
Video Mask Transfiner for High-Quality Video
Instance Segmentation
(Supplemental material)

Lei Ke1,2, Henghui Ding1, Martin Danelljan1, Yu-Wing Tai3,
Chi-Keung Tang2, and Fisher Yu1

1 Computer Vision Lab, ETH Zürich
2 The Hong Kong University of Science and Technology

3 Kuaishou Technology
http://vis.xyz/pub/vmt

We first provide more details on the HQ-YTVIS dataset creation and annota-
tion process for the train, val and test splits in Section 1. Then, we conduct more
experimental analysis on our VMT and the iterative training paradigm in Sec-
tion 2. We further present more implementation and training/inference details
of Video Mask Transfiner (VMT) in Section 3. Finally, we show extensive video
results comparisons in our project page, which includes: 1) Annotation qual-
ity comparisons between YTVIS [9] and HQ-YTVIS; 2) Comparisons between
VMT and existing state-of-the-art methods on four video instance segmentation
benchmarks; 3) The results of the same methods trained on YTVIS vs. HQ-
YTVIS; 4) Ablation results of the quadtree sequence grouping (QSG); 5) The
failure cases of our VMT.

1 HQ-YTVIS Dataset Creation

To construct the HQ-YTVIS, we randomly re-split the original YTVIS training
set (2238 videos) with coarse mask boundary annotations into train (1678 videos,
75%), val (280 videos, 12.5%) and test (280 videos, 12.5%) subsets following the
splitting ratios in YTVIS. We observe that the proportions of 40 categories are
nearly the same on the three splits and similar to original YTVIS training set.
We keep at least 3 videos per category in the created validation and test splits,
and fix this split for training, validation and test on HQ-YTVIS.

The details of automatically refining train annotations of HQ-YTVIS through
iterative training VMT are described in Section 3.2 of the paper. We here provide
more details on manually correcting the smaller validation and test sets of HQ-
YTVIS using LabelMe [5] in Figure 1. The human annotators correct the YTVIS
mask boundary errors by carefully relabeling it with dense polygon points along
object boundary, which has over 130 points per object in average.

Also, we show more visual cases when degrading the masks of OVIS dataset
(Figure 2), which is to equip VMT with initial boundary correction ability as
discussed in Section 3.2 (paper), we simulate various shapes of inaccurate seg-
mentation masks by by perturbing the ground truth of OVIS datasets. The GT

http://vis.xyz/pub/vmt


2 Ke et al.

Input Image YTVIS annotations Human Relabeling with Dense 
Polygon Points

Final annotations of 
HQ-YTVIS Test Split

Fig. 1. Manual re-labeling of the coarse masks annotations of YTVIS to create the
validation and test sets of HQ-YTVIS. Objects are relabeled with dense polygon points
(over 130 per object in average) along the boundary to ensure high mask quality.

Video Masks
of OVIS

Degraded Masks
of OVIS

Video Masks
of OVIS

Degraded Masks
of OVIS

Fig. 2. Mask degradation on the better annotated OVIS dataset to simulate the coarse
mask errors. The GT masks and perturbed masks of OVIS serves as training data for
VMT to obtain initial boundary correction ability of video objects at the 1st iteration.

contour is first sub-sampled and then perturbed with random dilations and ero-
sions. We also show more video cases comparisons on annotation quality between
YTVIS and HQ-YTVIS in the attached video file.

2 More Experimental Analysis

Tube-Boundary AP on OVIS We report the tube mask AP evaluated by
the online server of OVIS [4] in Table 8 of the paper. To further compare the



Video Mask Transfiner (Supplemental file) 3

Table 1. Tube-Boundary APB comparisons on our created OVIS validation split.

