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Abstract. This paper proposes a 4D backbone for long-term point cloud
video understanding. A typical way to capture spatial-temporal context
is using 4Dconv or transformer without hierarchy. However, those meth-
ods are neither effective nor efficient enough due to camera motion, scene
changes, sampling patterns, and complexity of 4D data. To address those
issues, we leverage the primitive plane as mid-level representation to cap-
ture the long-term spatial-temporal context in 4D point cloud videos,
and propose a novel hierarchical backbone named Point Primitive Trans-
former(PPTr), which is mainly composed of intra-primitive point trans-
formers and primitive transformers. Extensive experiments show that
PPTr outperforms the previous state of the arts on different tasks.
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1 Introduction

Point cloud videos are ubiquitous in robots and AR systems that act as a
window into our dynamically changing 3D world. Being able to record movements
in the physical space, point cloud sequences play a key role in comprehending
environmental changes and supporting interactions with the world, which can be
hardly described by 2D images or static 3D point clouds. Therefore, an intelligent
agent must process such a form of data precisely to better model the real world,
adapt to environmental changes, and interact with them.

Despite its importance, processing point cloud sequences is a quite challeng-
ing task for machines that are largely determined by two aspects: effectiveness
and efficiency. Effectiveness refers to the ability to capture long-term spatial-
temporal structures. Due to camera motion, scene changes, occlusion changes,
and sampling patterns, points between different frames are unstructured and
inconsistent, making it difficult to effectively integrate different frames into the
underlying spatio-temporal structure. Efficiency refers to how to efficiently pro-
cess long point cloud videos with limited computing resources. The complexity
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Fig. 1. Architecture of Primitive Point Transformer. On the lower level, PPTr extracts
short-term spatial-temporal features through an intra-primitive point transformer for
a short video clip around the frame of interest. On the upper level, PPTr extracts
long-term spatial-temporal features through a primitive transformer.

and dimension of 4D data can easily cause memory and computation explosions.
Both challenges grow dramatically as the length of the video increases.

One typical way to tackle the dynamics of point clouds videos is treating
the point cloud video as a 4D volume [6], which applies 4D convolution directly
after voxelization. It is computationally prohibitive when processing large scenes
and long videos. Compared with transformer-based 4D backbones, pure convo-
lution is less effective at capturing long-term spatio-temporal context. However,
the existing transformer-based 4D backbone(P4Transformer [10]) also fails to
solve the above challenges. The entire point cloud video still needs to be loaded
into memory during the training process, which severely limits the length of
the point cloud video (for example, a 24GB graphics card can only handle a
synthia4D [34] point cloud video of 3 frames). Additionally, even though flat
transformers may be able to capture long-term context theoretically, they are
difficult to optimize as point numbers increase and usually do not provide much
gain in dense prediction tasks, such as 4D semantic segmentation.

Based on the challenges described above, we have several key observations.
First, considering the large variety of points, distance point cloud frames should
not be extracted at the point level, as this is neither efficient nor effective. Sec-
ond, a middle-level abstraction representing the underlying geometry spatially
and temporally can be better suited for context modeling, which will not only
alleviate the need to process raw points for better efficiency but also allow for
easier association across frames for a more effective spatial-temporal structure.
After revisiting the geometry processing literature, we choose primitive plane as
a mid-level representation, which describes the underlying planar structures in
a scene and tends to be much more stable across frames.

In this paper, we leverage primitive planes to develop an efficient and ef-
fective 4D backbone named Point Primitive Transformer(PPTr). As primitive
planes induce a natural scene-primitive-point hierarchy in space, we also design
PPTr as a hierarchical transformer operating on two different levels as shown
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in Figure 1. On the lower level, PPTr extracts short-term spatial-temporal fea-
tures through an intra-primitive point transformer for a short video clip around
the frame of interest. Primitive planes are used to restrict the spatial support of
attention maps in a point-level transformer. Such geometry-aware locality induc-
tive bias is not only beneficial for the optimization of the transformer but also
very effective for extracting descriptive and temporally stable geometric features.
On the upper level, PPTr extracts long-term spatial-temporal features through
a primitive transformer. We allow very efficient consideration of a long sequence
by fitting primitives and computing the primitive features in a pre-processing
stage. Through the primitive transformer, we could better associate primitives
from different frames and effectively integrate long-term context to the frame of
interest.

