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Abstract. As camera and LiDAR sensors capture complementary infor-
mation in autonomous driving, great efforts have been made to conduct
semantic segmentation through multi-modality data fusion. However,
fusion-based approaches require paired data, i.e., LiDAR point clouds
and camera images with strict point-to-pixel mappings, as the inputs
in both training and inference stages. It seriously hinders their appli-
cation in practical scenarios. Thus, in this work, we propose the 2D
Priors Assisted Semantic Segmentation (2DPASS) method, a general
training scheme, to boost the representation learning on point clouds.
The proposed 2DPASS method fully takes advantage of 2D images with
rich appearance during training, and then conduct semantic segmenta-
tion without strict paired data constraints. In practice, by leveraging
an auxiliary modal fusion and multi-scale fusion-to-single knowledge dis-
tillation (MSFSKD), 2DPASS acquires richer semantic and structural
information from the multi-modal data, which are then distilled to the
pure 3D network. As a result, our baseline model shows significant im-
provement with only point cloud inputs once equipped with the 2DPASS.
Specifically, it achieves the state-of-the-arts on two large-scale recognized
benchmarks (i.e., SemanticKITTI and NuScenes), i.e., ranking the top-1
in both single and multiple scan(s) competitions of SemanticKITTI.

Keywords: Semantic Segmentation, Multi-Modal, Knowledge Distilla-
tion, LiDAR Point Clouds

1 Introduction

Semantic segmentation plays a crucial role in large-scale outdoor scene under-
standing, which has broad applications in autonomous driving and robotics [1–3].
In the past few years, the research community has devoted significant effort to
understanding natural scenes using either camera images [4–7] or LiDAR point
clouds [2, 8–12] as the input. However, these single-modal methods inevitably
face challenges in complex environments due to the inherent limitations of the

? Corresponding author: Zhen Li. † Equal first authorship.



2 X. Yan et al.

Front-Camera Image and Perspective Projection 360° LiDAR Point Cloud Point Cloud in Camera Perspective 

Fig. 1. Limitation of fusion-based methods. When the self-driving car only has
front-cameras with limited perspective such as SemanticKITTI [16] dataset while the
360-degree LiDAR has a much larger sensing range, fusion-based methods that require
strict alignment between camera and LiDAR can only identify a small proportion of
the point cloud (see the red region).

input sensors. Concretely, cameras provide dense color information and fine-
grained texture, but they are ambiguous in depth sensing and unreliable in low
light conditions. In contrast, LiDARs robustly offer accurate and wide-ranging
depth information regardless of lighting variances but only capture sparse and
textureless data. Since cameras and LiDARs complement each other, it is better
to perceive the surrounding with both sensors.

Recently, many commercial cars have been equipped with both cameras and
LiDARs. This excites the research community to improve the semantic segmen-
tation by fusing the information from two complementary sensors [13–15]. These
approaches first establish the mapping between 3D points and 2D pixels by pro-
jecting the point clouds onto the image planes using the sensor calibrations.
Based on the point-to-pixel mapping, the models fuse the corresponding image
features into the point features, which are further processed to obtain the final
semantic scores. Despite the improvements, fusion-based methods have the fol-
lowing unavoidable limitations: 1) Due to the difference of FOVs (field of views)
between cameras and LiDARs, the point-to-pixel mapping cannot be established
for points that are out of the image planes. Typically, the FOVs of LiDAR and
cameras only overlap in a small portion (see Fig. 1), which significantly lim-
its the application of fusion-based methods. 2) Fusion-based methods consume
more computational resources since they process both images and point clouds
(through multitask or cascade manners) at runtime, which introduces a great
burden on real-time applications.