Method Backbone APB APB
50 APB

75 ARB
1 ARB

10

CMTrack RCNN [4] R50 8.8 21.0 6.8 7.1 10.9
SeqFormer [7] R50 9.1 21.2 6.9 7.0 11.7
VMT (Ours) R50 11.4 22.8 8.4 7.6 13.5

CMTrack RCNN [4] R101 9.8 21.2 8.0 7.6 11.5
SeqFormer [7] R101 10.3 21.6 7.8 7.9 12.3
VMT (Ours) R101 12.9 22.9 9.7 8.3 14.6

Table 2. Effect of iterative training using VMT on YTVIS. Model after each training
iteration is evaluated on manually annotated HQ-YTVIS val and our created OVIS val
splits using GT object classes, identities and corresponding coarse masks input. IoUB

denotes frame-wise boundary IoU, while IoUM denotes frame-wise mask IoU.

Iterations
HQ-YTVIS OVIS

APB APB
50 IoUB APM APM

50 IoUM APB APB
50 IoUB APM APM

50 IoUM

1 60.3 80.1 63.1 83.2 93.2 87.3 65.1 78.2 65.2 82.9 91.9 86.5
2 75.5 91.5 78.5 92.5 97.9 94.1 79.6 93.0 80.1 92.3 96.3 93.6
3 87.1 94.9 87.8 95.6 97.4 98.6 89.2 95.7 88.7 96.6 97.9 99.2
4 86.9 95.1 88.4 95.5 98.2 98.9 88.8 95.6 88.1 96.8 98.7 99.5

Table 3. Effect of iterative training using SeqFormer [7] by replacing our VMT in
Table 2 to self-correct YTVIS. The improvement scales brought by the alternative
method SeqFormer are much smaller.

Iterations
HQ-YTVIS OVIS

APB APB
50 IoUB APM APM

50 IoUM APB APB
50 IoUB APM APM

50 IoUM

1 58.2 76.1 59.3 81.4 83.1 79.5 61.4 73.3 60.6 80.9 85.6 82.2
2 58.9 77.2 61.7 81.8 90.2 82.7 61.9 74.0 61.5 81.6 86.0 84.0
3 59.7 78.1 63.5 82.6 90.8 82.4 62.9 75.1 62.8 82.6 86.9 84.8
4 59.6 77.9 63.8 82.8 91.2 82.9 62.6 74.9 62.5 82.8 87.1 84.8

predicted masks boundary quality of video tracklets, we create our own train (480
videos), val (127 videos) splits from the OVIS train annotations by randomly
splitting because the annotations for OVIS val set is not available. Then, we
retrain CMaskTrack R-CNN [4], SeqFormer [7] and our VMT on the new train
split from scratch, and evaluate them on our val split. The results of Tube-
Boundary APB in Table 1 show that VMT achieves consistent improvements on
the new validation split with the performance gain about 2.5 APB .

Effect of Iterative Training We further analyze the effect of iterative training.
Different from the evaluation in Table 5 of the paper, we adopt the ground truth
(GT) object identities and class labels, and use coarse object masks as the initial
correction input. This is to directly evaluate of the refinement mask quality on val
splits by using the same way of correcting the training labels of YTVIS. Thus,
the reported AP here are solely dependent on the refined object masks quality.
In Table 2, we select the trained VMT models after different iterations, and
evaluate their mask quality on HQ-YTVIS and OVIS respectively. VMT achieves
consistent and large mask quality improvements after three training iterations
on both two benchmarks. We further check the small amount of failure cases
with mask IoU lower than 50 after the 4th iteration, and find that most of them



4 Ke et al.

Table 4. Ablation on instance guidance
layer (IGL). IGL-1/2/3: IGL guidance
after first/second/third layer of NAL.

IGL-1 IGL-2 IGL-3 APB APB
50 ARB

1 APM APM
50 ARM

1

31.0 64.8 29.2 48.3 70.3 43.5
✓ 31.8 65.9 30.5 48.8 71.1 44.9

✓ 32.1 66.3 31.0 49.1 71.5 45.3
✓ ✓ 32.6 66.4 31.5 49.7 71.8 45.6
✓ ✓ ✓ 33.7 67.2 31.8 50.5 72.4 46.2

Table 5. Ablation on the RGB feature point
encoding, and instance-specific dynamic pixel
decoder on HQ-YTVIS val set.

