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Fig. 1: More qualitative results on PASCAL Context. Here all results
are obtained without any annotation. PD and KS refer to prompt denoising
and key smoothing respectively. Row 2, Col 4 shows a failure case of KS, where
all the pixels in the image are labeled as the horse. Note that, PASCAL Context
does not contain bear or teddy bear classes and MaskCLIP predicts the teddy
bear pixels as bedclothes

1 Qualitative Results on Annotation-Free Segmentation

In Figure 1, we show more qualitative results of MaskCLIP on the PASCAL
Context dataset in the annotation-free setting. The results are consistent with
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baseball player, basketball player, soccer player, football player

Fig. 2: More qualitative results on Web images. MaskCLIP and
MaskCLIP+ can yield reasonable segmentation results of different car brands
and sports without any annotation

our analysis in the main submission, where prompt denoising (PD) removes the
unconfident distraction classes, key smoothing (KS) aggressively smooths the
noisy predictions, and MaskCLIP+ yields the best results through pseudo-label-
training. We find the predictions of KS are often dominated by a few classes and
we show a failure case in the Figure 1 (Row 2, Col 4), where one class dominates
the whole image. Moreover, the behavior of MaskCLIP and MaskCLIP+ in Row
3 is interesting. Since the PASCAL Context dataset does not contain bear or
teddy bear classes, MaskCLIP classifies the teddy bear pixels into bedclothes,
which is the most related class. Meanwhile, through pseudo-label-training, after
observing the true bedclothes pixels, MaskCLIP+ decides to treat the teddy bear
as part of the chair that it sits on.

In our main submission, we show qualitative results of fine-grained classes (red
car, yellow car), objects with certain imagery properties (blurry car), and novel
concepts (Batman, Bill Gates). Since MaskCLIP preserves the open-vocabulary
ability, we can evaluate it on many interesting setups. In Figure 2 we test whether
MaskCLIP can segment out different car brands and sports. Similar to our main
submission, the evaluation images are crawled from Flickr and all results are ob-
tained without any annotation. MaskCLIP and MaskCLIP+ again demonstrate
powerful open-vocabulary ability on subtle concepts. Note that, in the basket-
ball and football examples, MaskCLIP not only correctly distinguishes athletes
playing different sports, but also separates audience and players.

2 Robustness Results on Annotation-Free Segmentation

In our main submission, we test the robustness of MaskCLIP under artificial cor-
ruptions. We use corrupting operations provided by the official code of ImageNet-
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Table 1: More robustness results. Here we evaluate MaskCLIP on PASCAL
Context in the annotation-free setting under ImageNet-C corruptions across all
severity levels. Results are reported in the mIoU metric

Corruption
level 1 level 2 level 3 level 4 level 5
r50 vit16 r50 vit16 r50 vit16 r50 vit16 r50 vit16

None 18.5 21.7 18.5 21.7 18.5 21.7 18.5 21.7 18.5 21.7

Gaussian Noise 13.7 19.6 11.2 17.7 7.9 14.8 4.7 11.1 2.1 6.8
Shot Noise 14.0 19.6 11.0 17.6 7.8 14.8 4.0 10.4 2.4 7.5
Impulse Noise 9.9 17.3 8.1 15.9 6.7 14.4 4.1 10.9 2.1 7.2
Speckle Noise 15.1 20.0 13.6 19.0 9.6 16.0 7.6 14.0 5.6 11.4

Gaussian Blur 17.4 21.6 14.4 20.4 11.1 18.9 8.1 17.3 4.3 14.1
Defocus Blur 15.7 20.8 14.0 20.1 10.9 18.6 8.5 17.1 6.6 15.5

Spatter 17.1 20.5 13.0 17.9 10.9 16.4 10.1 14.5 7.8 12.2
JPEG 15.7 20.8 14.3 20.1 13.3 19.5 10.3 17.4 7.6 14.5