To address the above two issues, we focus on improving semantic segmenta-
tion by leveraging both images and point clouds through an effective design in
this work. Considering the sensors are moving in the scenes, the non-overlap part
of the 360-degree LiDAR point clouds corresponding to image in the same time-
stamp (see the gray region of the right part in Fig. 1) can be covered by images
from other time-stamp. Besides, the dense and structural information of im-
ages provides useful regularization for both seen and unseen point cloud regions.
Based on these observations, we propose a “model-independent” training scheme,
namely 2D Priors Assisted Semantic Segmentation (2DPASS), to enhance the
representation learning of any 3D semantic segmentation networks with minor
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structure modification. In practice, on the one hand, for above-mentioned non-
overlap regions, 2DPASS takes pure point clouds as the inputs to train the
segmentation model. On the other hand, for subregions with well-aligned point-
to-pixel mappings, 2DPASS adopts an auxiliary multi-modal fusion to aggregate
image and point features in each scale, and then aligns the 3D predictions with
the fusion predictions. Unlike previous cross-modal alignment [17] apt to con-
taminate the modal-specific information, we design a multi-scale fusion-to-single
knowledge distillation (MSFSKD) strategy to transfer extra knowledge to the 3D
model as well as retaining its modal-specific ability. Compared with fusion-based
methods, our solution has the following preferable properties: 1) Generality:
It can be easily integrated with any 3D segmentation model with minor struc-
tural modification; 2) Flexibility: The fusion module is only used during the
training to enhance the 3D network. After training, the enhanced 3D model can
be deployed without image inputs. 3) Effectively: Even with only a small sec-
tion of overlapped multi-modality data, our method can significantly boost the
performance. As a result, we evaluate 2DPASS with a simple yet strong baseline
implemented with sparse convolutions [3]. The experiments show 2DPASS brings
noticeable improvements even over this strong baseline. Equipped with 2DPASS
using multi-modal data, our model achieves the top-1 results on the single and
multiple-scan leaderboards of SemanticKITTI [16]. The state-of-the-art results
on the NuScenes [18] dataset further confirm the generality of our method.

In general, the main contributions are summarized as follows.

– We propose 2D Priors Assisted Semantic Segmentation (2DPASS) that as-
sists 3D LiDAR semantic segmentation with 2D priors from cameras. To the
best of our knowledge, 2DPASS is the first method that distills multi-modal
knowledge to single point cloud modality for semantic segmentation.

– Equipped with the proposed multi-scale fusion-to-single knowledge distilla-
tion (MSFSKS) strategy, 2DPASS achieves the significant performance gains
on SemanticKITTI and NuScenes benchmarks, ranking the 1st on single and
multiple tracks of SemanticKITTI.

2 Related Work

2.1 Single-Sensor Methods

Camera-Based Methods. Camera-based semantic segmentation aims to pre-
dict the pixel-wise labels for input 2D images. FCN [19] is the pioneer in seman-
tic segmentation, which proposes an end-to-end fully convolutional architecture
based on image classification networks. Recent works have achieved significant
improvements via exploring multi-scale features learning [4, 20, 21], dilated con-
volution [5,22], and attention mechanisms [7,23]. However, camera-only methods
are ambiguous in depth sensing and not robust in low light conditions.
LiDAR-Based Methods. The LiDAR data is generally represented as point
clouds. There are several mainstreams to process point clouds with different
representations. 1) Point-based methods approximate a permutation-invariant
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set function using a per-point Multi-Layer Perceptron (MLP). PointNet [24] is
the pioneer in this field. Later on, many studies design point-wise MLP [25,26],
adaptive weight [27, 28] and pseudo grid [29, 30] based methods to extract lo-
cal features of point clouds or exploit nonlocal operators [31–33] to learn long
distance dependency. However, point-based methods are not efficient in the Li-
DAR scenario since their sampling and grouping algorithms are generally time-
consuming. 2) Projection-based methods are very efficient approaches for Li-
DAR point clouds. They project point clouds onto 2D pixels so that traditional
CNN can play a normal role. Previous works project all points scanned by the
rotating LiDAR onto 2D images by plane projection [34–36], spherical projec-
tion [37,38] or both [39]. However, the projection inevitably causes information
loss. And the projection-based methods currently meet the bottleneck of the seg-
mentation accuracy. 3) Most recent works adopt voxel-based frameworks since
they balance the efficiency and effectiveness, where sparse convolution (Spar-
seConv) [3] are most commonly utilized. Compared to traditional voxel-based
methods (i.e., 3DCNN) directly transforming all points into the 3D voxel grids,
SparseConv only stores non-empty voxels in a Hash table and conducts convolu-
tion operations only on these non-empty voxels in a more efficient way. Recently,
many studies have used SparseConv to design more powerful network architec-
tures. Cylinder3D [40] changes original grid voxels to cylinder ones and designs
an asymmetrical network to boost the performance. AF2-S3Net [41] applies mul-
tiple branches with different kernel sizes, aggregating multi-scale features via an
attention mechanism. 4) Very recently, there is a trend of exploiting multi-
representation fusion methods. These methods combine multiple representa-
tions above (i.e., points, projection images, and voxels) and design feature fusion
among different branches. Tang et.al. [10] combines point-wise MLPs in each
sparse convolution block to learn a point-voxel representation and uses NAS to
search for a more efficient architecture. RPVNet [42] proposes range-point-voxel
fusion network to utilizes information from three representations. Nevertheless,
these methods only take sparse and textureless LiDAR point clouds as inputs,
thus appearance and texture in the camera images have not been fully utilized.