RGB Encoding Dynamic MLP APB APB
50 ARB

1 APM APM
50 ARM

1

31.2 65.1 30.2 49.3 71.6 45.1
✓ 32.0 65.8 30.6 49.6 71.9 45.4
✓ ✓ 33.7 67.2 31.8 50.5 72.4 46.2

take the coarse masks input with gross annotation errors, such as missing large
parts of the object. For evaluation on HQ-YTVIS, we use the coarse object masks
provided by YTVIS as the correction target. For evaluation on OVIS [4], we take
the coarse masks produced by mask degradation (Figure 2).

Iterative Training using VMT vs. SeqFormer During iterative training,
we further conduct an ablation experiment by replacing the prediction model
from our VMT to SeqFormer [7]. Compared to Table 2, we adopt SeqFormer [7]
to correct coarse masks of YTVIS in the iterative training. However, we observe
that the improvement scales after each iteration is minor in Table 3, where the
boundary quality APB after the 4th iteration are still coarse (around 60.0 using
GT object classes, identities and corresponding coarse masks). The alternative
method SeqFormer cannot achieve the refinement effects similar to VMT, which
reveals the design advantages of our 3D incoherent regions detection and tem-
poral refinement transformer. Note that for fair comparison, we keep the same
iterative setting, and also pretrain the mask head of SeqFormer on the better
annotated OVIS at the beginning.

Effect of the Instance Guidance Layer In the temporal refinement
transformer, we additionally integrate our Instance Guidance Layer (IGL) after
the Node Attention Layer (NAL). In Table 4, we study different injection po-
sitions and find that a level-wise manner after all three NAL achieves the best
performance. The boost of 2.7 APB and 2.2 APM shows the benefit of guiding
fined-grained local features using global instance-aware context.

Ablation on the RGB Encoding and Dynamic Pixel Decoder We
study the effect of RGB encoding and dynamic MLP decoder in Table 5. The
RGB encoding for enriching low-level details improves 0.8 APB while the instance-
specific MLP weights further promotes APM from 49.3 to 50.5.

3 More Implementation Details

Implementation and Training/Inference Details We implement Video
Mask Transfiner based on Detectron2 [8] and DETR [11]. We use 300 instance
queries per video. We employ the backbone features from the last three stages
{C3, C4, C5} with stride {8, 16, 32} for the base detector [7] outputting coarse
object masks and detecting 3D incoherent quadtree root nodes. Then, for achiev-
ing lower-level feature details, we break down these quadtree root nodes at {C3}



Video Mask Transfiner (Supplemental file) 5

to their quadrants recursively on backbone features {C2, C1}. To further enrich
the object edge details, we obtain RGB encoding using a three 3×3 Conv with
channels numbers {32, 64, 64} to operate on the image. For the node encoder,
we replace the 2D positional encoding in [2] with 3D encoding to incorporate
the temporal dimension [6].

We set the loss function to combine Dice loss and L1 loss when performing
refinement between the predicted labels for 3D incoherent nodes and their GT
labels. For the experiment of Table 2 in the paper, the boundary regions are
pixels within three-pixel Euclidean distance to the detected object mask contours
on three corresponding feature levels.

During training, for Quadtree Sequence Grouping (QSG), we randomly per-
mute the order of detected 3D incoherent points for each video tracklet in a video
clip of length 5, and select 3,000 from them to form the new spatio-temporal
sequence for refinement. This keeps the the balance between information amount
contributed by each frame. Also, the same input sequence length is desired for
batch efficiency. Note that during training, the detected incoherent sequence
from multiple frames contains its GT labels, thus not requiring converting to
final spatio-temporal masks.

During inference, we set video clip length to whole video length on YTVIS [9]
and our HQ-YTVIS. In cases of OVIS [4] and BDD100K MOTS [10], we set the
video clip length to 40. When video length is larger than the clip length, we
split the input video into multiple clips for inference. When splitting a long
video, we keep a 10-frame overlap between neighboring clips. This implicitly
helps maintain instance order. We also tested a greedy matching across clips
using the Tube Mask IoU, which only slightly improves the performance on
OVIS (16.8→17.0 AP on OVIS with R50). Thus, we remove greedy matching
to simplify VMT. Then the predicted objects masks in each video clip could be
simply concatenated w/o further object associations and we only keep instances
with scores larger than 0.001. In each video clip, to obtain the final video mask
predictions, we convert the grouped sequential prediction by QSG in a video clip
by splitting them to each frame.