We evaluate our Point Primitive Transformer(PPTr) on several tasks, such
as 3D action recognition on MSR-Action [25] and 4D semantic segmentation on
SynthiadD [34] and HOI4D [29]. we demonstrate significant improvements over
previous method(+1.33% mIoU on synthiadD, +6.28% mlIoU on HOI4D and
+1.39% accuracy on MSR-Action).

The contributions of this paper are fourfold:

— First, we leverage the primitive plane to capture the long-term spatial-
temporal context in 4D point cloud videos and propose a novel backbone
named Point Primitive Transformer(PPTr).

— Second, we propose an intra-primitive point transformer for extracting spa-
tially descriptive and temporally stable short-term geometric features.

— Third, we propose a primitive transformer to capture long-term spatial-
temporal features efficiently.

— Fourth, extensive experiments on three datasets show that the proposed
Point Primitive Transformer is more effective and efficient than previous
state-of-the-art 4D backbones.

2 Related Work

Deep learning on Point Cloud Video Processing. Different from grid-based
RGB video, point cloud video exhibits irregularities and lacks order along the
spatial dimension where points emerge inconsistently across time. One approach
to deal with that is voxilization. For instance, [6] extends temporal dimension to
3D sparse convolution [15] to extract spatial temporal features on 4D occupancy
grids. 3DV [41] proposes a 3D motion representation to encode 3D motion infor-
mation via temporal rank pooling [12]. Another approach is to perform directly
on point sets. MeteorNet [28] adopts PointNet++ [32] to aggregate information
from neighbors, while point-track is needed to merge points. PSTNet [11] firstly
decomposes spatial and temporal information and proposes a point-based convo-
lution in a hierarchical manner. Following [11] [28], P4Transformer [10] proposes
4D Convolution that performs spatial-temporal convolution and captures dy-
namics of points by self-attention. While like most point-based approaches, they
prolong input clip by simply feeding raw points into network, which suffers from
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limited memory and fails to benefit from long-range temporal dependencies.
Based on this, we propose Point Primitive Transformer(PPTr) which enjoys all
three properties: point-convolution based, long-term supported and point-track
avoided.

Primitive Fitting. Primitive fitting is a long-standing problem of grouping
points into specific geometric shapes such as plane, cuboid, cylinder and so on.
Such process approximates and abstracts 3D shapes from low-level digitized
point data to a succinct high-level parameterized representation. Two main-
stream solutions of primitive fitting in geometry community are RANSAC [13] [35]
and region grow [31] [33]. Recently, neural networks have been developed by
several works [43] [24] [42] [20] [38] to segment primitives. Because primitives
extremely simplifies point data while keeps a relatively precise description of
3D geometry, they are widely applied to downstream tasks like instance seg-
mentation [20], reconstruction [5]and animation [37]. For example, [14] utilizes
primitive shapes that are rich in underlying structures to reconstruct scanned
object and transfer the structural information onto new objects. To directly deal
with large-scale scenes, [23] distils organization of point cloud by partitioning
heavy points into light shapes, showing the power of such compact yet rich rep-
resentation. We inject primitives into our network, intending to spatially provide
geometric-aware enhancement on local primitive region and temporally leverage
long-range information in a memory efficient way.