2.2 Multi-Sensor Methods

Multi-sensor methods attempt to fuse information from two complementary
sensors and leverage the benefits of both camera and LiDAR [14, 15, 43, 44].
RGBAL [14] converts RGB images to a polar-grid mapping representation and
designs early and mid-level fusion strategies. PointPainting [15] exploits the seg-
mentation logits of images and projects them to the LiDAR space by bird’s-eye
projection [23] or spherical projection [45] for LiDAR network performance im-
provement. Recently, PMF [13] exploits a collaborative fusion of two modalities
in camera coordinates. However, these methods require multi-sensor inputs in
both training and inference phases. Moreover, the paired multi-modality data is
usually computation-intensive and unavailable in practical application.
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Fig. 2. 2D Priors Assisted Semantic Segmentation (2DPASS). It first crops a
small patch from the original camera image as the 2D input. Then the cropped image
patch and LiDAR point cloud independently pass through the 2D and 3D encoders
to generate multi-scale features in parallel. Afterwards, for each scale, complementary
2D knowledge is effectively transferred to the 3D network via the multi-scale fusion-to-
single knowledge distillation (MSFSKD). The feature maps (in the form of either pixel
grid or point set) are used to generate the final semantic scores using modal-specific
decoders, which are supervised by pure 3D labels.

2.3 Cross-modal Knowledge Transfer

Knowledge distillation was initially proposed for compressing the large teacher
network to a small student one [46]. Over the past few years, several subsequent
studies enhanced knowledge transferring through matching feature representa-
tions in different manners [47–50]. For instance, aligning attention maps [49]
and Jacobean matrixes [50] were independently applied. With the development
of multi-modal computer vision, recent research apply knowledge distillation to
transfer priors across different modalities, e.g., exploiting extra 2D images in the
training phase and improving the performance in the inference [51–55]. Specif-
ically, [56] introduces the 2D-assisted pre-training, [57] inflates the kernels of
2D convolution to the 3D ones, and [58] applies well-designed teacher-student
framework. Inspired but different from the above, we transfer 2D knowledge
through a multi-scale fusion-to-single manner, which additionally takes care of
the modal-specific knowledge.

3 Method

3.1 Framework Overview

This paper focuses on improving the LiDAR point cloud semantic segmentation,
which aims to assign the semantic label to each point. To handle difficulties in
large-scale outdoor LiDAR point clouds, i.e., sparsity, varying density, and lack
of texture, we introduce the strong regularization and priors from 2D camera
images through a fusion-to-single knowledge transferring.

The workflow of our 2D Priors Assisted Semantic Segmentation (2DPASS)
is shown in Fig. 2. Since the camera images are pretty large (e.g., 1242 × 512),
sending the original ones to our multi-modal pipeline is intractable. Therefore,
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we randomly sample a small patch (480× 320) from the original camera image
as the 2D input [17], accelerating the training processing without performance
drop. Then the cropped image patch and LiDAR point cloud independently pass
through independent 2D and 3D encoders, where multi-scale features from the
two backbones are extracted in parallel. Afterwards, multi-scale fusion-to-single
knowledge distillation (MSFSKD) is conducted to enhance the 3D network using
multi-modal features, i.e., fully utilizing texture and color-aware 2D priors as
well as retaining the original 3D-specific knowledge. Finally, all the 2D and 3D
features at each scale are used to generate semantic segmentation predictions,
which are supervised by pure 3D labels. During inference, the 2D-related branch
can be discarded, which effectively prevents extra computational burden in real
application compared with fusion-based approaches.

3.2 Modal-Specific Architectures

Multi-Scale Feature Encoders. As shown in Fig. 2, we use two different
networks to independently encode multi-scale features from 2D image and 3D
point cloud. We apply ResNet34 [59] encoder with 2D convolution as the 2D
network. For the 3D network, we adopt sparse convolution [3] to construct the
3D network. One merit of sparse convolution lies in the sparsity, with which
the convolution operation only considers the non-empty voxels. Specifically, we
design a hierarchical encoder as SPVCNN [10], and we adopt the ResNet bot-
tleneck [59] design in each scale while replacing the ReLU activation with Leaky
ReLU activation [60]. In both network, we extract L feature maps from different
scales, obtaining the 2D and 3D features, i.e., {F 2D

l }Ll=1 and {F 3D
l }Ll=1.

Prediction Decoders. After processing the features from images and point
clouds at each scale, two modal-specific prediction decoders are independently
applied to restore the down-sampled feature maps to their original sizes.

