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Abstract. We propose a new and effective self-distillation framework
with our new Test-Time Augmentation (TTA) and Transformer based
Voxel Feature Encoder (TransVFE) for robust LiDAR semantic segmen-
tation in autonomous driving, where the robustness is mission-critical
but usually neglected. The proposed framework enables the knowledge
to be distilled from a teacher model instance to a student model instance,
while the two model instances are with the same network architecture
for jointly learning and evolving. This requires a strong teacher model to
evolve in training. Our TTA strategy effectively reduces the uncertainty
in the inference stage of the teacher model. Thus, we propose to equip
the teacher model with TTA for providing privileged guidance while the
student continuously updates the teacher with better network parameters
learned by itself. To further enhance the teacher model, we propose
a TransVFE to improve the point cloud encoding by modeling and
preserving the local relationship among the points inside each voxel via
multi-head attention. The proposed modules are generally designed to
be instantiated with different backbones. Evaluations on SemanticKITTI
and nuScenes datasets show that our method achieves state-of-the-art
performance. Our code is publicly available at https://github.com/

jialeli1/lidarseg3d.
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1 Introduction

LiDAR point cloud semantic segmentation network as a visual recognition
module in autonomous driving system, which is vital for driving scenario
understanding [4,6]. The previous works [38,17,18] show that slight disturbances
to the input data may impair the prediction results of neural networks, such as
noise, missing part, and so on [38]. As shown in Fig. 1, the LiDAR semantic
segmentation network gets undesirable performance degradation when imposing
the point-wise random noise and the random dropping on the input point
cloud. The unexpected conditions, such as weather changes and unstable data
transmission, may cause the disturbances. Thus, boosting robustness is mission-
critical but neglected in LiDAR segmentation for autonomous driving.
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Fig. 1. Robustness test by disturbing point cloud samples in SemanticKITTI [4] dataset
using the following settings: 1) add point-wise random noise uniformly distributed in
[−0.05,+0.05] meters, 2) randomly drop points. We plot the performance mIoU (%)
of the models with and without TTA against disturbing.

Training a robust model can be achieved by means of data augmentation
[11,15] as well as knowledge distillation [19,41,45]. The standard types of
data augmentation transformations for LiDAR point cloud include random
flip, random rotation, random scaling, and random translation [59,56,39,8],
which have been widely applied. Recently, the knowledge distillation [19] is
broadly developed for model compression purposes in 2D semantic segmentation
[30,45,2], showing a promising way to robustly train a compact student model
with the guidance from a cumbersome teacher model. But there are three main
limitations: (i) A cumbersome teacher model with higher performance is required
to be designed and trained. (ii) The differences of the feature distributions
between the heterogeneous teacher model and student model are detrimental
for distillation [45]. Although many efforts are made to adapt the feature map
for alleviating the distribution gap in 2D semantic segmentation [45,30,2], the
gap still exists in such two heavy and lightweight models. (iii) The student model
yields a better performance with distillation than individually training, but not
a new state-of-the-art performance due to the limited distillation efficiency.

Inspired by 2D semi-supervised learning works [41,40] that can train a model
with the unlabeled image mainly by the consistency regularization between
outputs of two instances of the same model, we propose to perform self-
distillation to learn from the segmentation model itself without the cumbersome
teacher model. We follow these 2D works [41,29,40] to instantiate a teacher
model to provide predictions as the soft labels for training a student model, and
update the teacher model with the temporal assembly of student model. In such
a self-distillation, the above limitations (i) and (ii) can be effectively avoided.
Unlike the purpose of training on extra unlabeled data [29,40], we aim to further
address the limitation (iii) above by self-distillation to achieve robust LiDAR
semantic segmentation with stronger performance. As privileged guidance from
the teacher is critical for transferring useful knowledge to a student, the quality
guarantee should be considered for further enhancing the teacher. Thus, two
additional components on robustness boost in the inference stage and the point
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cloud encoding aspect, which are further proposed as follows and tailored on
LiDAR semantic segmentation field.

As shown in Fig. 1, the robustness in the inference stage is susceptible to
external disturbances, thus the robustness boost is necessary to be addressed
when the soft labels are inferred from the teacher. Test-Time Augmentation
(TTA) is a effective and general idea for boosting the models in image-based
2D computer vision [60,20,7] by averaging the predictions of input variants
to reduce the uncertainty. It is feasible to equip the teacher model with TTA
when inferring predictions as distillation guidance. But TTA is barely used for
distillation in 2D semantic segmentation and not well-investigated on LiDAR 3D
semantic segmentation yet. Only the flip and multi-scale tests are independently
used in 2D semantic segmentation [60,20,48], since the other transformations
like rotation and translation will make the pixel-wise results overflow the image
boundaries and spatially un-aligned. Differently, as long as the order of points
is unchanged in a point cloud, the point-wise results of different input variants
are naturally aligned for merging so that more types of transformations should
account for LiDAR semantic segmentation. Thus, we firstly introduce the TTA
into this field by reusing a proposed compound transformation instead of any
individual transformations multiple times. The compound transformation can
provide more diversity and flexibility than individual transformations in point
cloud variants generation. In Fig. 1, for the input samples with the ratio of
disturbance within the shaded area, the LiDAR segmentation model with TTA
can still achieve better performance than the model without TTA on clean input
samples. The proposed TTA is potential to improve the soft labels from the
teacher model for better self-distillation.