Transformer Network. Transformer is a powerful deep neural network based
on self-attention mechanism [39] and is particularly suitable for modelling long-
range dependencies [36] [7] [3]. It was firstly proposed in [39] for machine trans-
lation task and further extended to vision community [1] [4] [8] [9] [40] [21] [27]
. Very recently, Swin Transformer [30] proposes a hierarchical design for vision
modeling at various scales and yields impressive results . Similar to CNNs [22] [17],
Swin transformer builds hierarchical feature maps by merging image patches
when layers go deeper, and strikes a balance between efficiency and effectiveness
by limiting self-attention to local windows while also supporting cross-window
connection. In 4D point cloud understanding, prior leading work [10] performs
self-attention globally and fails to leverage long-term dependencies effectively. As
such, we design a hierarchical Primitive Point Transformer(PPTr) to alleviate
ineffectiveness of global-wise attention and introduce intra-primitive point trans-
former and primitive transformer that perform self-attention at point level and
primitive level respectively. Intensive experiments have shown that our network
outperforms the state-of-the-art methods for both 4D semantic segmentation
and 4D action recognition.

3 Pilot study: How does P4Transformer perform on
long-term point cloud videos?

4D point cloud video understanding has obtained much attention recently
and researchers are actively seeking for backbones to capture descriptive spatial-
temporal features. Among them, P4Transformer [10] is the leading one achieving
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Fig. 2. (a) The performance gain(MSR~Action3D [25]) with the increase of temporal
range. (b) The occupied memory with the increase of temporal range. We take the
2080Ti(11GB) GPU as an example. When the GPU memory cap is reached, the max-
imum number of frames that can be used is 15, which can only achieve 89% accuracy.

state-of-the-art performance on common tasks including 4D semantic segmen-
tation and 4D action recognition. Briefly speaking, instead of tracking points,
P4Transformer uses a point 4D convolution to encode the spatio-temporal local
structures in a point cloud video, and utilize the transformer to capture the
global appearance and motion information across the entire video. To motivate
the necessity of a new backbone, we conduct a pilot study to understand the
constraints of P4Transformer for long-term point cloud video understanding.

— We first experiment with the action recognition task on MSR-Action3D [25]
dataset. We gradually increase the clip length until our GPU memory cap
is reached and examine how well P4transformer performs. The results are
shown in Figure 2.

— We further conduct 4D semantic segmentation experiments on the synthia
4D dataset [34], to verify the effect of Transformer. Specifically, We removed
the Transformer in P4Transformer and compared it with the full version.

We can draw mainly two conclusions from the above experiments. First, as
shown in Figure 2, P4Transformer achieves better performance as the clip length
increases but is soon restricted by the huge memory cost, and it is hard to ap-
ply P4Transformer to very long clips. When the GPU memory cap is reached,
the performance still keeps its trend of going up, indicating the huge potential
of exploring longer-term videos. Second, in synthia4D [34] semantic segmenta-
tion task, we find that P4transformer without Transformer can achieve mloU
of 80.3%, which only drops 2.86% compared with original P4Transformer. This
result indicates global spatial-temporal context captured by P4Transformer be-
comes less useful in 4D dense prediction tasks. This is quite counter-intuitive as
the first conclusion indicates the benefit of modeling long-term information. We
conjecture that using a flat transformer as in P4Transformer is not effective for
long-term spatial-temporal context due to optimization issues.
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We re-examine the design principles of 4D backbones for long-term videos
and we would like to emphasize two important properties: efficiency (both speed-
wise and memory-wise) and effectiveness. By efficiency, we mean the backbone
should be able to effectively model long-term context to understand 4D visual
data in a more integrated way. P4Transformer is not efficient since it needs to
load a whole point cloud sequence into the memory for per-point feature learning.
This could easily explode the memory as the sequence becomes longer or input
scenes become larger-scale. Similar drawbacks also apply to most other 4D back-
bones in the literature. P4Transformer is also not effective enough for aggregating
long-term context due to the usage of ball-like region features. P4Transformer
samples equal-sized ball regions in each frame to compute feature tokens and
applies transformer to a sequence of frames. The geometric meaning of such ran-
domly sampled balls could hugely vary in dynamic scenes. This makes it hard
to build long-term associations, which is important for long-term context.

