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This document provides additional results and qualitatives in Section 1, fur-
ther details about C-PartNet dataset in Section 2, additional explanations for
the benchmark baselines in Section 3, and a list of assets that are used in this
work in Section 4.

1 Additional Results

1.1 Qualitative Results on Seen Object Classes

We report qualitative results on the 16 seen object classes in Figure 1 for Direct
Segmentation and top-3 prediction results from the proposed DCC model. We
confirm that under supervised segmentation, Direct Segmentation is able to give
reasonable results for all seen object classes. This is because the model implicitly
learns the part prior for these objects. We see that DCC also achieves comparable
results for all of these objects. Since our model explicitly uses the part prior
during the inference, it however performs better for small parts such as handle
in Microwave and Table. Moreover, we see the the top-2 and top-3 results for
DCC are usually classes with very similar parts (e.g., Chair, Clock, Microwave).

1.2 Part Label Agnostic Comparison

Part discovery (segmentation) models aim to discover parts in a label agnostic
way and compute recall with the ground-truth part labels as their metric. Differ-
ent than these, e.g., Learning-to-Group [2], our model learns semantic segmen-
tation, which deals with the task of point-wise semantic part labeling. The recall
metric measures the percentage of ground truth parts covered by predicted parts
at an Intersection over Union larger than a threshold, where a range of threshold
from 0.5 to 0.95 is set and the average is taken. We compare with current state
of the art part discovery method Learning-to-Group [2] on C-Partnet in Table 1
with their recall metric. We show that we achieve superior performance in this
setting too.
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Fig. 1: Qualitative results for seen object classes for the Direct Segmen-
tation, and top-3 predictions of the proposed DCC method are provided. We
see that Direct Segmentation can give meaningful segmentation for seen object
classes because it implicitly learns the part prior for these objects. However, it
cannot generalize over the unseen object classes as shown in the main paper.
Contrarily, DCC can predict both meaningful classification and segmentation
results for both seen and unseen object classes.
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Method Avg Bowl Dish Door Lap Mug Refr Scis Trash

L2G [2] 29.6 62.8 7.5 18.0 71.0 50.1 4.5 10.8 12.3
DCC(ours) 43.7 80.3 32.0 32.8 72.9 57.5 30.8 17.8 25.8

Table 1: Part-label agnostic segmentation result with recall(%) on C-
PartNet.

Method
Unseen Objects

HM S U Bowl Dish Door Lap Mug Refr Scis Trash

Without Object Prior 4.4 9.4 2.9 4.3 0.0 0.2 1.2 11.2 0.1 0.1 6.5
With Object Prior 24.8 23.4 26.3 58.2 20.4 20.8 18.0 46.8 10.0 22.0 14.4

DCC(ours) 55.9 73.2 45.2 79.8 57.1 5.3 55.4 71.9 55.6 0.0 36.8

Table 2: 3D-PointCapsNet [8] zero-shot segmentation evaluated with object
prior (ground truth object class) gives more reasonable results compared to
without it. However, even in Object Prior setting, 3D-PointCapsNet perform
worse than DCC.

1.3 3D Point Capsule Network and Object Prior

We present SOTA comparison in Table 1a of the main paper and see that 3D
Point Capsule Network [8] perform poorly when predicting segmentation over
all part classes. In the supplementary Table 2, we report an additional result of
evaluating the capsule with an object prior. This involves only evaluating the
segmentation over the parts that are present in the ground truth object class
analogous to the Equation 1 of the main paper. We observe that 3D PointCap-
sNet is unable to provide a reasonable segmentation in the absence of the ground
truth object class. When this prior is available, we see more reasonable results.
We also see that capsules perform worse in Direct Segmentation than simple
models like PointNet[6]. This surprising insight can be an avenue for further
research into the capsule based models.

1.4 Door and Scissors oracle and failure case

We provide the oracle (i.e., object prior of ground truth object class) results
for the two main failure classes in Figure 2. Even in the oracle setting, the
segmentation is poor for Door and Scissors. The performance is even worse
when object prior is removed in Direct Seg and DCC. These objects have a
large variation with respect to parts from the seen object classes in scale, the
number of instances (two blades in Scissors vs one in Knife), and orientation.
We hope to inspire future research in PointCloud processing aimed at solving
these limitations.
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Fig. 2: Failure cases. Door and Scissors represent challenging objects with large
variations in parts from the seen objects. We compare ground truth part seg-
mentation, oracle (i.e., ground truth object class is given as object prior), direct
seg. (i.e., prediction over P classes without priors) and top-2 predictions from
our method. The segmentation model fails even in the oracle object prior setting,
indicating that these object classes are already difficult to segment due to large
part variation from seen object classes.