For the 2D network, we adopt FCN [19] decoder to up-sample the features
from each encoder layer. Specifically, the feature map D2D

l from the l-th decoder
layer can be gained by up-sampling the feature map from the (L − l + 1)-th
encoder layer, where all the up-sampled feature maps will be merged through
element-wise addition. Finally, the semantic segmentation of the 2D network is
obtained by passing the fused feature map through a linear classifier.

For the 3D network, we do not adopt the U-Net decoder used in previous
methods [10,40,41]. In contrast, we up-sample the features from different scales
to the original size and concatenate them together before feeding them into
the classifier. We find out that such a structure can better learn hierarchical
information while gaining the prediction in a more efficient way.

3.3 Point-to-Pixel Correspondence

Since the 2D features and 3D features are generally represented as pixels and
points, respectively, it is difficult to directly transfer information between two
modalities. In this section, we aim to generate paired features of two modalities
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Fig. 3. 2D and 3D feature generation. Part (a) demonstrates the 2D feature gen-
eration, where the point cloud will first be projected onto the image patch and generate
the point-to-pixel (P2P) mapping. After that, it transfers the 2D feature map to the
point-wise 2D features according to P2P mapping. Part (b) shows the 3D feature gen-
eration. The point-to-voxel (P2V) mapping is easy to obtain, and the voxel features
will be interpolated onto the point cloud.

for further knowledge distillation, using the point-to-pixel correspondence. The
details of paired feature generation in two modalities are demonstrated in Fig. 3.
2D Features. The process of 2D feature generation is illustrated in Fig. 3 (a).
By cropping a small patch I ∈ RH×W×3 from the original image and passing
it through a 2D network, multi-scale features can be extracted in the hidden
layers with different resolution. Taking the feature map F 2D

l ∈ RHl×Wl×Dl from
l-th layer as an example, we first conduct a decovolution operation to upscale its
resolution to the original one F̃ 2D

l . Similar to the recent multi-sensor method [13],
we adopt perspective projection and calculate a point-to-pixel mapping between
point clouds and images. Specifically, given a LiDAR point cloud P = {pi}Ni=1 ∈
RN×3, the projection of each 3D point pi = (xi, yi, zi) ∈ R3 to a point p̂i =
(ui, vi) ∈ R2 in the image plane is given as:

[ui, vi, 1]T =
1

zi
×K × T × [xi, yi, zi, 1]T , (1)

where K ∈ R3×4 and T ∈ R4×4 are the camera intrinsic and extrinsic matrices
respectively. K and T are directly provided in KITTI [61]. Since the lidar and
cameras operate at different frequencies in NuScenes [18], we need to transform
the LiDAR frame at timestamp tl to camera frame at timestamp tc via the global
coordinate system. The extrinsic matrix T in NuScenes dataset [18] is given as:

T = Tcamera ←egotc
× Tegotc←global × Tglobal←egotl

× Tegotl←lidar (2)

After the projection, the point-to-pixel mapping is represented as

M img = {(bvic, buic)}Ni=1 ∈ RN×2, (3)

where b·c is the floor operation. According to the point-to-pixel mapping, we

extract a point-wise 2D feature F̂ 2D ∈ RNimg×Dl from the original feature map
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Fig. 4. Internal structure of Multi-Scale Fusion-to-Single Knowledge Distilla-
tion (MSFSKD), which consists of the modality fusion and Modality-Preserving KD.
For each scale, modality fusion is first ultilized to achieve an enhanced multi-modality
feature F̂ 2D3De

l . Afterwards, the enhanced feature F̂ 2D3De
l promotes the 3D represen-

tation F̂ 3De
l through the uni-directional Modality-Preserving KD.

F 2D if any pixel on the feature map is included in M img. Here N img < N
represents the number of points that are included in M img.
3D Features. The process of 3D features is relatively straightforward (as shown
in Fig. 3 (b)). Specifically, for the point cloud P = {(xi, yi, zi)}Ni=1, we obtain a
point-to-voxel mapping in the l-th layer through

Mvoxel
l = {(bxi/rlc, byi/rlc, bzi/rlc)}Ni=1 ∈ RN×3, (4)

where rl is the voxelization resolution in the l-th layer. After that, given the
3D feature F 3D

l ∈ RN ′
l×Dl from a sparse convolution layer, we gain a point-wise

3D feature F̃ 3D
l ∈ RN×Dl through nearest interpolation on the original feature

map F 3D
l according to Mvoxel

l . Finally, we filter the points by discarding points
outside the image FOV:

F̂ 3D
l = {fi|fi ∈ F̃ 3D

l ,M img
i,1 ≤ H,M

img
i,2 ≤W}

N
i=1 ∈ RNimg×Dl , (5)

2D Ground Truths. Considering only 2D images is provided, the 2D ground-
truths are obtained by projecting the 3D point labels to the corresponding image
plane using above point-to-pixel mapping. Afterwards, the projected 2D ground
truths can work as the supervision for the 2D branch.
Features Correspondence. Since both 2D and 3D feature use the same point-
to-pixel mapping, 2D features F̂ 2D

l and 3D features F̂ 3D
l in arbitrary l-th layer

have the same number of point N img and point-to-pixel correspondence.