4 Method

To develop an efficient and effective backbone for long-term 4D understand-
ing, we draw inspirations from the geometry processing community that prim-
itive planes as some mid-level geometric representations are both compact and
stable across time, see Figure 3. Using primitive planes to model the long-term
context not only eases the need to directly deal with the huge number of raw
points in a 4D sequence but also facilitates long-term feature association. Fur-
thermore, since primitive planes group points with coherent geometric features, it
builds a natural geometry hierarchy (scene-primitive-point) which could be used
as a strong inductive bias for powerful yet hard-to-optimize transformer-style
architectures. We follow this thought and develop our Point Primitive Trans-
former.

a) 17 primitives at frame 30 b) 13 primitives at frame 130 ¢) 20 primitives at frame 230

Fig. 3. An illustration of primitive fitting in a HOI4D [29] video. Despite changing
view angles and challenging interaction, the primitive fitting remains consistent across
time.

Point Primitive Transformer(PPTr) is a two-level hierarchical transformer
built upon the geometry hierarchy induced by primitive planes as shown in Fig-
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ure 4. On the lower level, short-term spatial-temporal features are extracted
through an intra-primitive point transformer. The intra-primitive point trans-
former restricts the communication of points within each primitive plane. This
design shares a similar flavor with GLOM [19] encouraging aligned features to
talk. Also due to the local spatial support, it is more friendly to optimization
compared with a global transformer. On the upper level, long-term spatial-
temporal features are extracted through a primitive transformer. This is done
by jointly analyzing short-term features from the lower level and a memory pool
storing pre-computed primitive features from a long video. Pre-computed primi-
tive features allow aggregating long-term spatial-temporal context efficiently and
effectively. PPTr is very flexible for both point-wise and sequence-wise inference
by simply changing the task head.
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Fig. 4. Pipeline. The backbone consists of two branches: online network and offline
pre-computation. 1.0nline Branch. The input to network is a short video clip. After
primitive fitting, points are tagged with primitive label, then 4D Backbone is applied
and generates per-point features. In the intra-primitive point transformer, points fea-
tures are enhanced by adapatively adding information from other points inside prim-
itive. Then generate primitive-level representations by maxpooling. In the primitive
transformer, clip primitive embeddings(green) perform self-attention with long-term
embeddings(yellow) in the memory pool. For semantic segmentation, primitive fea-
tures are concatenated to corresponding point features then classified into semantic
labels. For action recognition, primitive features are merged by maxpooling to a global
feature then classified into actions. 2.0fHine Branch. This branch essentially com-
putes primitive level representations of the long-range videos and maintains a memory
pool in an offline manner. After primitive fitting, points are fed to a pre-trained 3D
backbone. Then maxpool is applied to every primitive region generating primitive-level
embeddings in the memory pool.
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In the rest of this section, we will elaborate on the design of PPTr in detail.
We start with how we fit primitive planes and how we pre-compute primitive
features in Section 4.1. Then in Section 4.2 and Section 4.3, we explain how we
extract short-term and long-term spatial-temporal features respectively.

4.1 Primitive Fitting and Feature Pre-Computation

We represent a point cloud sequence as ¥ = {(P;, V)|t = 1,..., L}, where
P; is the point cloud of frame ¢ optionally accompanied with normals V;. In
this phase, we detect planes for each frame (P;, V;) and output primitive label
Z, € RV*3 and primitive parameters ©; € RM*4 where N is the number
of points and M is the number of primitives. We adopt two primitive fitting
methods in our study for different datasets: region grow [31] and RANSAC [13].

We leverage region grow for indoor and outdoor scene segmentation. Re-
gion grow detects planes based on normal estimation. If not provided with nor-
mal V;, we calculate the normal direction at each point beforehand by linear
least squares fitting of a plane over its nearest k neighbors. Compared with re-
gion grow, RANSAC does not require normal estimation and is more suitable
for low-resolution point clouds such as those for action recognition in MSR-
Action3D [25].