To enhance the point cloud encoding in a large-scale autonomous driving
scene, we mainly focus on the voxel methods since they [59,39,56] are significantly
more effective and efficient than point methods [50,42,21] due to the better
structured representation and the deeper convolutional network architecture.
The major concern for voxel-based methods is the quantization error introduced
in the voxelization process, where a cluster of local points inside a voxel are
encoded as the average of their input features (e.g. 3D coordinates and reflection
intensity) [39,12,37,51,57]. The average operation encoded voxel features can also
be treated as introducing some noise to the initial point features. Encoding a
cluster of points as the average reduces the consumption resource of feature
extraction, it is also equivalent to losing object details as well as dropping
points. The larger voxel size worsens these cases and weakens the robustness
of point cloud encoding. To address this, we propose a novel Voxel Feature
Encoder (VFE) with Transformer [43] on the local points inside a voxel, termed
as TransVFE. Transformer can naturally accommodate the unordered sequence
data like point clouds and model the relationship among local points via multi-
head attention [14]. Thus, the proposed TransVFE can serve as a performance
enhancement module in our teacher and student models, which models and
preserves the local geometric relationship during the conversion from points to
voxels at the point cloud encoding level.
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Notably, teacher and student models in our method are designed with the
same network architectures for jointly learning and evolving without requiring
the additional cumbersome teacher model. The model equipped with the
proposed TTA as the teacher can provide privileged guidance while the student
continuously updates the teacher with better network parameters learned by
itself. The proposed TransVFE also are integrated into the models to enhance
the voxel feature learning. In such a manner, even the teacher and student are
homogeneous, the robust model training can proceed with the self-distillation.

Our main contributions are 4-fold: (i) We propose a novel method for robust
LiDAR semantic segmentation in autonomous driving, achieving new state-of-
the-art performance on SemanticKITTI and nuScenes datasets; (ii) we propose
to perform self-distillation for LiDAR semantic segmentation, which enables the
homogeneous models of teacher and student to jointly learn and evolve; (iii) We
propose a simple yet efficient LiDAR semantic segmentation TTA strategy with
a compound transformation, which can improve the teacher model for better
self-distillation as well as be utilized independently in the inference stage with
mIoU improvements; (iv) We propose a novel TransVFE that can enhance the
robust point cloud voxel feature learning in our teacher and student models by
modeling and preserving the local relationship among the points in each voxel.

2 Related Work

2.1 LiDAR Semantic Segmentation

Semantic segmentation on large-scale point clouds [4,6] measured by the
LiDAR sensors are of more challenges than the synthetic and indoor point
clouds [52,3]. The LiDAR semantic segmentation methods mostly follow
the network architecture of U-Net [36] with skip-connections incorporated
symmetrical encoder and decoder, but are differently designed with point cloud
representations of point, 2D image and 3D voxel.

The point representation usually takes large computation costs on gathering
the disordered neighbors for feature extraction. To trade off the computation
burden and segmentation performance, PointASNL [50] and RandLA-Net
[21] propose the learnable adaptive and the efficient random down-sampling
algorithms to improve the classic farthest point sampling [34], respectively. The
expressive local feature extractors developed in KPConv [42], BAAFNet [35]
and others perform well on small point clouds but not that well on LiDAR
point clouds. Besides, the 2D images methods of PolarNet-series [56,58] and
others [46,47,49,4,32] project the 3D point cloud as 2D images in Bird’s-Eye-
View (BEV) and range view, achieving the most efficient LiDAR semantic
segmentation with the mature 2D Convolutional Neural Networks (CNNs) on
GPUs. But the 3D-to-2D projection inevitably suffers from the loss of the
3D structure information of objects, resulting in unsatisfactory segmentation
performance. The recent 3D voxel methods Cylinder3D [59] and SPVNAS [39]
yield top performances by designing deeper 3D sparse CNNs to explicitly explore
the 3D structure information in the cylindrical [59] or cartesian [39] coordinate
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Table 1. Comparing with other distillation related semantic segmentation methods.