1.5 Part Granularity Ablation

In order to measure the effect of number of object categories and part labels,
both in terms of seen and unseen classes, we conduct a part-granularity ablation.
First, to measure how many seen object categories is needed, we use either 8/16
and 11/16 seen objects classes (in Fig. 3 rows 1,2). Furthermore, to study the
impact of number of shared parts, we sample 25,50,75% data from each object
class(16/16) equally (in Fig. 3 rows 3,4,5). We observe that dropping half the
object classes(r2) results worse than dropping half of the samples per class(r4).
With only 75% of data across seen classes, DCC maintains a competitive mIoU.
We conclude that the method benefits more from diversity across number of
object classes as it sees more variation of parts.

Setup Avg Bow Dish Door Lap Mug Refg Sci Tr

8/16 Seen 23.1 61.0 25.6 0.2 1.8 39.5 23.2 0 33.6
11/16 Seen 25.0 64.0 28.4 0.6 14.6 33.0 25.8 0 33.8

25% Data 25.3 63.8 20.8 2.8 37.6 38.2 6.2 0 32.7
50% Data 27.8 64.6 25.9 10.0 32.6 34.5 22.0 0 32.9
75% Data 30.2 65.2 30.0 10.2 38.7 38.4 26.3 0 33.2

Full 32.7 66.1 30.9 5.3 56.3 40.4 28.4 0 34.2

Table 3: Granularity study (1) number of seen objects (2) number of parts.
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Categories Classes

Appliances Microwave, Dishwasher,
Refrigerator

Electronics Display, Keyboard, Laptop
Furniture Bed, Chair, Clock, Lamp, Table,

Storage Furniture, Door
Containers Bottle, Vase, Bowl, TrashCan,

Mug
Cutters Knife, Scissors
Misc. Bag, Earphone, Faucet, Hat

(a) Object class categories.

Train Val Test Total
Obj Samp Obj Samp Obj Samp Samp

Seen 16 16875 16 2426 16 4804 24105
Unseen - - 2 895 8 900 1795
Total 16 16875 18 2619 24 5169 25900

(b) Dataset splits.

Table 4: Compositional PartNet refines the labels of PartNet dataset to max-
imize shared parts across different object classes, and enables studying 3D-CZSL
task. The available 24 object classes are divided into 16 seen classes for training
and 8 unseen classes for inference in zero-shot. Object class categories (a) and
C-PartNet dataset statistics in train/val/test splits (b) are shown.

2 C-PartNet Dataset Details

We provide further detail about the proposed C-PartNet dataset and its mapping
to the PartNet[4].

2.1 Selecting Unseen Object Classes

We divide PartNet objects into functional categories in Table 4a and select the
test time unseen object classes accordingly. This ensures that the compositional
knowledge between seen and unseen object classes exists. We then select the
train, val and test splits accordingly, resulting with the sample statistics as shown
in Table 4b. The dataset overall has 25900 samples as PartNet, dividing the total
24 object classes into 18 seen and 8 unseen classes.

2.2 Label Mapping

We provide the full label mapping between C-PartNet and the original Partnet
across all 24 object classes in Tables 6, 7, 8, 9. As explained in the main paper,
we process the labels of PartNet to maximize compositional overlap between
objects. We merge several parts to make them consistent across objects. In total,
the part label space of C-PartNet consists of 96 unique parts compared to 128
of the original PartNet.

2.3 Part Statistics for Unseen Object Classes

Unseen object classes in C-PartNet are fully composable from parts of seen
object classes. We report the number of instances of these shared parts across
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Fig. 3(a): Seen object classes
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Fig. 3(b): Unseen object classes

Fig. 3: Part label statistics. The number of shared parts that compose the
unseen object classes in (a) training set of seen object classes and (b) test set of
unseen object classes are reported. We see that the part instances have a long
tail distribution among training samples. We see a distribution shift from the
training instances to part instances among unseen object classes.

the training set and among unseen object classes in the test set in Figure 3. We
see in Figure 3a that these parts follow a long tail distribution in the training
set. This makes it challenging to recognize parts that are at the tail of the
distribution in both seen and unseen object classes. Moreover, when we compare
this to the statistics of unseen object classes in Figure 3b, we see that there is
a distribution shift between the seen and unseen object classes. These statistics
also relate to our per part performance as reported in Figure 5 of the main paper
where we saw that some parts have poor performance in unseen object classes.
In particular, the failure cases for handle and foot among all unseen object
classes is related to the challenge of generalization to new objects while having
significant supervision from training set. Blade and door frame in unseen objects
Scissors and Door have an additional challenge of having only few samples for
supervision. This adds another dimension to the failure case shown in Figure 2.