After primitive fitting, we pre-compute the primitive features for efficient
long-term context aggregation and form a memory pool Fien, as shown in Fig-
ure 4. Specifically, we pre-train a 3D point feature learner [10] to solve the task of
interest just from every single frame (P;, V;). This allows us to extract per-point
features F; € RN where C denotes the feature dimension. To extract primi-
tive level representations, point-wise max pooling is adopted for each primitive
plane. The final memory pool Fiem has a shape of REXMXL,

4.2 Short-Term Spatial-Temporal Feature Extraction

This branch mainly consists of a 4D backbone and an intra-primitive point
transformer. The per-point features of each 4D sequence are first extracted using
the 4D backbone. Following that, an intra-primitive point transformer is used
to extract low-level features. Point features can provide the most fine-grained
information, enabling us to better perform dense prediction tasks. The intra-
primitive point transformer can not only align point features of similar geometry
but also save computational overhead and reduce the optimization difficulty of
the transformer.
4D Backbone. Our 4D backbone is built using a UNet structure. Following
the state-of-the-art P4Transformer [10], the encoder/decoder is made up of four
4D convolution/decovolution layers. Given clip ¥, the convolution layer can be
described as:

P = N ST (War (00,0,,0:,00)7) © (W - 500t
Se==7¢ [[(82.8y.82)||<r
(1)
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where (z,y,2) € P, and (d,,0,,d,,0;) is spatial-temporal offset of kernel and -
is matrix multiplication. ft(z’y’z) € RE*! is the feature of point at (z,y, z,t),
and the temporal aggregation > is implemented with sum-pooling and the
spatial > is max-pooling. r; and 7 represent temporal and spatial radius.
Wy - (6$,6y,6z,6t)T generates offset weights where Wy € R >4 transforms
4D displacements from R**! to R *1 and Wy € RE'*% is a projection matrix.
® is summation.

Intra-Primitive Point Transformer. In this stage, the lower-level feature
is extracted by enhancing per-point features obtained from the 4D backbone
in a geometry-aware way. point features are clustered in groups according to
their primitive labels given in the primitive fitting phase. Compared with simply
grouping by k-NN search in euclidean space [16], primitive-based partition has a
more underlying geometric meaning such as normal consistency. As point clouds
are sets embedded in a metric space, self-attention is a natural way to build
connections among them. By optimizing point embeddings in a geometry-aware
manner, our intra-primitive transformer takes advantage of local aggregation
rather than global information exchange. It is more friendly to optimization than
a global transformer because points within the primitive plane cannot communi-
cate with points outside. After this step, points with similar geometric features
are easier to align together, which facilitates subsequent higher-level feature ex-
traction.
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Fig. 5. Left: primitive-based region partition. Points are divided into primitive
regions according to primitive labels. Intra-primitive performs self-attention in one
primitive region. Right: Intra-primitive transformer block. Counsisting of intra-
primitive attention layer, pre-LayerNorm [2], GELU [18] and residual connection [17].

Specifically, in the layer i, the enhanced point feature F! , of primitive
region ¢ with input embedding set F}, is computed formally as [39]:

Q=W, F,\,, K=W-F, V=W, F!
Fi. = SAQ,K,V) = softmax (QTK) %4 2)
out T y £3 - NGl

where F! € RCiXN(XLM, C', N', L, M represents input dimension, point num-
ber per primitive, clip length and primitive number respectively. W, W}, €
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Rckxci, W, € RC"XC" where C* is the key dimension and C? is value di-
mension. @, K,V are queries, keys and values generated from Fj,. Attention
T .
weights softmax (%) is calculated in the primitive region. The output F¢,; €
RC”XN’xLM

is computed as a weighted sum of the values V. As shown in Fig-
ure 5, we build intra-primitive transformer block with layernorm [2], GELU
activation [18], one attentive layer and a following feedforward layer [39]. Feed-
forward is implemented with a two-layer MLP(MultiLayer Perception).