Task 2D Semantic Segmantation 3D Semantic Segmantation

Method He et al.[16], SKD[30], IFVD[45], CSC[33], An et al. [2] PSD [55] Ours

Purpose Model compression Weakly supervised learning Achieving higher performance

Cumbersome Teacher
√

× ×

Parameters of Teacher Model Pretrained & Fixed Independently trained Updated from student itself

Equip Teacher with TTA × ×
√

system. The 3D sparse convolutions are performed only on the non-empty voxels
with acceptable memory consumption and significant computational acceleration
[9,39,13]. As a fundamental module in 3D voxel methods, the VFE implemented
by the average operation [12,51,39] or a PointNet [34,24] ignore the relationship
of local points in voxel at the point cloud encoding level.

2.2 Semantic Segmentation with Knowledge Distillation

Knowledge distillation [19] is recently researched for compressing a cumbersome
teacher as a compact student model in 2D semantic segmentation. An additional
auto-encoder is employed to translate the high-level features for distillation in
a latent domain by He et al.[16]. SKD [30] proposes to structurally transfer the
pairwise relation on features, pixel-wise outputs, and holistic representations to
the student. Unlike the dense distillation, IFVD [45] computes the intra-class
feature variation to guide the student to mimic the class-wise prototype. The
long-range dependence, spatial and channel correlations also are extracted as the
knowledge for distillation by An et al. [2] and CSC [33], respectively. The above
methods make efforts to adapt the feature map for alleviating the differences
of feature distributions between the heterogeneous teacher model and student
model, but the distribution gap still exists in such two heavy and lightweight
models. Instead, we aim at achieving higher LiDAR semantic segmentation
performance by performing self-distillation without any cumbersome teacher.

In LiDAR semantic segmentation, only the recently published weakly-
supervised PSD [55] shares the closest distillation manner in terms of using
two model instances of the same network architecture. However, the differences
between PSD and ours still appear in Tab. 1 as follows. (i) Different model
training strategies. Given a point cloud with only a tiny fraction of point-wise
labels provided, PSD has two branches of disturbed and undisturbed input point
clouds, where the undisturbed branch is termed as the teacher for providing
robust feature representation as the knowledge to guide the disturbed branch
termed as the student. The teacher and student are independently trained and
only the consistency regularization effectiveness can aid the training. Instead,
our teacher and student models are designed to be jointly evolved, where the
more privileged guidance from the teacher can be transferred to the student while
the student continuously updates the teacher with better network parameters
learned by itself. (ii) Our teacher model is equipped with the proposed TTA
strategy for the quality grantee of the distillation guidance, while no such quality
grantee is considered in PSD. (iii) Different purposes. PSD mainly focuses on
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indoor point clouds and relies on consistency regularization to achieve weakly-
supervised segmentation for reducing the labeling burden on an input point
cloud, while our self-distillation aims to achieve more robust LiDAR semantic
segmentation with stronger performance in large-scale driving scenarios.

2.3 Test-time Augmentation

Since few efforts have been made on the TTA for LiDAR semantic seg-
mentation, we mainly review the TTA applied in image-based 2D vision
works [60,20,7,31,22]. The pixel-wise segmentation and object-wise axis-aligned
boxes of the flipped and scaled input images can be averaged easily by
the corresponding inverse transformation in 2D segmentation [60,48,20] and
detection [7,54]. But the translation and rotation can cause some content pixels
to overflow the image boundaries and coordinate quantization errors, resulting
in unacceptable misalignment among transformed images. Image recognition
tasks with image-wise classifications can additionally employ the rotation
and translation transformations to perform TTA. For the point cloud with
unstructured and unordered points, the point-wise semantic predictions can be
easily averaged across the input variants from different types of transformations,
as long as the order of points is unchanged. Some greedy [31] and learnable
[22] policies search the combination of different TTA input variants in image
recognition with carefully tuned search parameters and loss functions. However,
as a pioneer of introducing the TTA into the LiDAR segmentation field, we
employ a compound transformation based on the four types of transformations
in TTA. It is simple yet effective, demonstrating the beauty of science.

3 Method

This section describes the proposed LiDAR semantic segmentation method.
Since the teacher and student models in our method are related to the TransVFE
and TTA, we begin with the overview of our network architecture in Sec. 3.1
followed by the description of a novel TTA strategy for LiDAR segmentation
in Sec 3.2. The proposed self-distillation framework and the loss function are
presented in Sec. 3.3 and Sec. 3.4.

