Supplementary Material — XMem: Long-Term
Video Object Segmentation with an
Atkinson-Shiffrin Memory Model

Ho Kei Cheng and Alexander G. Schwing

University of Illinois Urbana-Champaign
{hokeikc2, aschwing}@illinois.edu

This supplementary material is structured as follows:

— We first provide a more detailed analysis of the memory consolidation process
(Sec. A).

— We then provide qualitative results, comparing the proposed XMem to base-
lines (Sec. B).

— We demonstrate failure cases (Sec. C).

— We compare different limits on the size of the long-term memory and illus-
trate the processing rate over the number of processed frames (Sec. D).

— We give quantitative results when retraining the STCN baseline in our train-
ing setting (Sec. E).

— We provide results on the YouTubeVOS 2019 validation set (Sec. F).

— We provide detailed quantitative results when XMem is trained on different
datasets (Sec. G).

— We explain our multi-scale (MS) evaluation methodology and provide the
corresponding enhanced performance of XMem (Sec. H).

— We outline an efficient implementation of the proposed anisotropic L2 simi-
larity function (Sec. I).

A Visualizing Memory Consolidation

Here, we visualize the memory consolidation process (Section 3.3) by showing
the candidate frames, some of the selected prototypes, and the corresponding
aggregation weights (columns of W (k¢ kP), each mapping to a distribution over
all the candidates). Recall that W (k¢ kP) is used to aggregate candidate values
v into prototype values vP. Figure S1 and Figure S2 show two examples. As
illustrated in Figure 5 of the main paper we observe semantically meaningful
regions to be grouped.
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Fig. S1. Visualization of memory consolidation. The first row shows the candidate
frames to be converted into long-term memory. Each of the following rows show a
prototype position (indicated by a yellow cross), and the corresponding aggregation
weights (visualized as a red overlay). Frames that contain a prototype are framed in
red. The consolidation process aggregates information from semantically meaningful
regions (top-to-bottom): the swan’s beak, part of the vegetation, part of the riverbank,
the transition between vegetation and river bank, and part of the water surface.
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Fig. S2. Visualization of memory consolidation. The first row shows the candidate
frames to be converted into long-term memory. Each of the following rows show a
prototype position (indicated by a yellow cross), and the corresponding aggregation
weights (visualized as a red overlay). Frames that contain a prototype are framed in
red. The consolidation process aggregates information from semantically meaningful
regions (top-to-bottom): torso, legs, arms, trees, and part of the wall.
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B Qualitative Results

Here, we compare qualitatively to JOINT [8], AFB-URR [7], and STCN [4] using
several long videos and using the same setting as in the paper. We show results
on the dressage sequence (10,767 frames) which is part of the Long-time Video
(3x) dataset [7], and two additional in-the-wild videos. breakdance contains a
single foreground object with large and fast motion, and has 18,187 frames. cans
is very challenging, contains five different objects, two of which (Dr. Pepper and
Coca-Cola cans) are similar. The two cans are completely occluded for more
than 2,000 frames, and our method can successfully capture them when they
reappear. Figure S3, S4, and S5 compare results on these videos respectively.
We show one potential application where an image layer is inserted between the
foreground and the background using the predicted object mask on a snippet of
the breakdance sequence.

STCN AFB-URR JOINT Images

Ours

GT

Frame O (input) Frame 2256 Frame 3588 Frame 4168 Frame 10748

Fig. S3. Results on the dressage sequence. JOINT [8] uses a temporally local fea-
ture window and loses track over time. AFB-URR [7] is stable but produces overall
less accurate segmentations. STCN [4] uses a low memory insertion frequency to avoid
memory explosion, and thus misses fast changes (2nd and 4th column). Ours is some-
times better than the provided ground-truth (last column, the horse’s front legs).
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Frame O (input) Frame 2342 Frame 4637 Frame 6644  Frame 18052
Fig. S4. Results on the breakdance sequence. We manually annotated the first frame
as input. Similarly to the dressage sequence (Figure S3), JOINT [8] loses track over
time, AFB-URR (7] is overall less accurate, STCN [4] struggles with fast motion, and
our method performs well on this sequence.
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Frame O (input) Frame 680 Frame 1062  Frame 1793  Frame 3980
Fig. S5. Results on the cans sequence. We manually annotated the first frame as input.
The Dr. Pepper can is labeled with red, and the Coca-Cola can is labeled with green.
The two cans are completely occluded with a towel after frame 1,793, and reappear
about 2,000 frames later. The color tone change is due to the camera’s auto white
balance. JOINT [8] misses the Coca-Cola can after occlusion. It still captures the
Dr. Pepper can as the available first reference frame helps. AFB-URR [7] mixes up the
two cans early on, and fails to capture them after they reappear. This is due to its eager
feature compression and thus lower modeling capability. STCN [4] uses a low memory
insertion frequency to avoid memory explosion which causes it to be less accurate when
changes happen. Our method is the most accurate overall.
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C Failure Cases