4.3 Long-Term Spatial-Temporal Feature Extraction

After the short-term spatial-temporal feature extraction, primitive trans-

formers are used to jointly analyze short-term features from the lower level and
a memory pool containing pre-computed primitive features. This branch can not
only reduce the computational cost, but also achieve long-term spatio-temporal
information integration.
Primitive Transformer. As demonstrated in Fig 4, two branches merge here.
The output of I layer intra-primitive transformer F', € RC'XN'XLM g then
aggregated by max-pooling operator M AX{-} to obtain primitive level feature
Four € RCLXLM, where C! is feature channels, L is the clip length and M is the
primitive number. Pre-computed primitive features from memory pool Fyenm are
used to expand the spatio-temporal receptive field of the primitive transformer.
Formally, the input of primitive transformer is Filflmmme = [Felip||Fmem] €
RE *(L'+L)M which concatenates short-term primitive features Feip and primi-
tive features from memory pool Fiem. Note that in the primitive attention layer,
spatial-temporal attentive aggregation is performed in (L' 4+ L) x M primitive
regions simultaneously. Identical to intra-primitive shown in Fig 5(Right), prim-
itive transformer block is also composed of pre-LayerNorm, primitive attention
layer, GELU, feedforward layer and residual connection. For semantic segmen-
tation, we concatenate per-point features, intra-primitive point features, and
primitive features to obtain point-wise features, and fuse them by a three-layer
MLP. For the action recognition task, we use the primitive feature to obtain
classification predictions through max-pooling and MLP.

5 Experiments

5.1 4D Semantic Segmentation

Setup. Temporal information can help understand the dynamic objects in
the scene, and improve segmentation accuracy and robustness to noise. Due to
memory constraints, existing methods only process point cloud videos with a
length of 3. Our method can consider a longer temporal range and achieve a
more efficient integration of spatio-temporal information. In this task, we fit
the scene point cloud into 200 primitives. We use mean IoU(mlIoU) % as the
evaluation metric.
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4D Semantic Segmentation on Synthia 4D dataset. Setup. Synthia
4D [34] is a synthetic dataset for outdoor autonomous driving. It creates 3D
videos with the Synthia dataset, which consists of six videos of driving scenarios
in which objects and cameras are moving. We use the same training/validation/test
split as previous work, with 19,888/815/1,886 frames, respectively.

Table 1. Evaluation for semantic segmentation on Synthia 4D dataset [34]

Method ‘Frames‘ Bldn Road Sdwlk Fence Vegittn Pole Car T.Sign Pedstrn Bicycl Lane T.Light‘mIoU

3D MinkNet14 [6] 1 89.39 97.68 69.43 86.52 98.11 97.26 93.50 79.45 92.27 0.00 44.61 66.69 |76.24
4D MinkNet14 [6] 3 90.13 98.26 73.47 87.19 99.10 97.50 94.01 79.04 92.62 0.00 50.01 68.14 |77.24
PointNet++ [32] 1 96.88 97.72 86.20 92.75 97.12 97.09 90.85 66.87 78.64 0.00 72.93 75.17 |79.35
MeteorNet-m [28] 2 98.22 97.79 90.98 93.18 98.31 97.45 94.30 76.35 81.05 0.00 74.09 75.92 |81.47
MeteorNet-1 [28] 3 98.10 97.72 88.65 94.00 97.98 97.65 93.83 84.07 80.90 0.00 71.14 77.60 |81.80

P4Transformer [10]‘ 1 96.76 98.23 92.11 95.23 98.62 97.77 95.46 80.75 85.48 0.00 74.28 74.22 ‘82.41

w

P4Transformer [10] 96.73 98.35 94.03 95.23 98.28 98.01 95.60 81.54 85.18 0.00 75.95 79.07 |83.16
PPTr(ours) 1 97.14 98.42 94.12 97.00 99.59 97.86 98.54 79.68 89.20 0.00 77.26 77.42 |83.85
PPTr(ours) 30 98.01 98.63 95.26 97.03 99.70 97.9598.76 81.99 91.20 0.00 78.29 77.09 |84.49

Result. Table 1 shows our method outperforms the state-of-the-art meth-
ods. Our PPTr with 1 frame can achieve 0.69% improvement over the P4Transformer
with 3 frames, which demonstrates the effectiveness of the hierarchical structure.
When using the memory pool to integrate temporal information from 30 frames,
we can achieve 1.33% improvement over previous state-of-the-art methods. It is
worth mentioning that our method is the first to integrate point clouds of 30
frames, which is 10 times that of previous methods. And we also demonstrate
that longer point cloud sequences are valuable for 4D semantic segmentation.

