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1 Point Cloud Voxelization Setup

The voxelization step d is set as (0.1, 0.1, 0.15) meters to voxelize the
SemanticKITTI point cloud within the range of [−75.2,+75.2], [−75.2,+75.2],
[−4.0,+2.0] meters along the X,Y, Z axis. For nuScenes dataset, the range of
point cloud is [−51.2,+51.2], [−51.2,+51.2], [−5.0,+3.0] meters, and the step d
is (0.1, 0.1, 0.2) meters.

2 Model Training

We train our model with the Adam optimizer and one-cycle learning rate policy
[3] with division factor 10, momentum ranges from 0.95 to 0.85, and weight decay
0.01. The maximum learning rate is set as 0.001 or 0.01 for SemanticKITTI or
nuScenes. A batch of 8 or 24 random point cloud samples is trained on 2 Tesla
V100 GPUs with 10 or 48 epochs for SemanticKITTI or nuScenes. During the
training process, the four types of data augmentation transformations are used
to avoid overfitting, which can be retrieved in Sec. 3.2 of our paper.

3 Network Architecture Details

Following the Shi et al. [2], we build the 3D sparse U-Net backbone by stacking
four down-sampling blocks to make the voxel-wise features more informative
with increasing receptive fields, and stack four up-sampling blocks for resolution
restoration and feature refinement.

Fig.1 demonstrates the details of the backbone, which is implemented with
the 3D sparse convolution (SparseConv3D), 3D inverse sparse convolution
(InverseSparseConv3D) [4], and 3D submanifold convolution (SubMConv3D) [1].
We decompose a pair of down-sampling block Di and up-sampling block Ui for
a clear illustration.

In the down-sampling block Di, a SparseConv3D block with a stride of Si

is followed by two stacked ResSubMBlock3D for down-sampling and residual
feature learning. Note that the SparseConv3D can down-sample the voxel
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Table 1. Robustness test on SemanticKITTI validation set for each components under
more types of disturbances: 1) clean point cloud, 2) add point-wise random noise (jitter)
uniformly distributed in [-0.05, +0.05] meters to all points, 3) drop some points with
a random ratio sampled from [0.0, 0.5], 4) - 7) random rotation, random translation,
random flipping, random scaling with the default parameters in our paper.

Disturbance Clean Jitter Dropping Rotation Translation Flipping Scaling

Performance mIoU mIoU Delta mIoU Delta mIoU Delta mIoU Delta mIoU Delta mIoU Delta

Baseline* 64.90 58.48 -6.42 63.69 -1.21 65.01 +0.11 64.83 -0.07 64.88 -0.02 65.07 +0.17
+TransVFE 65.47 59.79 -5.68 65.13 -0.34 65.84 +0.37 65.56 +0.09 65.85 +0.38 65.71 +0.24
++Self-distillation 67.11 65.08 -2.03 66.97 -0.14 67.29 +0.18 67.02 -0.09 67.69 +0.58 67.42 +0.31
+++TTA 68.64 66.76 -1.88 68.49 -0.15 68.55 -0.09 68.46 -0.18 68.64 0 68.68 +0.04

features with a stride larger than 1, while the SubMConv3D only computes 3D
submanifold convolution without any changes on the resolution for maintaining
the submanifold of the voxels.

The up-sampling block Ui first fuses the output of the previous up-sampling
block Ui+1 and the output of the symmetrical down-sampling block Di from the
skip connection, then restores the resolution via an InverseSparseConv3D with
the corresponding stride of Si.

4 Robustness Analysis

We provide more experimental results on robustness analysis in Tab. 1.
Compared with the average based VFE in baseline* model, our TransVFE
guarantees less degradation under all disturbances. Rotation, translation,
flipping and scaling have slight impacts on the model with TransVFE as: i) These
four global transformations maintain the local structure on objects. But, point
jitter and dropping destroy the local structures, which are severe disturbances
that challenge and reflect the model robustness more. ii) TransVFE explicitly
models and exploits the local relationship among the points in each voxel,
achieving more robust point cloud encoding learning than other existing VFEs.

5 Latency Analysis on TTA

Although we employ our new TTA to enhance the teacher with the improved soft
labels for better self-distillation, the new TTA can also be used to further improve
the LiDAR segmentation performance after self-distillation in the inference
stage. The details of the performance improvements and latency of our simple
yet effective TTA are reported in Fig. 2, which reuses a proposed compound
transform multiple times for input variants generation. The segmentation
performance and latency increase as the number of input variants (M) increases,
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Fig. 1. Details of 3D sparse U-Net.

which is a trade-off between the performance and the inference time. Our
new TTA can improve the performance on mIoU by ∼2.5% when M ≥ 6.
If the efficiency is required, our TTA with a small M of 2 can still achieve
improvements on mIoU of ∼1.5% with 0.247 seconds inference time. Note that
naively combining the four individual transformations in an input variant set
as {X,Xscale, Xflip, Xrot, Xtran} (M = 5) only yields mIoU of 66.64 with +1.17
improvements (see Tab. 6 of our paper), and there exists a mIoU gap of ∼0.25%
behind our TTA with a set capacity of M = 2 with only one additional input
variant generated by the proposed compound transform.

6 Latency Analysis on TransVFE

The TransVFE takes 0.03 seconds out of overall 0.148 seconds (evaluated without
TTA) on SemanticKITTI, but yields higher segmentation performance than the
commonly used VFE based on the average or PointNet.
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Fig. 2. Segmentation performance v.s. latency of different number of input variants
(M) in our TTA on SemanticKITTI validation set.
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Fig. 3. Qualitative results on sequence 08 of SemanticKITTI. The point cloud is
projected to the BEV for clear visualization. The error rate is defined as the number
of incorrect points divided by the total number of points in a point cloud. Light green
rectangles highlight some significant differences.

7 Qualitative Results

We compare the qualitative results with the representative 3D voxel method
Cylinder3D [6] and 2D image method PolarNet [5] using their released models. As
shown in Fig. 3, our method can perceive more object details with less incorrect
segmentation in understanding complex scenes.
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