3.4 Multi-Scale Fusion-to-Single Knowledge Distillation (MSFSKD)

As the key of 2DPASS, MSFSKD aims at improving the 3D representation in
each scale using auxiliary 2D priors through a fusion-then-distillation manner.
The knowledge distillation (KD) design of MSFSKD is partially inspired by
[17]. However, [17] conducts KD in a naive cross-modal manner, i.e., simply
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aligning the outputs from two sets of single modal features (i.e. either 2D or
3D), which inevitably pushes the features from two modals to their overlapped
space. Therefore, such a manner actually discards the modal-specific information,
which is crucial in multi-sensor segmentation. Although this issue can be relieved
by introducing extra segmentation heads [17], it is inherent for the cross-modal
distillation, resulting in biased predictions. To this end, we propose multi-scale
fusion-to-single knowledge distillation (MSFSKD) module as shown in Fig. 4,
which first fuses features of both images and point clouds and then conducts
unidirectional alignment between the fused and the point cloud features. In our
fusion-then-distillation manner, the fusion well retains the complete information
from multi-modal data. Besides, the unidirectional alignment ensures boosted
point cloud features from fusion without losing modal-specific information.
Modality Fusion. For each scale, considering the 2D and 3D feature gaps ow-
ing to different backbones, it is ineffective to directly fuse the raw 3D features
F̂ 3D
l into their 2D counterparts F̂ 2D

l . Thus, we firstly transform F̂ 3D
l to F̂ learner

l

through a “2D learner” MLP, which struggles to narrow the feature gap. After-
wards, the F̂ learner

l not only flows into the subsequent concatenation with 2D

features F̂ 2D
l to gain the fused features F̂ 2D3D

l through another MLP, but also
goes back into the original 3D features via a skip connection to yield enhanced
3D features F̂ 3De

l . Besides, similar to attention mechanism, the final enhanced

fused features F̂ 2D3De

l is obtained by:

F̂ 2D3De

l = F̂ 2D
l +σ(MLP(F̂ 2D3D

l ))� F̂ 2D3D
l , (6)

where σ denotes Sigmoid activation function.
Modality-Preserving KD. Although the F̂ learner

l is generated from pure 3D
features, it is influenced by the segmentation loss of the 2D decoder as well,
which takes enhanced fused feature F̂ 2D3De

l as inputs. Acting like a residual be-

tween fused and point features, the 2D learner feature F̂ learner
l well prevents the

distillation from contaminating the modal-specific information in F̂ 3D
l , achieving

a Modality-Preserving KD. Finally, two independent classifiers (fully-connected
layers) are respectively applied on top of F̂ 2D3De

l and F̂ 3De

l to obtain the se-
mantic scores S2D3D

l and S3D
l . We choose KL divergence as the distillation loss

LxM as follows:

LxM = DKL(S2D3D
l ||S3D

l ), (7)

In our implementation, we detach S2D3D
l from the computational graph when

computing LxM , enforcing the uni-directional distillation by only pushing S3D
l

closer to S2D3D
l .

By taking such a knowledge distillation scheme, there are several advantages
in our framework: 1) The 2D learner and the fusion-to-single distillation provides
rich texture information and structural regularization to enhance the 3D feature
learning without losing any modal-specific information in 3D. 2) The fusion
branch is only adopted in the training phase. Therefore, the enhanced model
can almost run without extra computational cost during the inference.