4D Semantic Segmentation on HOI4D. Setup. In order to further verify
the effectiveness of our method, we select the HOI4D dataset for experiments,
which is a large-scale 4D egocentric dataset to catalyze the research of category-
level human-object interaction. It provides frame-wise annotations for 4D point
cloud semantic segmentation. Since the dataset has not been released yet, we
sent an email to the author team to request 1000 sequences, which includes 30k
frames of the point cloud. The train/test split is the same as HOI4D.

Result. As shown in Table 2, our method outperforms previous methods
on this more challenging dataset. Compared with P4transformer, the mIoU goes
up from 59.61% to 68.07% and 61.97% to 68.54% in the case of single frame and
3 frames respectively, demonstrating the effectiveness of the hierarchical design
again. Due to the limitation of computational resources, P4Transformer can
use up to 3 frames, but our method can integrate 30 frames of spatio-temporal
information. The improvement from 61.97% to 70.13% further confirms that
with our proposed primitive memory pool, we can better leverage the long-term
temporal information to boost the 4D segmentation performance.
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Table 2. Evaluation for semantic segmentation on HOI4D dataset [29]

. Safe . Hand
Method Frames| Table Ground Metope Locker Pliers Laptop Deposit Pillow and Arml mloU
PSTNet [11] 3 57.45 63.38 83.80 44.69 13.71 35.03 51.55 76.30 40.39 |[51.81
P4Transformer [10]] 1 60.84 71.98 86.69 53.89 34.00 65.89 55.87 52.19 55.10 [59.61
P4Transformer [10]] 3 63.58 66.60 87.17 58.39 32.29 72.03 65.87 57.41 54.36 [61.97
PPTr(ours) 1 67.49 74.92 87.92 62.12 40.06 69.00 71.39 77.18 62.50 [68.07
PPTr(ours) 3 66.78 72.76 88.21 60.83 41.22 72.04 73.10 80.64 61.27 [68.54
PPTr(ours) 30 [67.76 79.55 90.67 59.43 39.43 72.67 73.29 84.13 64.26 (70.13

5.2 3D Action Recognition on MAR-Action3D

Setup. To demonstrate the effect of PPTr, we first conduct experiments
on the 3D Action Recognition task. Followed by P4Transformer, we use the
MAR-Action3D dataset which consists of 567 human body point cloud videos,
including 20 action categories. Our test/train split follows previous work. Each
frame is sampled with 2,048 points. As inputs, point cloud videos are split into
multiple clips. Video-level labels are used as clip-level labels during training. In
order to estimate the video-level probability, we take the mean of all clip-level
probability predictions. We fit the human body point cloud into 4 primitives.
Due to the small scale of human point cloud videos, we can load the entire point
cloud videos at one time, so we can avoid maintaining the long-term memory
pool in this case. We use the video classification accuracy as the evaluation
metric. We compare our method with the latest 4D backbone for point cloud
video including MeteorNet, PSTNet and P4Transformer.

Result. As reported in Table 3, when the number of point cloud frames
increases, the classification accuracy can be gradually improved. Our method
outperforms all the state-of-the-art methods, demonstrating that our methods
can better integrate spacial-temporal information.

5.3 Ablation Study and Discussion

In this section, we first provide an ablation study to verify each component.
Then, we provide more analysis to provide an in-depth understanding of our
framework.