3.1 Network

TransVFE. Let
{(

xi, f
in
i

)
: i = 1, · · · , NP

}
denote a input point cloudX within

the range of [xMin, xMax], where x ∈ R3×1 represents the 3D point coordinates,
and f in ∈ RCin×1 represents the Cin-dimensional point-wise input features such
as coordinates x and reflection intensity r. We rearrange X as the structural
non-empty voxels by voxelization. The point coordinates x are discretized into
integer values v̄ =

⌊
x−xMin

d

⌋
by a step d. The points with the same v̄ are gathered

into a voxel and denoted as N = {(v̄i, f in
i ) : i = 1, · · · , T}. The unique values of
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v̄ are set as the voxel indices v. The VFE is defined on the N to encode the all
the local point features F in ∈ RCin×T in N as the voxel-wise feature.

Given a voxel with T local points inside it, we use a VFE with Transfomer
[43], termed as TransVFE, to model the relationship of local points in voxel via
Multi-Head Self-Attention MHSA(·) and Feed-Forward Network FFN(·):

F ′ = Norm(W inF in), (1)

F att = F ′ +MHSA(F ′), (2)

F trans = F att + FFN(F att), (3)

where the input features F in are initially projected to Ctrans dimension by a linear
layer with learnable parametersW in.Norm indicates LayerNorm operation. The
MHSA(·) can be decomposed into NH heads with features H as

MHSA(F ′) = [Hj : j = 1, · · ·NH] , (4)

HT
j = Softmax(

QT
j Kj√

Ctrans/NH

)V T
j , (5)

Qj ,Kj , Vj = W q
j F

′,W k
j F

′,W v
j F

′. (6)

The W q
j ,W

k
j ,W

v
j are the learnable parameters in linear layers for feature

projection, and each local point in F ′ interacts with others as defined in
Eq. 5. After stacking three blocks of Transformer, we follow [14] to employ
a max-pooling operation along the point-axis to get the expressive voxel-wise
feature f trans ∈ RCtrans×1 from F trans ∈ RCtrans×T , and apply another linear
layer to compress f trans ∈ RCtrans×1 to fvfe ∈ RC0×1 with less channels for
saving computation in the subsequent network. Thus, our TransVFE explicitly
encodes local points into the voxel features as V =

{(
vi, f

vfe
i

)
: i = 1, · · · , NV

}
,

where each item (v, fvfe) indicates the non-empty voxel located at v with the
corresponding voxel-wise feature fvfe.

3D Sparse U-Net. Without loss of generalization, we leverage the universal
U-Net from [37] as our backbone, which is implemented with the computationally
efficient 3D sparse convolutions [13,51] following [37,59]. We rearrange the voxels
in V as a sparse tensor for feature learning with the 3D sparse convolutional
blocks. The details are in the supplementary material.

Voxel Head and Point Head. Voxelization makes feature extraction
efficient [25,27], but LiDAR segmentation requires point-wise outputs. The
existing methods [56,59] reverse the pair-wise mapping from the voxel-wise
outputs back to the points, and associate all the points in the same voxel with
the same category. This inevitably has the risk of classifying points of different
categories into the same category, especially for object boundaries. Thus, we
devoxelize the voxel-wise features into point-wise features to predict point-wise
output ŶP following [39]. For each point, we interpolate the point feature from its
K nearest neighboring voxels [26]. We set the K to 3 for computation efficiency.

We construct segmentation heads composed of fully connected layers on
voxel-wise and point-wise features, respectively. The voxel-wise prediction ŶV is
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Fig. 2. Overview of self-distillation for robust LiDAR semantic segmentation.

for auxiliary supervision only, while we apply an argmax function to the point-
wise prediction ŶP for obtaining the predicted classes as the segmentation results.
To avoid ambiguity in voxel-wise supervision, we ignore the voxels containing
points of multiple classes in the auxiliary voxel-wise loss.

3.2 Test-time Augmentation for LiDAR Semantic Segmentation

We choose four standard types of data augmentation transformations with
the common hyper-parameters widely used in the training phase of a LiDAR
segmentation network [59,56,39,8]: global scaling (τscale) with a random scaling
factor in [0.95, 1.05], random flipping (τflip) along the X,Y axis, global rotation
(τrot) around the Z axis with a random angle in

[
−π

4 ,+
π
4

]
, global translation

(τtran) with a random vector (∆x,∆y,∆z) sampled from a Gaussian distribution
with mean zero and the standard deviation 0.5. The random value controls the
magnitude of applying each transformation.

We can apply the above transformations in test-time and assemble the
predictions from the input and its augmented samples to boost the robustness
of LiDAR segmentation model. Given a model with weights θ′, the assembled
prediction Ŷ ′ from the naive version of point cloud TTA can be formulated
as Ŷ ′ = 1

M

∑M
i=1 θ

′ (Xi), where X = {Xi} is the set of input variants and M
denotes the number of samples in X . The naive strategy is to generate the X as
a set of {X,Xscale, Xflip, Xrot, Xtran}, which consist of the identical input X and
the augmented input samples generated by the four types of transformations.
Although we can apply each type of transformation multiple times with different
magnitudes to generate more input variants, the flexibility of data augmentation
is still within the individual transformation.