Table 2: Baselines for Robustness Test. Evaluation on PASCAL Context
under level 5 corruptions with the ViT-B/16 backbone. N.: Noise, B.: Blur

None Gauss N. Shot Impulse Speckle Gauss B. Defocus Spatter JPEG

MaskCLIP 21.7 6.8 7.5 7.2 11.4 14.1 15.5 12.2 14.5
Fully Sup. 54.5 5.1 6.7 4.8 22.7 37.1 40.1 31.5 39.8

C [1]. In particular, the severity levels are controlled by a series of coefficients of
corruption operators. Limited by space, in the main submission, we only include
results of level 1 and level 5. Here, we extend the table to all levels. As shown
in Table 1, CLIP-ViT-B/16 consistently outperforms CLIP-ResNet-50 by large
margins and shows decent robustness.

We also supplement a baseline for the robustness test to compare with Ta-
ble 1(b) in our main submission. In particular, we train an FCN segmentation
model with the ViT-B/16 backbone (initialized with ImageNet-21K pre-trained
weights) on PASCAL Context in a fully supervised manner for 40K iterations,
then test the model on corrupted inputs. Table 2 shows that MaskCLIP performs
particularly well on Gaussian/shot/impulse noises.

3 Quantitative Results on Zero-Shot Segmentation

In Table 3, we report the mIoUs on seen classes of various methods. As men-
tioned in our main submission, across three standard datasets, using pseudo
labels as the guidance, instead of distillation by feature matching, does not af-
fect MaskCLIP+’s performance on seen classes.
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Table 3: Zero-shot segmentation performances on seen classes (mIoU)

Method PASCAL-VOC COCO-Stuff PASCAL-Context

SPNet 75.8 34.6 ·
SPNet-C 78.0 35.2 ·
ZS3Net 77.3 34.7 20.8
CaGNet 78.4 35.5 24.8

SPNet 77.8 34.6 ·
ZS3Net 78.0 34.9 27.0
CaGNet 78.6 35.6 ·
STRICT 82.7 35.3 ·
MaskCLIP+ 88.8 38.2 44.4

(+6.1) (+2.9) (+17.4)

Fully Sup. 88.6 38.1 44.4

Table 4: Zero-shot segmentation performances (pAcc & mAcc)

Method
PASCAL-VOC COCO-Stuff PASCAL-Context

pAcc(S) pAcc(U) pAcc pAcc(S) pAcc(U) pAcc pAcc(S) pAcc(U) pAcc

SPNet 94.8 0.0 76.9 65.6 1.7 51.3 · · ·
SPNet-C 88.8 29.6 77.6 61.8 24.5 53.4 · · ·
ZS3Net 93.0 21.5 79.4 64.3 22.8 54.7 53.5 58.6 52.8
CaGNet 89.5 43.0 80.7 65.6 25.5 56.6 55.2 66.8 56.6

ZS3Net 91.9 34.1 81.0 65.8 24.9 56.3 46.8 70.2 49.5
CaGNet 87.0 58.6 81.6 65.9 26.7 56.8 · · ·
MaskCLIP+ 94.6 91.4 94.0 64.2 79.4 67.6 73.9 82.3 74.8

(-0.2) (+32.8) (+12.4) (-1.7) (+52.7) (+10.8) (+18.7) (+12.1) (+18.2)

Fully Sup. · · 94.0 · · 68.1 · · 74.8

Method
PASCAL-VOC COCO-Stuff PASCAL-Context

mAcc(S) mAcc(U) mAcc mAcc(S) mAcc(U) mAcc mAcc(S) mAcc(U) mAcc

SPNet 94.6 0.0 70.9 50.3 0.0 45.9 · · ·
SPNet-C 87.9 23.9 71.9 46.3 16.1 43.6 · · ·
ZS3Net 87.7 15.8 73.5 50.4 27.0 48.4 23.8 43.2 27.0
CaGNet 88.7 39.4 76.4 50.7 27.0 48.5 35.7 49.8 36.8