Efficacy of intra/inter-primitive Transformer. We run ablation studies
with and without intra/inter-primitive Transformer to quantify its efficacy. We
find that PPTr without intra/inter-primitive Transformer results in a 16.73/1.39
accuracy drop on the MSR-Action3D action recognition task. This shows that
the intra-primitive transformer is essential in this task. It not only simplifies
the optimization difficulty but also aligns similar points, providing good fea-
tures for the subsequent use of the inter-primitive transformer. Inter-primitive
Transformer integrates spatio-temporal information from the entire video, using
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Table 3. Evaluation for action recognition on MSR-Action3D dataset [25]

Method ‘ Input ‘ Frames ‘ Accuracy
PointNet++ [32] ‘ point ‘ 1 ‘ 61.61
point 4 78.11
point 8 81.14
MeteorNet [28] point 12 86.53
point 16 88.21
point 24 88.50
point 4 81.14
point 8 83.50
PSTNet [11] point 12 87.88
point 16 89.90
point 24 91.20
point 4 80.11
point 8 83.17
P4Transformer [10] | point 12 87.54
point 16 89.56
point 24 90.94
point 4 80.97
point 8 84.02
PPTr(ours) point 12 89.89
point 16 90.31
point 24 92.33

the complementary information of each frame to further improve classification
accuracy.

Robustness to primitive-fitting hyper-parameters. The performance im-
pacts of different numbers of primitives are provided since primitives are crucial
in the framework. On MSR-Action3D, we can achieve 91.5/91.89 accuracy with
2/8 primitives, resulting in a marginal drop. On Synthia 4D, the segmentation
mloUs are 82.98, 84.41, 84.49, 84.28, and 83.56 with a primitive number of 10,
100, 200, 400, and 2000 respectively. Notice when the primitive number varies
in a reasonable range from 100 to 400, the segmentation mloUs vary by no more
than 0.21. When the primitive number is 10, the region division is too coarse
for fine-grained segmentation.When the primitive number is 2000, the benefit of
the spatial hierarchy gets weakened a lot. The network degenerates to a point
transformer when further increasing the primitive number to the point number.
This shows that different numbers of primitives have a small effect on the results,
and all have consistent improvements.

Efficacy of primitive representation. Our hierarchical transformer is generic
and can be easily applied to mid-level representations other than primitive
planes. To confirm the efficacy of primitive planes, we additionally compare
primitive planes with two types of mid-level representations, BPSS [26] super-
voxels and k-means clusters. Results in the table below show that using BPSS
supervoxels outperforms P4Transformer but is not as good as using primitive
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planes while k-means clusters fail to serve as a beneficial mid-level representation
on SynthiadD.

Table 4. Comparisons between different representations

Method ~ Synthia 4D [34] MSRAction [25]

P4Transformer 83.16 90.94
K-means 80.70 91.76
BPSS [26] 83.43 91.98
Ours 84.49 92.33

Offline branch and Online branch. The online branch produces fine primi-
tive features with heavy computation while the offline branch produces coarser
features efficiently as a surrogate of the online branch so that the network can
process long clips with limited computing resources. For the action recognition
task where data clips can already be largely fit into the GPU memory, using
an online branch only with fine primitive features is preferred. In this case,
just using an offline branch or combining the offline and online branches results
in marginal performance degradation with accuracy of 92.13 and 92.27 respec-
tively. For the 4D segmentation task, using our online branch independently, the
memory could only afford 3 frames and the resulting segmentation mIoU(%) is
84.05. This number goes to 84.49 when assisted by the offline branch covering
30 frames, confirming the value of the offline branch.

6 Conclusions

This paper proposes a 4D backbone for long-term point cloud video under-
standing. The key idea is to leverage the primitive plane to capture the long-
term spatial-temporal context in 4D point cloud videos. Results of experiments
showing ablations and state-of-the-art performance on a wide range of 4D tasks
including MSR-Action3D action recognition task, 4D semantic segmentation on
sythiadD and on HOI4D. This result is very encouraging and suggests future
work to explore more possible backbone designs for 4D point cloud understand-
ing.
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