Instead, we develop a more effective strategy for increasing the diversity
and flexibility of the augmented samples. We define a compound transformation
τcomp(X) as τtran(τrot(τflip(τscale(X)))), which combines individual transforma-
tions. The magnitude of τcomp can be independently controlled by each individual
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transformation. The X is augmented into a set of X ∗ = {X,Xcomp,j} with
different magnitudes, where “j” indexes the augmented samples in the set.
The diversity and the flexibility in the input point cloud variants help reduce
the uncertainty with the assembled prediction from multiple input point cloud
variants in the inference stage.

3.3 Self-distillation

For training a robust model with stronger performance without a cumbersome
teacher model (T-Model) providing the distillation guidance, we propose to
perform self-distillation on two model instances of the same network architecture.

Teacher Model Configuration. The quality of the guidance from the T-
Model is critical to training a good student model (S-Model) [41,16,29,57]. Hence,
we decide the configuration of the T-Model in two terms of the performance
boost and the network parameters updating. Since TTA always improves the
performance of a model robustly, it is feasible to equip the T-Model with TTA
when inferring predictions as distillation guidance. But it is barely used for
distillation in 2D semantic segmentation, and we show that our TTA strategy
can be involved in the T-Model configuration for better self-distillation. With
the aid of TTA, the parameters of the T-Model can naively be copied from
the current S-Model or loaded from the pretrained parameters. Besides these,
updating T-Model with the successive network parameters of S-Model is widely
used to provide the predictions as the reliable soft labels on unlabeled images
in the semi-supervised 2D vision works [41,29,40]. Inspired by this, we can also
update the T-Model with weights θ′ as the Exponential Moving Average (EMA)
of the S-Model with weights θ in successive training step t [41], which can be
formulated as θ′t = αθ′t−1+(1−α)θt, where α = min(1− 1

t , 0.999). The smoothing
coefficient α makes the T-Model a temporal assembly of S-Models from different
training steps, so that the T-Model is more likely to have better soft labels to
regularize the learning process [41].

As the combination of different manners in updating T-Model and TTA, we
investigate five strategies for self-distillation. Specifically, we describe all the five
optional configurations for T-Model as follows. (i) We copy the T-Model from
the current S-Model at each training step t, but its prediction is improved by
our TTA1. (ii) The T-Model is a pre-trained model, then frozen when training
the S-Model following [19,44]. (iii) We pre-train and freeze the T-Model, and
boost it with TTA in distillation1. (iv) The T-Model is the EMA of the S-Model
following [41,57]. (v) The T-Model is the EMA of the S-Model with our TTA1.

We finally employ configuration (v) to excavate instructive knowledge in our
self-distillation with the most significant improvements achieved.

Training with Soft Labels. Since there are different numbers of non-
empty voxels but the same number of points between the augmented point
clouds in TTA, we only consider the point-wise outputs for self-distillation.
As shown at the 2nd row of Fig. 2, we use the generated soft label YPS to

1 The new soft label acquisition strategies proposed in this paper.
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compute an additional soft loss term LPS between the soft label YPS and the S-
Model prediction ŶP as a useful knowledge transfer for helping the S-Model learn
better. It is a self-distillation procedure between the T-Model from the EMA of
the S-Model with the proposed TTA and the S-Model in our case where the
T-Model and the S-Model are with the same network architecture, excavating
instructive knowledge from the S-Model itself. After self-distillation, only the
S-Model is used for inference, which avoids the computation consumption from
the T-Model. In the inference stage, we can also apply TTA to the S-Model
to get the final output for further performance improvement. More discussions
on the differences of other knowledge distillation related semantic segmentation
methods and ours can be retrieved in Sec. 2.2 and Tab. 1.

3.4 Loss Function

We can train our model individually with voxel-wise hard label YVH and point-
wise hard label YPH only, or jointly with the additional point-wise soft label YPS

for achieving self-distillation. When training without self-distillation, the total
loss L is the sum of the hard label loss LVH on voxel-wise prediction and the
hard label loss LPH on point-wise prediction as L = LVH+LPH. Let α ∈ {V, P}
denote the voxel-wise and point-wise, respectively. The hard label loss term LαH

in L is a combination of the commonly used cross-entropy loss Lce and lovasz-
softmax loss Llovasz [5] as LαH = Lce(Ŷα, YαH) + Llovasz(Ŷα, YαH).