10 X. Yan et al.

Table 1. Semantic segmentation results on the SemanticKITTI test benchmark. Only
approaches published before 03/08/2022 are compared.
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SqueezeSegV2 [38] 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 26.3 -
DarkNet53Seg [16] 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2 -
RangeNet53++ [45] 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9 83.3
3D-MiniNet [62] 55.8 91.6 74.5 64.2 25.4 89.4 90.5 28.5 42.3 42.1 29.4 82.8 60.8 66.7 47.8 44.1 14.5 60.8 48.0 56.6 -
SqueezeSegV3 [8] 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9 238
PointNet++ [25] 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9 5900
TangentConv [36] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5 3000
PointASNL [31] 46.8 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9 -
RandLA-Net [1] 55.9 90.5 74.0 61.8 24.5 89.7 94.2 43.9 29.8 32.2 39.1 83.8 63.6 68.6 48.4 47.4 9.4 60.4 51.0 50.7 880
KPConv [29] 58.8 90.3 72.7 61.3 31.5 90.5 95.0 33.4 30.2 42.5 44.3 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4 -
PolarNet [63] 54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5 62
JS3C-Net [2] 66.0 88.9 72.1 61.9 31.9 92.5 95.8 54.3 59.3 52.9 46.0 84.5 69.8 67.9 69.5 65.4 39.9 70.8 60.7 68.7 471
SPVNAS [10] 67.0 90.2 75.4 67.6 21.8 91.6 97.2 56.6 50.6 50.4 58.0 86.1 73.4 71.0 67.4 67.1 50.3 66.9 64.3 67.3 259
Cylinder3D [40] 68.9 92.2 77.0 65.0 32.3 90.7 97.1 50.8 67.6 63.8 58.5 85.6 72.5 69.8 73.7 69.2 48.0 66.5 62.4 66.2 131
RPVNet [42] 70.3 93.4 80.7 70.3 33.3 93.5 97.6 44.2 68.4 68.7 61.1 86.5 75.1 71.7 75.9 74.4 43.4 72.1 64.8 61.4 168
(AF)2-S3Net [41] 70.8 92.0 76.2 66.8 45.8 92.5 94.3 40.2 63.0 81.4 40.0 78.6 68.0 63.1 76.4 81.7 77.7 69.6 64.0 73.3 -

Baseline 67.4 89.8 73.8 62.1 33.5 91.9 96.3 54.9 51.1 55.8 51.6 86.5 72.3 71.3 76.8 79.8 30.3 68.7 63.7 70.2 62
2DPASS(Ours) 72.9 89.7 74.7 67.4 40.0 93.5 97.0 61.1 63.6 63.4 61.5 86.2 73.9 71.0 77.9 81.3 74.1 72.9 65.0 70.4 62

4 Experiments

4.1 Experiment Setups

Datasets. We extensively evaluate 2DPASS on two large-scale outdoor bench-
marks: SemanticKITTI [16] and Nuscenes [18]. SemanticKITTI provides dense
semantic annotations for each individual scan of sequences 00-10 in KITTI
dataset [61]. According to the official setting, sequence 08 is the validation split,
while the remaining are the train split. SemanticKITTI uses sequences 11-21
in KITTI as the test set, whose labels are held on for blind online testing1.
NuScenes contains 1000 scenes which show a great diversity in inner cities
traffic and weather conditions. It officially divides the data into 700/150/150
scenes for train/val/test. Similar to SemanticKITTI, the test set of NuScenes is
used for online benchmarking2. For 2D sensors, KITTI has only two front-view
cameras, while NuScenes has six cameras covering the full 360◦ fields of view.
Evaluation Metrics. We evaluate methods mainly using mean intersection over
union (mIoU), which is defined as the average IoU over all classes. Additionally,
we report the overall accuracy (Acc)/ frequency-weighted IOU (FwIOU) pro-
vided by the online leaderboard of two benchmarks. FwIoU is similar to mIoU
except that each IoU is weighted by the point-level frequency of its class.
Network Setup. We apply ResNet34 [59] encoder with 2D convolution as the
2D network, where features after each down-sampling layers are extracted to
generate 2D features. The 3D encoder is a modified SPVCNN [10] (voxel size 0.1)
with fewer parameters, whose hidden dimensions are 64 for SemanticKITTI and
128 for NuScenes to speed up the network. The number of layers L for MSFSKD

1 https://competitions.codalab.org/competitions/20331
2 https://eval.ai/web/challenges/challenge-page/720/leaderboard/1967

https://competitions.codalab.org/competitions/20331
https://eval.ai/web/challenges/challenge-page/720/leaderboard/1967
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Table 2. Comparison to the state-of-the-art methods on the test set of SemanticKITTI
multiple scans challenge. -s indicates static and -m stands for moving.
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LatticeNet [64] 45.2 89.3 91.1 54.8 29.7 3.5 23.1 0.6 6.8 49.9 0.0 44.6 0.0 64.3
TemporalLidarSeg [65] 47.0 89.6 92.1 68.2 39.2 2.1 35.0 12.4 14.4 40.4 0.0 42.8 0.0 12.9
KPConv [29] 51.2 89.3 93.7 69.4 42.5 5.8 38.6 4.7 21.6 67.5 0.0 67.4 0.0 47.2
Cylinder3D [40] 52.5 91.0 94.6 74.9 41.3 0.0 38.8 0.1 12.5 65.7 1.7 68.3 0.2 11.9
(AF)2-S3Net [41] 56.9 88.1 91.8 65.3 15.7 5.6 27.5 3.9 16.4 67.6 15.1 66.4 67.1 59.6