As mentioned in the limitation section of the main text, our method struggles
with very fast moving objects. This is because even the fastest-updating sensory
memory fails to track such objects, and the working memory fails to model
objects with large motion blur. Figure S6 visualizes some failure cases.

Fig. S6. Failure cases. We point to objects of interest with an arrow. First row: multiple
birds with similar appearances are flying. We fail to discriminate between some birds
that are close to each other. Second row: a frisbee is being thrown. We cannot catch up
as it is moving quickly with a large motion blur. Third row: two flags are being waved
quickly. We fail to segment the whole left flag due to fast motion.

D Long-Term Memory Size and FPS Scaling

By default, we use a maximum long-term memory size of 10,000 which con-
sumes a small amount of GPU memory and is reasonably capable — it can store
information from around 3,900 frames after memory consolidation (r = 10). In
practice, users might opt for a different upper limit of the long-term memory
(LT max), in consideration of any memory constraints, speed, and the complexity
of the video. Here, we test the performance of different LT, settings on the
Long-time Video (3x) dataset [7] and show the results in Table S1. There is sig-
nificant memory saving and speed-up when LT\, .« is decreased. While a smaller
LT ,ax seems to be sufficient for this dataset, we expect using a higher LT .«
can benefit more challenging videos with long-term occlusions.

We also plot the single-object FPS (1/time required to process a new frame)
against the total number of processed frames for STCN [4] and different LT ax
settings of XMem in Figure S7. We use a high-capacity 32GB V100 GPU in this
experiment such that STCN can be run without out-of-memory errors. FPSs for
XMem plateaue after reaching LT ..
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Table S1. Performance of XMem with different upper limits of the long-term memory
LT max on the Long-time Video (3x) dataset [7].

LT max TJ&E&F Max. GPU memory FPS

500 87.2+4.7 1168 MB 35.3
1,000 89.56+0.3 1186 MB 34.1
2,500 89.840.2 1243 MB 31.1
5,000 89.940.2 1332 MB 27.5
10,000  90.0+0.4 1515 MB 23.4
20,000  90.0+0.4 1632 MB 21.1
30,000  90.0+0.4 1632 MB 20.9
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Fig. S7. FPS scaling of STCN [4] vs. variants of XMem. STCN starts off faster due
to its simpler construction but slows down drastically as its memory bank expands.
As STCN soon becomes too slow for practical use, we estimate its FPS by fitting a
linear function to its processing time (i.e., inverse linear to FPS). This linear function
is illustrated with a dashed line. XMem maintains a relatively stable and fast FPS
throughout, thanks to our memory consolidation algorithm.

E Re-training STCN

We have changed the training schedule (see Section 3.6, Implementation Details)
and adjusted parts of the network (including removing some convolutional layers
and adding a feature fusion block [4] to the decoder for incorporating the sensory
memory). For a fair comparison, we re-train the STCN [4] baseline under our
setting. This is equivalent to removing the sensory memory, long-term memory,
and both scaling terms. BL30K [3] is not used. Table S2 tabulates the results
on the YouTubeVOS 2018 validation set [15] and the DAVIS 2017 validation
set [11]. The re-trained method achieves a 1.2 higher J&F on DAVIS and a
1.0 higher G on YouTubeVOS. On average, the change is insignificant, i.e., our
training schedule is not a sufficient condition for improved results.
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Table S2. We compare the performance of STCN [4] to the re-trained version with
our training setup. On average, there is no significant difference. The performance of
XMem is provided as a reference.