YTVIS & HQ-YTVIS: We adopt one video clip per mini-batch. During train-
ing, the input frames are resized randomly to a shorter edge from [288, 512] pixels
with a step of 32 pixels, and flip ratio is 0.5. When selecting frames to form the
video clip during training, we randomly sample 5 video frames in sequence order
without repetition from the same video. During inference, the testing images are
resized to a shorter edge size of 360 pixels w/o data augmentation. The max
number of predicted instances per frame is 10.

OVIS: For input video clips during training, we follow the training schedule
and frame size settings in YTVIS & HQ-YTVIS, and limit the frame sampling
range to 5 frames before and after the one sampled target frame. This is due to
the large variances in the video length of OVIS dataset. We set the max number
of instance to 25 since OVIS has more dense objects. Note all compared methods
are trained with the same data sampling and image size settings.



6 Ke et al.

BDD100K MOTS: On BDD100K MOTS, we build VMT based on the MOTS
method PCAN [3]. As the base tracker, PCAN is used to produce coarse video
masks for each instance. We follow the training settings of [3] and set image
size 1296 × 720 for both training and test. Since PCAN is an online method,
when building the video clip at inference, we adopt an online tube accumulation
strategy, where only the previous frames before the current frame is stored. We
limit the maximum tube length to 30 by removing the old frames. Since PCAN
has no leanable video instance queries, incoherent regions are detected per frame
follow [2] and the IGL is removed from the Quadtree Sequence Encoder when
refining the input sequence produced QSG.

4 More Qualitative Comparisons

Please refer to the video file on our project page for extensive video visualization
comparisons on four evaluation benchmarks YTVIS [9], the new HQ-YTVIS,
OVIS [4] and BDD100K MOTS [10]. Our Video Mask Transfiner consistently
produces masks with substantially higher precision and temporal consistency
than existing state-of-the-art VIS methods [1,3,6,7]. Also, we show comparisons
between YTVIS and HQ-YTVIS, visual ablation results of QSG and typical
failure cases of VMT.

References

1. Hwang, S., Heo, M., Oh, S.W., Kim, S.J.: Video instance segmentation using inter-
frame communication transformers. In: NeurIPS (2021) 6

2. Ke, L., Danelljan, M., Li, X., Tai, Y.W., Tang, C.K., Yu, F.: Mask transfiner for
high-quality instance segmentation. In: CVPR (2022) 5, 6

3. Ke, L., Li, X., Danelljan, M., Tai, Y.W., Tang, C.K., Yu, F.: Prototypical cross-
attention networks for multiple object tracking and segmentation. In: NeurIPS
(2021) 6

4. Qi, J., Gao, Y., Hu, Y., Wang, X., Liu, X., Bai, X., Belongie, S., Yuille, A., Torr,
P., Bai, S.: Occluded video instance segmentation. arXiv preprint arXiv:2102.01558
(2021) 2, 3, 4, 5, 6

5. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database
and web-based tool for image annotation. International journal of computer vision
77(1), 157–173 (2008) 1

6. Wang, Y., Xu, Z., Wang, X., Shen, C., Cheng, B., Shen, H., Xia, H.: End-to-end
video instance segmentation with transformers. In: CVPR (2021) 5, 6

7. Wu, J., Jiang, Y., Zhang, W., Bai, X., Bai, S.: Seqformer: a frustratingly simple
model for video instance segmentation. arXiv preprint arXiv:2112.08275 (2021) 3,
4, 6

8. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://
github.com/facebookresearch/detectron2 (2019) 4

9. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV (2019) 1, 5, 6
10. Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., Madhavan, V., Darrell,

T.: Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In:
CVPR (2020) 5, 6

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


Video Mask Transfiner (Supplemental file) 7

11. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159
(2020) 4