2.4 Similarity of Unseen Objects to Seen Objects

We train a PointNet classification model on the seen object classes. From this
model, we use the average feature representation of each seen and unseen ob-
ject class to compute pairwise cosine similarity and report the top-3 nearest
neighbor seen objects to unseen objects in Table 5. We reaffirm our observations
from Figure 4 of the main paper regarding Direct Segmentation. We saw in the
main paper that for unseen object classes, Direct Segmentation uses parts of
the most geometrically similar seen object classes. In Table 5, among the Con-
tainer categories, nearest neighbors for Bowl, Mug and Trashcan are Vase and
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Unseen Object Nearest Neighbor Seen Objects

Bowl Vase, Bottle, Lamp
Dishwasher Storage Furniture, Microwave, Vase
Door Clock, Display, Storage Furniture
Laptop Bed, Chair, Table
Mug Vase, Lamp, Bottle
Refrigerator Storage Furniture, Microwave, Vase
Scissors Keyboard, Table, Storage Furniture
Trashcan Vase, Bottle, Storage Furniture

Table 5: Nearest neighbor similarities. We compute the 3 nearest neighbors
between seen object classes for unseen object classes.

Bottle, which share parts with corresponding unseen classes. The harder unseen
objects Dishwasher, Laptop and Refrigerator, have nearest neighbors Storage
Furniture, which do not share large part similarities but instead share geomet-
ric similarities. Finally, for the most challenging Door and Scissors, the nearest
neighbors are the classes that do not share neither part labels or geometric sim-
ilarities with them (e.g., Keyboard and Table for Scissors). Current point cloud
models are designed to capture structures based on geometric similarities, which
also explain our observations. We advice future works to exploit part relations
among instances of the same and different object classes as a potential avenue
for increased compositionality in unseen objects.

3 Baselines

We benchmark several baselines against the proposed model, DeCompositional
Consensus (DCC), in the main paper. These methods are adapted from the
original works to fit our 3D-CZSL task. We provide additional details about the
baselines in this section.

PartPred [1] trains a part prediction network from the global feature of each
point cloud. The model outputs a binary vector of length |P| of what parts
are found for the input point cloud. The part prediction network consists of an
MLP with a similar configuration to DCC trained with a Binary Cross Entropy
loss. The labels for this network are extracted according to if a part exists in
the ground truth segmentation or not. The predicted parts are used to generate
a segmentation mask during inference. This baseline represents a point cloud
segmentation model with a separate part prediction branch.

SPNet [7] learns classification by projecting the global features learned by the
network on a pretrained distribution where both seen and unseen objects lie. We
use Word2Vec[3] to initialize the model. The classification model is trained with
Cross Entropy Loss over Os.

CGE [5] proposes to model compositional relations in a graph. We reformu-
late CGE as a multitask compositional problem. The graph consists of nodes
representing all parts P and object classes O. A part is connected to an ob-
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ject node if that part is contained in the part prior Po of that object. Object
nodes are also connected with each other if they share parts. The input graph is
initialized with a Word2Vec[3] model and processed by a Graph Convolutional
Network (GCN). From the output graph, the object nodes are used as classifica-
tion weights and part nodes are used as the weights for part segmentation. This
allows for information propagation from the seen object classes to the unseen
object classes through the dependency structure defined in the graph. The clas-
sification task is trained with Cross Entropy Loss over Os and the segmentation
task is trained with our Compositional Part Segmentation framework.

PartPred DCC uses the part prediction model from PartPred and computes
the DCC score for classification. This is done by using the Parts found in each
segmentation hypothesis in the Hypothesis Bank and computing the consensus
score using the part wise scores from PartPred.

3D Point Capsule Network [8] is designed as an alternative point cloud pro-
cessing method especially to capture the part-whole relationships. The latent
capsules are learned within an auto-encoder model through the dynamic agreement-
by-routing algorithm. The final segmentation prediction is done by training a
single layer MLP with the learned latent capsules. The authors train the model
with a one-hot categorical vector representing the ground truth object as an
input as introduced in the method section. We remove this input of the ground
truth object prior and train the model for seen objects over all parts. The 3D
PointCapsNet is trained with 128 latent capsules with 128 feature dimension per
each capsule.

4 Assets Used

The following open source assets contributed to this work.

Dataset.

– https://partnet.cs.stanford.edu/

Open source code repositories.

– https://github.com/fxia22/pointnet.pytorch
– https://github.com/tiangeluo/Learning-to-Group
– https://github.com/mutianxu/GDANet
– https://github.com/aboulch/ConvPoint
– https://github.com/ExplainableML/czsl
– https://github.com/subhc/SPNet
– https://github.com/yongheng1991/3D-point-capsule-networks
– https://github.com/facebookresearch/pytorch3d
– https://github.com/isl-org/Open3D

Rendering tool.