Method YouTubeVOS 2018 val G = DAVIS 2017 val J&F
STCN [4] (original) 83.0 85.4
STCN [4] (re-trained) 84.0 84.2
XMem (Ours) 85.7 86.2

F Results on YouTubeVOS 2019 validation

Table S3 tabulates our results on the YouTubeVOS [15] 2019 validation set. We
compare the measured FPS on the 2018 version. The FPS on these two versions
are highly correlated as their average number of objects and video length are
similar.

Table S3. Quantitative comparisons on YouTubeVOS 2019 validation.
YouTubeVOS 2019 val [15]

Method g Ts Fs Tu Fu FPSvyis
CFBI [16] 81.0 80.6 85.1 75.2 83.0 3.4
SST [5] 81.8 80.9 - 76.7 - -
MiVOS* [3] 82.4 80.6 84.7 78.1 86.4 -
HMMN [12} 82.5 81.7 86.1 77.3 85.0 -
CFBI+ [18] 82.6 81.7 86.2 T77.1 852 4.0
STCN [4] 82.7 81.1 85.4 782 859 13.2
JOINT [8] 82.8 80.8 84.8 79.0 86.6 -
STCN* [4] 84.2 82.6 87.0 79.4 87.7 13.2
AOT [17] 85.3 83.9 88.8 79.9 885 6.4

XMem (Ours) 85.5 84.3 88.6 80.3 88.6 22.6
XMem™* (Ours) 85.8 84.8 89.2 80.3 88.8 22.6

G Results with Different Training Datasets

Following prior works [9], we first pretrain our network on static images. As in
the implementation of [3,4], we use a mix of single object datasets [13,14,6,19,2].
We compare with prior works that do not use pretraining in Table S4. We addi-
tionally present detailed results of our method when it is trained on 1) DAVIS
2017 [10] only, 2) YouTubeVOS 2019 [15] only, and 3) a mix of both, in the
followings tables.
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Table S4. Comparisons with methods without static image pretraining.
Method Yis Yi9 Dig Diz Di7aFPSpiz

LWL [1] 815 810 - 816 - -
SST [5]  81.7 81.8 - 825 - -
CFBI+ [18] 82.0 82.6 89.9 829 78.0 5.6
JOINT [8] 83.1 828 - 85 - 68
Ours™ 84.3 84.2 90.8 84.5 79.8 20.2

Table S5. Performance of XMem on DAVIS 2016 with different training data.

Training data J&F J F
DAVIS only 87.8 86.7 88.9
DAVIS+YouTubeVOS only 90.8 89.6 91.9
Static+DAVIS+YouTubeVOS 91.5 90.4 92.7

Static+BL30K+DAVIS+YouTubeVOS 92.0 90.7 93.2

Table S6. Performance of XMem on DAVIS 2017 validation with different training
data.

Training data J&F J F
DAVIS only 76.7 74.1 79.3
DAVIS+YouTubeVOS only 84.5 81.4 87.6
Static+DAVIS+YouTubeVOS 86.2 82.9 89.5

Static+BL30K+DAVIS+YouTubeVOS 87.7 84.0 91.4

Table S7. Performance of XMem on DAVIS 2017 test-dev with different training data.

Training data J&F J F
DAVIS only 64.8 61.4 68.1
DAVIS+YouTubeVOS only 79.8 76.3 83.4
Static+DAVIS+YouTubeVOS 81.0 77.4 84.5

Static+BL30K+DAVIS+YouTubeVOS 81.2 77.6 84.7

Table S8. Performance of XMem on YouTubeVOS 2018 validation with different
training data.

Training data G JTs Fs Ju Fu
YouTubeVOS only 84.4 83.7 88.5 78.2 87.2
DAVIS+YouTubeVOS only 84.3 83.9 88.8 77.7 86.7
Static+DAVIS+YouTubeVOS 85.7 84.6 89.3 80.2 88.7

Static+BL30K+DAVIS+YouTubeVOS 86.1 85.1 89.8 80.3 89.2
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Table S9. Performance of XMem on YouTubeVOS 2019 validation with different
training data.