When training the full framework of self-distillation, we formulate the overall
loss L as LVH + LPH + LPS. Inspired by knowledge distillation [19,44] in image
recognition, the soft loss LPS is implemented with the cross-entropy loss between
the point-wise prediction ŶP and the point-wise soft label YPS as γLce(ŶP, YPS).
When the mIoU of the soft label YPS is larger, the dynamic coefficient γ of
exp(mIoU(YPS, YPH)) assigns a larger weight value to the soft loss LPS.

4 Experiments

4.1 Dataset and Metric

SemanticKITTI Dataset. SemanticKITTI [4] dataset for LiDAR semantic
segmentation is collected in Germany with the Velodyne-HDL64E LiDAR. It
contains 22 sequences: sequences 00 to 10 (excluding 08) containing 19,130 point
clouds as the training set, sequence 08 containing 4,071 point clouds as the
validation set, and the remaining sequences 11 to 21 with 20,351 point clouds
as the testing set. For the setting of single scan input, the official evaluation
protocol merges classes with different motion states and ignores classes with
only a few points, so 19 valid classes are preserved from 28 annotated classes.

nuScenes Dataset. nuScenes [6] dataset for LiDAR semantic segmentation
is collected in different areas of Boston and Singapore with the Velodyne-
HDL32E LiDAR. It officially splits 28,130 point clouds for training, 6,019 point
clouds for validation. After merging similar classes and ignoring rare classes, 16
valid classes remain for semantic segmentation evaluation.
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Table 2. Performance comparison on IoU (%) between our method and state-of-the-
art LiDAR Segmentation methods on SemanticKITTI testing set [4]. The methods are
divided into the branches of point, 2D image, and 3D voxel, according to their main
point cloud representations (PC Rep.). Bold and underlined indicate the best and the
second best results, respectively.
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Point

PointASNL [50] 46.8 87.4 0.0 25.1 39.0 29.2 34.2 57.6 0.0 87.4 24.3 74.3 1.8 83.1 43.9 84.1 52.2 70.6 57.8 36.9
RandLA-Net [21] 53.9 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7
KPConv [42] 58.8 96.0 32.0 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4

BAAF-Net [35] 59.9 95.4 31.8 35.5 48.7 46.7 49.5 55.7 53.0 90.9 62.2 74.4 23.6 89.8 60.8 82.7 63.4 67.9 53.7 52.0

2D Image

RangeNet++ [32] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
PolarNet [56] 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5

SqueezeSegv3 [49] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
SalsaNext [10] 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1
KPRNet [23] 63.1 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1

3D Voxel

Darknet53 [4] 49.9 86.4 24.5 32.7 25.5 22.6 36.2 33.6 4.7 91.8 64.8 74.6 27.9 84.1 55.0 78.3 50.1 64.0 38.9 52.2
MinkNet42 [9] 54.3 94.3 23.1 26.2 26.1 36.7 43.1 36.4 7.9 91.1 63.8 69.7 29.3 92.7 57.1 83.7 68.4 64.7 57.3 60.1
3D-MiniNet [1] 55.8 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 74.5 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6
FusionNet [53] 61.3 95.3 47.5 37.7 41.8 34.5 59.5 56.8 11.9 91.8 68.8 77.1 30.8 92.5 69.4 84.5 69.8 68.5 60.4 66.5

SPVNAS-Lite [39] 63.7 - - - - - - - - - - - - - - - - - - -
SPVNAS [39] 66.4 - - - - - - - - - - - - - - - - - - -

Cylinder3D [59] 67.8 97.1 67.6 64.0 59.0 58.6 73.9 67.9 36.0 91.4 65.1 75.5 32.3 91.0 66.5 85.4 71.8 68.5 62.6 65.6

(AF)2-S3Net [8] 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0
Ours (w.o. TTA) 68.0 97.0 54.4 48.1 55.9 61.6 65.5 69.4 51.1 91.3 67.0 77.0 35.6 92.2 67.8 84.9 72.2 69.3 63.4 68.0
Ours (w. TTA) 70.4 97.4 58.7 54.2 54.9 65.2 70.2 74.4 52.2 90.9 69.4 76.7 41.9 93.2 71.1 86.1 74.3 71.1 65.4 70.6

Table 3. Performance comparison on IoU (%) between our method and other LiDAR
Segmentation methods on nuScenes [6] validation set. Bold and underlined indicate the
best and the second best results, respectively.
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(AF)2-S3Net [8] 62.2 60.3 12.6 82.3 80.0 20.1 62.0 59.0 49.0 42.2 67.4 94.2 68.0 64.1 68.6 82.9 82.4