– https://github.com/mitsuba-renderer/mitsuba2

https://partnet.cs.stanford.edu/
https://github.com/fxia22/pointnet.pytorch
https://github.com/tiangeluo/Learning-to-Group
https://github.com/mutianxu/GDANet
https://github.com/aboulch/ConvPoint
https://github.com/ExplainableML/czsl
https://github.com/subhc/SPNet
https://github.com/yongheng1991/3D-point-capsule-networks
https://github.com/facebookresearch/pytorch3d
https://github.com/isl-org/Open3D
https://github.com/mitsuba-renderer/mitsuba2
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Object class Part Labels Changed from

Bag bag body -
handle -
shoulder strap -

Bed bed post -
frame horizontal hard surface -
headboard -
horizontal bar frame horizontal surface bar

bar stretcher
bed side surface horizontal bar
rung

horizontal surface surface base
leg -
mattress -
pillow -
vertical bar bed side surface vertical bar

ladder vertical bar
vertical panel bed side surface panel

Bottle closure -
container jug body

normal bottle body
handle bottle handle

jug handle
lid -
mouth -
neck -

Bowl container container
containing things

foot bottom

Chair arm sofa style -
back connector -
back single surface -
back support -
caster stem -
central support star leg central support

pedestal base central support
chair base -
connector arm connector
foot -
frame back holistic frame

arm holistic frame
seat holistic frame
seat frame bar
seat surface bar

head connector -
headrest -
horizontal bar back surface horizontal bar

back frame horizontal bar
arm horizontal bar
bar stretcher

horizontal surface arm writing table
seat single surface
seat surface

leg -
pedestal -
rocker -
runner -
seat support -
star leg base star leg base leg

star leg base knob
star leg base lever

vertical bar back surface vertical bar
back frame vertical bar
arm near vertical bar

wheel -

Table 6: Label mapping from C-PartNet to PartNet [1/4]
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Object class Part Labels Changed from

Clock box -
chain -
foot -
frame -
horizontal surface base surface
pendulum body -
pendulum clock top -
surface -

Dishwasher door frame -
foot -
frame -
handle -
surface foot base surface

surface base

Display display screen -
foot base support
surface -

Door door frame outside frame
handle handle fixed part

handle movable part
surface surface board

Earphone connector wire -
earbud connector -
earbud connector wire -
earbud frame -
earbud pad -
earcup connector -
earcup frame -
earcup pad -
top band -

Faucet horizontal support -
horizontal surface surface base
hose -
switch -
tube -
vertical support -

Hat bill -
brim -
button -
crown -
panel -

Keyboard frame -
key -

Knife blade -
bolster -
butt -
guard -
handle -

Table 7: Label mapping from C-PartNet to PartNet [2/4]
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Object class Part Labels Changed from

Lamp body lamp pole
lamp body solid
lamp post

chain -
connector -
cord -
lamp arm -
lamp arm curved bar -
lamp arm straight bar -
lamp base part lamp base part

street lamp base
lamp body -
lamp body vertical panel -
lamp cover lamp cover frame top

lamp cover frame bottom
lamp cover frame bar
lamp cover holder

lamp finial -
lamp shade -
lamp wireframe fitter -
leg -
light bulb -

Laptop display screen screen side
horizontal surface base side

Microwave door frame -
foot -
frame -
handle -
tray -

Mug container body
containing things

handle -

Refrigerator door frame -
foot -
frame -
handle -
shelf -
surface -

Scissors blade -
handle -

Storage Furniture caster stem -
countertop -
drawer back -
drawer front -
drawer side -
foot -
handle -
hinge -
horizontal bar frame horizontal bar
horizontal panel top panel

bottom panel
bottom panel

horizontal surface drawer bottom
base side panel

shelf -
vertical bar frame vertical bar
vertical panel back panel

vertical side panel
vertical front panel
vertical divider panel

vertical surface cabinet door surface
wheel -

Table 8: Label mapping from C-PartNet to PartNet [3/4]
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Object class Part Labels Changed from

Table bar -
caster stem -
central support -
circular bar circular stretcher
drawer back -
drawer front -
drawer side -
foot -
handle -
horizontal bar bar stretcher
horizontal panel bottom panel
horizontal surface ping pong net

tabletop surface
pool ball
tabletop surface
tabletop surface
glass
bar
board
drawer bottom

keyboard tray surface -
leg -
pedestal -
runner -
seat support bench connector

bench
shelf -
star leg base leg
tabletop connector -
tabletop dropleaf -
vertical panel back panel

vertical side panel
vertical front panel
vertical divider panel

vertical surface cabinet door surface
wheel -

TrashCan container container bottom
container box
container neck

foot -
frame frame horizontal circle

frame bottom
frame holistic

lid cover support
cover lid

vertical bar frame vertical bar

Vase container -
foot -
lid -
liquid or soil -
plant -

Table 9: Label mapping from C-PartNet to PartNet [4/4]
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