2DPASS(Ours) 62.4 91.4 96.2 82.1 48.2 16.1 52.7 3.8 35.4 80.3 7.9 71.2 62.0 73.1

bicycle
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bicycle

person
building

(a) Error by baseline (b) Error by 2DPASS (c) Ground Truth
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vegetation
trunk

truck

vegetation
trunk

Fig. 5. Qualitative results of 2DPASS on the validation set of SemanticKITTI. Our
baseline has a higher error recognizing small objects and region boundaries, while
2DPASS recognizes small objects better thanks to the prior of 2D modality.

is set to 4 and 6 for SemanticKITTI and NuScenes, respectively. In each scale of
knowledge distillation, 2D and 3D features are reduced to 64 dimensions through
deconvolution or MLPs. Similarly, the hidden size of MLPs and 2D learner in
MSFSKD are identically 64.

Training and Inference Details. We employ the cross-entropy and Lovasz
losses as [40] for semantic segmentation. For the knowledge distillation, we set
the proportion of segmentation loss and KL divergence as 1 : 0.05. Test-time
augmentation [40] is applied during the inference. Training details will be intro-
duced in supplementary material.

4.2 Benchmark Results

SemanticKITTI. SemanticKITTI evaluates segmentation performance using
two settings: single scan and multiple scans. For methods using a single scan as
input, moving and non-moving are mapped to a single class. While methods using
multiple scans as inputs should distinguish between moving and non-moving
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Table 3. Semantic segmentation results on the Nuscenes test benchmark. Only ap-
proaches published before 03/08/2022 are compared. L and C stand for LiDAR and
camera, respectively. (*) The speed reported in PMF [13] is accelerated by TensorRT,
and we test their model without such technique in the same environment.
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PolarNet [63] L 69.4 87.4 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5 -
JS3C-Net [2] L 73.6 88.1 80.1 26.2 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.2 96.8 64.5 76.9 74.1 87.5 86.1 -
Cylinder3D [40] L 77.2 89.9 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6 63
AMVNet [39] L 77.3 90.1 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7 85
SPVCNN [10] L 77.4 89.7 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1 63
(AF)2-S3Net [41] L 78.3 88.5 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8 270
PMF [13] L+C 77.0 89.0 82.0 40.0 81.0 88.0 64.0 79.0 80.0 76.0 81.0 67.0 97.0 68.0 78.0 74.0 90.0 88.0 125*
2D3DNet [66] L+C 80.0 90.1 83.0 59.4 88.0 85.1 63.7 84.4 82.0 76.0 84.8 71.9 96.9 67.4 79.8 76.0 92.1 89.2 -

Baseline L 77.6 88.5 80.8 37.9 92.7 90.5 65.4 77.6 71.5 70.9 83.1 75.3 97.0 69.3 78.1 75.6 89.1 86.8 44
2DPASS(Ours) L 80.8 90.1 81.7 55.3 92.0 91.8 73.3 86.5 78.5 72.5 84.7 75.5 97.6 69.1 79.9 75.5 90.2 88.0 44

objects, which is more challenging. All the reported results are from the official
blind test competition website of SemanticKITTI.

Tab. 1 shows our performance under the single scan setting. Our baseline
without 2DPASS already performs on par with a strong model Cylinder3D [40]
while runs at a faster speed. Even so, the application of 2DPASS still brings
a significant improvement over the baseline. Thanks to the auxiliary knowl-
edge distillation, 2DPASS does not put any extra burden on the original model
and thus does not sacrifice the running speed of the baseline. Overall, 2DPASS
achieves the best result in terms of mIoU and running speed, outperforming the
state-of-the-art (i.e., (AF)2-S3Net [41]) by 2.1%. The visualization results on
SemanticKITTI single scan are shown in Fig. 5.

Tab. 2 reports the results under the multiple scans setting. The mIoU and
overall accuracy are calculated over all 25 classes. Due to the limited space,
we only report the per-class IOUs for dynamic objects with non-moving/moving
properties. Under this challenge setting, 2DPASS surprisingly surpasses previous
approaches with even larger margins, i.e., achieving better mIoU (5.5% improve-
ment over (AF)2-S3Net [41]) and overall accuracy.

NuScenes. The results on NuScenes are reported in Tab. 3, where 2DPASS
achieves the 1st place as well. Note that we only include published works in Tab. 3
and the results are directly taken from the official leaderboard of NuScenes,
where our model also ranks the 3rd place with slight disadvantage when consid-
ering unpublished works. Besides surpassing all single-modal methods, 2DPASS
surprisingly outperforms those fusion-based approaches (the last two rows in
Tab. 3). Note that NuScenes provides images covering the whole FOV of the
LiDAR, and fusion-based approaches achieve such results by using both point
clouds and image features during the inference. In contrast, our method only
takes point clouds as input.
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Table 4. Comparison with differ-
ent knowledge distillation.