RangeNet++ [32] 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8

PolarNet [56] 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7

SalsaNext [10] 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4

AMVNet [28] 76.1 79.8 32.4 82.2 86.4 62.5 81.9 75.3 72.3 83.5 65.1 97.4 67.0 78.8 74.6 90.8 87.9

Cylinder3D [59] 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4

Ours (w.o. TTA) 77.7 77.5 49.4 93.9 92.5 54.9 86.7 80.1 67.8 65.7 86.0 96.4 74.0 74.9 74.5 86.0 82.8

Ours (w. TTA) 78.7 78.2 52.8 94.5 93.1 54.5 88.1 82.2 69.4 67.3 86.6 96.4 74.5 75.2 75.3 87.1 84.1

Evaluation Metric. We adopt the mean Intersection-over-Union (mIoU)
over all classes as the evaluation metric defined in [4,6], which can be formulated

as mIoU = 1
C

∑C
c=1

TPc

TPc+FPc+FNc
, where TPc, FPc, FNc correspond to the

number of true positive, false positive, and false negative predictions for the
c-th class in C classes.

4.2 Implementation Details

We configure TransVFE with the number of multi-head NH of 4, the hidden
feature dimension Ctrans of 64, the compressed feature dimension C0 of 16, which
are mentioned in Eq. 5. In the 3D sparse U-Net, the feature dimensions C1 - C8

are set as 32, 64, 128, 128, 128, 128, 64, 32, respectively. We only use the point-
wise outputs as the inferred segmentation results, while the voxel-wise outputs
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Table 4. Latency analysis on SemanticKITTI testing set.

Methods RandLA-Net[21] SqueezeSegV3 [49] SPVNAS-Lite[39] Ours

Latency (s) 0.416 0.113 0.150 0.148
mIoU (%) 53.9 55.9 63.7 68.0

are used in the training phase only. More details on point cloud voxelization and
model training are provided in the supplementary material.

4.3 Evaluation

Results on SemanticKITTI. Tab. 2 presents the performance of our method
without (w.o.) and with (w.) TTA after self-distillation against other methods
on the testing set of SemanticKITTI dataset. Our full pipeline achieves the best
result on mIoU. The efficient 3D convolution facilitates the exploration of 3D
object structures, so 3D voxel methods achieve better performance than point
and 2D image methods. Our method achieves the largest number of Top-1 and
Top-2 results (8/20 & 13/20) among the overall 19 object classes and mIoU,
which shows the reliable and robust LiDAR segmentation performance of various
object categories. Qualitative visualizations are in supplementary material.

Table 5. Effects of VFE. All models
are trained without self-distillation
and inferred without TTA. “Improv.”
is the improvement compared to
average-based model.

VFE Module
SemanticKITTI nuScenes

mIoU Improv. mIoU Improv.

Average 64.90 - 75.94 -
PointNet 65.08 +0.18 75.96 +0.02

TransVFE (Ours) 65.47 +0.57 76.42 +0.48

Results on nuScenes. We also evalu-
ate our method on the nuScenes dataset.
In Tab. 3, our method outperforms the
Cylinder3D [59] and AMVNet [28] in
mIoU of 2.6%. In terms of all metrics,
our full method still achieves the 7/17
Top-1 results and the largest number
of Top-2 results (12/17). Considering
the different collection environments and
collection LiDAR sensors between the
SemanticKITTI and nuScenes, our method
generalizes well in different datasets.

Latency. Tab. 4 shows the latency
analysis under the same experimental
settings with the same machine. Our method achieves much higher mIoU with
close latency against SqueezeSegV3 [49] and SPVNAS-Lite [39].

4.4 Ablation study

We conduct extensive ablation experiments on SemanticKITTI and nuScenes
datasets following the official evaluation protocol on the validation sets. Since the
T-Model in our method is related to the TransVFE and TTA, Tab. 5 and 6 first
demonstrate the effects of the TransVFE and TTA without the self-distillation
followed by the further analyses on our full framework in Tab. 7 and Fig. 3.
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Table 6. Effects of the different aug-
mentation strategies for TTA. M and
j are the number and index of input
variants in X , respectively. “Row” and
“Improv.” denote the row index and the
mIoU improvements compared with the
baseline in the first row.
Row X M

SemanticKITTI nuScenes

mIoU Improv. mIoU Improv.