ZS3Net 85.7 26.4 73.8 50.4 27.2 48.6 32.3 57.1 36.4
CaGNet 83.9 50.7 75.6 50.6 27.3 48.5 · · ·
MaskCLIP+ 93.7 92.6 93.4 50.8 72.4 52.7 55.4 80.0 59.5

(-0.9) (+41.9) (+17.0) (+0.1) (+45.1) (+4.1) (+19.7) (+22.9) (+22.7)

Fully Sup. · · 93.4 · · 53.0 · · 59.5
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Fig. 3: Open-vocabulary segmentation with a larger target text set

Apart from Intersection over Union (IoU), some zero-shot segmentation meth-
ods also report pixel accuracy (pAcc) and mean accuracy (mAcc) as evalua-
tion metrics. For comprehensive comparisons, we provide performance with the
mentioned metrics in Table 4. In terms of the overall and unseen pAcc/mAcc,
MaskCLIP+ still surpasses the previous SOTA methods by large margins and
reaches near the fully-supervised baselines. However, its pAcc/mAcc of seen
classes on PASCAL VOC and COCO-Stuff fall behind SPNet and CaGNet+ST
by a bit. Different from mIoU, pAcc and mAcc punish only false negatives but
not false positives (mIoU punishes both). Previous methods are much more con-
fident on seen classes than unseen classes, therefore yields more predictions on
seen classes, which consequently avoids false negatives on seen classes. In fact,
SPNet biases towards seen classes so much that without calibration (reduce the
confidence of seen classes by scaling factors), its performance on unseen classes
is almost zero. MaskCLIP+, on the contrary, is more balanced between seen and
unseen classes.

4 Vocabulary Used in Open-Vocabulary Segmentation

In Figure 1 and Figure 4 of our main submission, all images share the same back-
ground classes, i.e., building, ground, grass, tree, sky. For foreground classes,
different images have a different set of targets, which are shown right below
each image in Figure 4. In Figure 3, we supplement an example with a larger
vocabulary, with Batman, Joker, James Gordon, The Penguin, Robin, Alfred,
Catwoman, Harley Quinn as the foreground and all classes except person in
the Cityscapes as the background. We observe that Batman’s jaw is segmented
as James Gordon and part of Joker’s suit is classified into The Penguin. Since
certain local features are shared among multiple characters, it reveals that some-
times MaskCLIP cannot see broadly enough.

5 Input Resolution and Multi-Scale Ensemble

There is a trade-off in terms of the input resolution of MaskCLIP. Using the same
input resolution as CLIP (224x224) assures the resolution/positional encoding
matching but at the cost of yielding smaller output. We empirically find there
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Table 5: Input resolutions and multi-scale ensemble. Here, we evaluate
MaskCLIP on the PASCAL Context dataset

Input Res. 224 336 520 [224, 520] [224, 336, 520]

mIoU 22.72 23.02 21.68 25.16 26.34

Algorithm 1: MaskCLIP+ pseudo code

P ← MaskCLIP model;
T ← text embeddings of target classes;
V1 ← target model initialized w/ IN pre-trained;
V1 ← load T to classifier weights of V1;
D ← images for training;
Ng ← MaskCLIP-guided learning iterations;
Ns ← self-training iterations;
for i = 1, 2, . . . , Ng do

ŷ ← model prediction Vi(Di);
y ← pseudo labels from MaskCLIP P (Di);
L ← cross entropy loss LCE(ŷ, y);
Vi+1 ← SGD model update;

end
for j = Ng + 1, Ng + 2, . . . , Ng +Ns do

ŷ ← model prediction Vj(Dj);
y ← self-generated pseudo labels Vj(Dj);
L ← cross entropy loss LCE(ŷ, y);
Vj+1 ← SGD model update;

end

exists a sweet spot at 336x336. We also find that multi-scale ensembles mitigate
the resolution problem. (See Table 5.)

6 Pseudo Code of MaskCLIP+

The complete training process of MaskCLIP+ is illustrated in Algorithm 1.
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