Method SemanticKITTI

Hinton et.al. [46] 66.34
Huang et.al. [67] 66.46
Yang et.al. [68] 66.75
xMUDA [17] 67.88

2DPASS 69.32

Table 5. Ablation study on the SemanticKITTI
validation set.

baseline
MSFSKD

SemanticKITTI
KL Div Modality Fusion 2D Learner

3 65.58
3 3 66.34
3 3 3 69.13
3 3 3 3 69.32

4.3 Comprehensive Analysis

Comparing with Other Knowledge Distillation. To further verify the ef-
fectiveness of our fusion-to-single knowledge distillation paradigm upon com-
mon teach-student architecture and other cross-modal manners, we compare
2DPASS with typical approaches of knowledge transfer in Tab. 4, where we uti-
lize these methods in each scale for fair comparison. Among all the methods,
Hinton et.al. [46], Huang et.al. [67] and Yang et.al. [68] are pure knowledge
distillation designs, where the former is the pioneer for the research field and
the latter is newly proposed. As shown in the Tab. 4, pure knowledge distilla-
tion manners cannot be directly adopted on the LiDAR semantic segmentation,
and their improvement upon the baseline model is limited. Recently, [17] adopts
cross-modal feature alignment technique in the task of domain adaptation on se-
mantic segmentation. However, their improvement is still marginal. To the end,
in the Tab. 4, 2DPASS significantly performs better, which illustrates the effec-
tiveness of our multi-scale fusion-to-single knowledge distillation (MSFSKD).

Design Analysis of MSFSKD. Tab. 5 demonstrates the ablation study on
SemanticKITTI validation set. As shown in the table, our baseline only achieves
a lower result of 65.58 mIoU. Note that simply using feature alignment between
two modalities cannot effectively improve the result, where the metric of mIoU
will be only increased to 66.34. After using 2D-3D fusion in each knowledge
distillation scale, there is a significant improvement to 69.13. This improvement
mainly comes from the knowledge provided by the stronger fusion prediction.
Finally, we find out that 2D learner design can slightly improve the performance
by about 0.2%. Note that the results on SemanticKITTI validation set is lower
than that on benchmark since small object category (i.e., motocyclist) only
occupies a small proportion.

Distance-based Evaluation. We investigate how segmentation is affected by
distance of the points to the ego-vehicle, and compare 2DPASS, current state-
of-the-art and the baseline on the SemanticKITTI validation set. Fig. 6 (a)
illustrates the mIoU of 2DPASS as opposed to the baseline and (AF)2-S3Net. The
results of all the methods get worse by increasing the distance since points are
relatively sparse in the long distance. 2DPASS improves the performance greatly
within 10m, i.e., from 61.2 to 89.1, which is the best distance for the camera to
capture objects’ color and texture. There is also a significant improvement upon
(AF)2-S3Net within this distance, i.e., 84.4 v.s. 89.1.
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Fig. 6. Extensive experiment results. The part (a) shows the results on Se-
manticKITTI validation set with different distance-range. Part (b) demonstrates the
results before and after exploiting 2DPASS on MinkowskiNet [10] and SPVCNN [10].

Generality. We show our 2DPASS can be a “model-independent” training
scheme that boosts the performance of other networks. We additionally trained
two open-sourced baselines, i.e., MinkowskiNet and SPVCNN implemented in
[10] with 2DPASS. During the experiment, we keep all the setups the same ex-
cept for the 2D-related components. As shown in Fig. 6 (b), 2DPASS improves
the former one from 63.1 to 66.2 and the latter from 63.8 to 66.9. These results
sufficiently demonstrate the effectiveness and generality of 2DPASS.

5 Conclusion

This work proposes the 2D Priors Assisted Semantic Segmentation (2DPASS),
a general training scheme, to boost the performance of LiDAR point cloud se-
mantic segmentation via 2D prior-related knowledge distillation. By leveraging
an auxiliary modal fusion and knowledge distillation in a multi-scale manner,
2DPASS acquires richer semantic and structural information from the multi-
modal data, effectively enhancing the performance of a pure 3D network. Even-
tually, it achieves the state-of-the-arts on two large-scale benchmarks (i.e., Se-
manticKITTI and NuScenes). We believe that our work can be applied to a
wider range of other scenarios in the future, such as 3D detection and tracking.
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