1 {X} 1 65.47 - 76.42 -

2 {X,Xscale,j : j = 1, · · · , 4} 5 66.32 +0.85 77.13 +0.71
3 {X,Xflip,j : j = 1, · · · , 4} 5 66.49 +1.02 76.87 +0.45
4 {X,Xrot,j : j = 1, · · · , 4} 5 66.53 +1.06 77.04 +0.62
5 {X,Xtran,j : j = 1, · · · , 4} 5 66.57 +1.10 77.06 +0.64
6 {X,Xscale, Xflip, Xrot, Xtran} 5 66.64 +1.17 77.27 +0.85
7 {X,Xcomp,j : j = 1, · · · , 4} 5 67.75 +2.28 77.54 +1.12

8 {X,Xcomp,j : j = 1, · · · , 5} 6 67.97 +2.50 77.70 +1.28
9 {X,Xcomp,j : j = 1, · · · , 6} 7 67.82 +2.35 77.67 +1.25
10 {X,Xcomp,j : j = 1, · · · , 7} 8 68.04 +2.57 77.72 +1.30

Table 7. Effects of self-distillation.
“Exp.”, “EMA”, and “Improv.” indicate
experiment tags, Exponential Moving
Average, and Improvements compared
to the baseline in Exp. A. The setting
of the baseline (Exp. A) is mentioned
in TransVFE. Note that TTA is only
used in self-distillation for this experiment
setting.
Exp. S-Model Initialization

T-Model Configuration SemanticKITTI nuScenes

T-Model Parameter TTA mIoU Improv. mIoU Improv.

A

Scratch

- - 65.47 - 76.42 -
B Copy

√
65.61 +0.14 76.62 +0.20

C Pre-trained & fixed × 65.89 +0.42 76.83 +0.41
D Pre-trained & fixed

√
66.09 +0.62 76.98 +0.56

E EMA × 66.18 +0.71 76.93 +0.51
F EMA

√
66.64 +1.17 77.31 +0.89

G
Pre-trained

Pre-trained & fixed
√

66.81 +1.34 77.50 +1.08
H EMA

√
67.11 +1.64 77.74 +1.32

TransVFE. Tab. 5 shows that our TransVFE of modeling the local
relationship can improve the performance compared with the VFE modules
implemented by average operation in [51,39] and PointNet in [56,59] in terms of
point cloud encoding. Thus, we use this model shown in the last row of Tab. 5
as the baseline model for the ablation studies of TTA and self-distillation.

TTA strategy. In Tab. 6, the improvements in rows 2 - 5 first demonstrate
that all the four types of transformations can be taken into account for
TTA. Rows 6 and 2 - 5 then show that combining the four individual TTA
transformations is slightly better than reusing any individual transformations
multiple times, when an input variant set X with a fixed capacity (M = 5) is
given. Reusing compound transform in row 7 achieves much more significant
improvements than combining the four individual TTA transformations in row
6 on both datasets, indicating that our compound transform is simple yet
effective enough. The last three rows validate that the performance can be further
improved with the increased capacity of X but gradually saturated after M = 6.
Thus, we set M to 6 in this work.

Self-distillation. The Exp. B-F in Tab. 7 inspect the effectiveness of the five
optional T-Model configurations as described in Sec. 3.3. The mIoU of Exp. B,
D, and F is consistently higher than the mIoU of Exp. A, C, and E, showing that
applying the TTA to acquire soft labels with higher quality is effective for better
self-distillation. Among different manners of updating the T-Model network
parameters, the EMA shows the most significant improvements. Especially, the
Exp. F that applies both the EMA and TTA achieves the best mIoU on both
datasets. The dual assemblies of the S-Model network parameters and the T-
Model predictions guarantee the quality of the soft labels thus enhancing the
self-distillation. Finally, the last two rows suggest that we can initialize the
parameters of both the S-Model and T-Model from the pre-trained baseline
model with higher overall performances. The Exp. H that applies both the EMA
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Fig. 3. Continuous improvements of our method and Cylinder3D backbone [59] in
our framework. Baseline* is the model with average-based VFE.

and our TTA with pre-trained model initialization yields the best mIoU on two
datasets. We thus use this self-distillation strategy in the proposed framework.

Backbone. The proposed method is agnostic to the backbone architectures
under voxel representation of LiDAR point cloud. Since the codes of Cylinder3D
[59] and SPVNAS [39] are not completely released yet, we choose our backbone
as a general U-Net from the LiDAR perception work [37]. The experiments in
Fig. 3 validate that our framework can also achieve significant improvements
when using Cylinder3D backbone. Therefore, all the proposed components can
be instantiated with other backbones for LiDAR semantic segmentation.

5 Conclusions

In this paper, we propose a novel self-distillation framework and firstly use it
for robust LiDAR semantic segmentation in autonomous driving. The proposed
framework enables the self-distillation from a teacher model instance to a
student model instance with the same network architecture for jointly learning
and evolving in training. Our method achieves state-of-the-art performance on
SemanticKITTI and nuScenes datasets, demonstrating the effectiveness of the
overall self-distillation framework. Extensive experiments validate that all the
proposed components are effective with significant improvements and general to
be instantiated with different backbones for LiDAR semantic segmentation.
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