 .030 .907 .952 .058 .774 .871 .067 .835 .902

CTDN∗ [56] 24.66 .034 .853 .929 .032 .927 .950 .027 .919 .955 .052 .779 .875 .061 .841 .901

DCN∗ [47] 110.22 .035 .860 .927 .032 .931 .955 .027 .915 .958 .051 .779 .878 .062 .839 .901

AMSF† [52] 48.96 .034 .856 .931 .033 .929 .954 .027 .914 .959 .050 .778 .876 .061 .850 .902

SHNet† 15.26 .032 .867 .936 .030 .933 .958 .026 .918 .958 .049 .784 .883 .057 .849 .912

SHNet∗ 44.87 .030 .883 .938 .028 .939 .957 .025 .926 .959 .048 .790 .880 .056 .855 .910

4.3 Comparison with State-of-the-art

Quantitative Comparison. As shown in Table 1, we present the quantita-
tive comparison in terms of four evaluation metrics on five datasets. On one
hand, our SHNet surpasses these SOTA methods by a large margin across all
the datasets in most metrics. Specifically, the VGG-based SHNet outperforms
other methods across all datasets, except that it ranks second on Eξ of DUT-O
dataset. The ResNet-based SHNet obtains the best results on all five datasets.
Especially, the Fβ of ResNet-based SHNet-352 is significantly better than other
best result on DUTS-TE (88.3% against 86.0%) and DUT-O (79.0% against
77.9%). Meanwhile, it also possesses an evident advantage on M with 11.7%
and 12.5% improvements on DUTS-TE and ECSSD.

On the other hand, our method (SHNet-256) achieves the state-of-the-art
performance using the lowest cost (i.e., VGG-based: 44.97 GFLOPs, ResNet-
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Fig. 6: Qualitative comparison between the state-of-the-art SOD methods and
our SHNet. Obviously, saliency maps produced by our model are more clear and
more accurate than that of other methods in various challenging scenarios.

based: 15.26 GFLOPs) among all the compared methods. Moreover, both the
VGG-based and ResNet-based SHNet-352 achieve higher performance without
consuming much computation cost. The reason might be a larger input is helpful
to more accurate modeling of region-level saliency divergence.

Qualitative Comparisons. To further illustrate the effectiveness of our method,
we visualize a qualitative comparison between our method and other state-of-
the-art approaches. As shown in Fig. 6, our method not only highlights the
salient object regions clearly, but also well suppresses the background noises.
The proposed SHNet is able to accurately segment salient objects under various
challenging scenarios, including images with fine structures (1st and 7th rows),
partial occlusion (2nd row), reflection interference (3rd row), low contrast fore-
ground and background (4th and 5th rows), and cluttered distractions (6th and
7th rows). It is worth noting that SHNet achieves better results than other meth-
ods under an extremely challenging scenario (7th row), where multiple salient
objects are similar with the background in terms of color and texture.

4.4 Ablation Analysis

In this section, we perform a series of ablation studies and further estimate each
component in the proposed framework. First, we explore different prior guidance
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Table 2: Ablation study of different prior guidance Gsal. ‘w/o’ means no extra
supervision. ‘Baseline’ means framework without saliency hierarchy modeling.

# Gsal
DUTS-TE ECSSD DUT-O

Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓

1 w/o .830 .038 .909 .039 .745 .056
2 Erode .849 .036 .922 .034 .761 .054
3 DT .850 .035 .920 .034 .764 .054
4 Grad-Cam .854 .034 .927 .031 .772 .050

* Baseline .820 .041 .901 .041 .734 .060

Image GT Grad-Cam DT Erode

Fig. 7: The visualization results of prior guidance Gsal. Red, yellow and green
represent the saliency level division results, when the number of saliency levels
(N) equals 3. Best viewed in color.

estimation methods. Second, we study the region-level saliency modeling scheme
and visualize the activation maps in different branches. Next, we show the effec-
tiveness of Hyper Kernel Generator. Finally, we show the ablation studies on the
proposed components in our method. Experiments are conducted with inputs at
a resolution of 256 × 256, based on ResNet-50 backbone.

Prior Guidance Estimation. In this part, we explore several prior guidance
Gsal to assist the learning process. As shown in Fig. 7, we show three kinds of
saliency division results under different Gsal to illustrate the proposed method:
including DT, Erode, Grad-Cam. Specifically, ‘DT’ [33] refers to calculating the
nearest distance of each pixel to the boundary and decomposing the ground-
truth map with given thresholds. ‘Erode’ means we iteratively erode the ground-
truth label to get the annular saliency level division. ‘Grad-Cam’ [34] is a data-
driven method that decompose the ground-truth salient objects according to
the gradient response maps of each regions, which are provided by a standard
classification model (i.e. ResNet-50 pre-trained on ImageNet).