Training data G JTs Fs Ju Fu
YouTubeVOS only 84.3 83.6 88.0 78.5 87.1
DAVIS+YouTubeVOS only 84.2 83.8 88.3 78.1 86.7
Static+DAVIS+YouTubeVOS 85.5 84.3 88.6 80.3 88.6

Static+BL30K+DAVIS+YouTubeVOS 85.8 84.8 89.2 80.3 88.8

H Multi-scale Evaluation

Multi-scale evaluation is a general trick used in segmentation tasks to boost
accuracy by combining results from augmented inputs. Common augmentations
include scale-change or vertical mirroring. Here, we show XMem’s results with
multi-scale evaluation as an attempt to achieve the best performance with a
single model without retraining or using a better backbone. For these results,
we use P = 512 for a relaxed compression. Vertical mirroring is used. Different
augmentations are processed independently and the output probability maps are
simply averaged.

On DAVIS, we note that a single large scale (720p) is better than merging
multiple smaller scales. We use r = 3 for better results which has also been noted
in STCN [4]. In the test-dev set, we additionally include results with r =5 (i.e.,
multi-temporal-scale) in the merge. Table S10 tabulates our results.

Table S10. XMem with/without multi-scale evaluation on DAVIS. }: 600p evaluation.
DAVIS 2017 val DAVIS 2016 val DAVIS 2017 test-dev

Method J&F J F J&F J F J&F J F

XMem 86.2 82.9 89.5 91.5 90.4 92.7 81.0 77.4 84.5
XMem* 87.7 84.0 91.4 92.0 90.7 93.2 81.2 77.6 84.7
XMem™t - - 82.5 79.1 85.8

XMem (MS) 88.2 854 91.0 92.7 92.0 93.5 83.1 79.7 86.4
XMem™ (MS) 89.5 86.3 92.6 93.3 92.2 94.4 83.7 80.5 87.0

On YouTubeVOS, we adopt multiple scales: {480,528,576,624}. Unlike on
DAVIS, we find larger scales to be unhelpful — which might be due to the overall
less accurate annotation of YouTubeVOS. We do not adopt multiple temporal
scales here. Table S11 tabulates our results.
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Table S11. XMem with/without multi-scale evaluation on YouTubeVOS.

YouTubeVOS 2018 val YouTubeVOS 2019 val
Method g Ts Fs Ju  Fu g Ts Fs Ju  Fu
XMem 85.7 84.6 89.3 80.2 88.7 855 84.3 88.6 80.3 &88.6
XMem* 86.1 85.1 89.8 80.3 89.2 &85.8 84.8 89.2 80.3 88.8

XMem (MS) 86.7 85.3 89.9 81.7 89.9 86.4 84.9 89.2 81.8 89.8
XMem* (MS) 86.9 85.6 90.3 81.7 90.2 86.8 85.5 89.8 81.8 89.9

I Implementation of the Anisotropic L2 Similarity

STCN [4] decomposes the L2 similarity into a sequence of tensor operations for
a memory- and compute-efficient implementation. For the proposed similarity
function to be practical, a similar decomposition is required. Here, we derive and
outline our implementation. Recall the definition of the anisotropic L2 similarity:

We are given key k € RCkXN, value v € RE"*N and query q € RO“xHW
The key is associated with a shrinkage term s € [1,00)" and the query is asso-
ciated with a selection term e € [0, 1]Ck><H W Then, the similarity between the
i-th key element and the j-th query element is computed via

ck
S(k, Q)ij = —5; Zecj (kci - ch)Qa (Sl)

which equates to the original L2 similarity [4] if s, = e.; = 1 for all 4, j, and c.

We use “” to denote all the elements in a dimension and “@Q” to denote a
singleton dimension to be broadcasted.’ ® denotes the Hadamard (element-wise)
product. 1 is an all-ones row vector with length C¥.

Ck
S(k7 q)l] = —5; Z €cj (k('z - ch)2

ck ck ck

2 2

= —8; § ecjkm' - E 2ecjkciQCj + E €cjlc;
C (& (&

= —8; ((kz O) k:i)Te:j - 2k1;(ej O) qj) + l(e:j O] q.; O] qg))
= S(k,q) =s.0 (—(kok) e+ 2k’ (e@q) —1le®q@q)). (S2)

This gives a fully vectorized implementation consisting of only element-wise op-
erations and matrix multiplications with broadcasting.

! Boardcasting as in numpy.
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