As shown in Table 2, the method without extra guidance achieves 83% on Fβ

of DUTS-TE. Through explicit guidance on the sub-saliency masks with ‘Erode’
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Table 3: Performance (mean F-measure) and computational cost comparison of differ-
ent approaches. These approaches use different strategies to generate kernel groups.

# Settings GFLOPs Params DUTS-TE ECSSD

1 Static 13.2 25.1 .854 .927
2 Hyper Conv 15.3 31.4 .859 .927
3 Build-in Trans 15.7 61.0 .866 .933
4 Hyper Trans 15.1 32.4 .867 .933

Fig. 8: Ablation on the
number of saliency lev-
els (from 1 to 6).

RGB GT Branch-1 Branch-2 Branch-3

Fig. 9: The visualization of feature activation maps
(Grad-Cam) from different branches in SHM4. Best
viewed in color.

and ‘DT’, the performance gains 1.9%, and 2.0%, respectively. Furthermore,
when applying the ‘Grad-Cam’ to generate sub-saliency labels, the performance
further increases to 85.4%. These results indicate that our framework supports
various knowledge to mimic the hierarchy patterns for region-level modeling and
the data-driven method (e.g., ‘Grad-Cam’) is more friendly to our framework.

Region-level Saliency Modeling. The number of saliency levels (N) is an im-
portant hyper-parameter. As shown in Fig. 8, we compare the mean F-measure
on two datasets, and the qualitative results indicate that applying multi-branch
learning patterns on the decomposed sub-saliency regions can significantly boost
the performance. However, over decomposition may do harm to the global con-
text, resulting in a slight performance drop. We achieve the best performance
in our framework when N equals 3. Moreover, as shown in Fig. 9, we provide
the visualization of feature activation maps (Grad-Cam) from different branches

in SHM4 (i.e., {H1
4
′
, H2

4
′
, H3

4
′} in Eq. (3)). Different regions are activated in

corresponding branches, which evidently justifies that our model achieves the
region-level saliency hierarchy modeling by a divide-and-conquer strategy.

Sample-level Saliency Modeling. In order to verify the effectiveness of our
proposed HKG, we conduct a series of experiments with different kernel gener-
ation strategies, as shown in Table 3. Our strategy is denoted as ‘Hyper Trans’,
which uses shared hyper-kernels for all SHMs. ‘Hyper Conv’ means utilizing
the convolutional architecture to generate the shared hyper-kernels. ‘Build-in
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Table 4: Ablation study of each module in our SHNet. ‘Baseline’ denotes the vanilla
U-Net with ResNet-50 backbone. ‘SHM (Static)’ denotes the SHM with static kernels
in the branches.

Settings
DUTS-TE ECSSD HKU-IS PASCAL-S DUT-O

Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓ Fβ ↑ M ↓

Baseline (B) .820 .041 .901 .041 .886 .036 .827 .067 .734 .060

B + SHM(Static) .854 .034 .927 .031 .912 .028 .848 .059 .772 .050

B + SHM+HSG .867 .032 .933 .030 .918 .026 .849 .057 .784 .049

Trans’ stands for using multiple transformer architecture for generating differ-
ent hyper-kernels for respective SHMs instead of the shared one. The results
demonstrate that the proposed HKG is an effective way to produce the two-
dimensional (layer, branch) kernel matrix for our decoder. Meanwhile, the shared
hyper-kernels could reduce computational costs without any performance drop,
which further verifies our module could excavate the hyper-knowledge for the
diverse saliency patterns.

Effectiveness of the Proposals. As shown in Table 4, we use the vanilla U-
Net with ResNet-50 backbone as our baseline model. ‘SHM (Static)’ indicates
the Saliency Hierarchy Modules with static kernels in the multiple branches.
The mean F-measure of ‘SHM (Static)’ is better than that of the baseline on
DUTS-TE (85.4% against 82.0%) and DUT-O (77.2% against 73.4%). More-
over, with the HKG module, the performance is further improved to 78.4% in
mean F-measure on DUT-O, and surpasses the state-of-the-art results with a
low computational cost.

5 Conclusion

In this paper, we propose a framework named SHNet for SOD, which aims
to model saliency hierarchically with generative kernels. We design a Saliency
Hierarchy Module to model the hierarchical saliency levels in a given sample with
the guide of prior knowledge. Furthermore, we design a Hyper Kernel Generator
to automatically adjust our network parameters to the saliency divergence among
different samples by generating cascaded kernel groups, which achieves a sample
adaptive inference pattern. Extensive experiments demonstrate the effectiveness
of our method on both performance and efficiency.
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