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In the supplementary material, we first introduce more details about the
support and query feature extracion. Then we elaborate the detailed procedure
of the initial seeds selection and the detailed implementation of experiments.
Finally, we show more qualitative results of our method.

1 More Details of Framework
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Fig. 1: The network architecture of our approach. We first extract the middle-level
features of query and support images. Then the averaged foreground support
feature is concatenated with both query and support feature, and the prior mask
produced from high-level features is concatenated with the query feature. The
flattened support and query features as well as the flattened support mask are
fed into the AAFormer to obtain the final prediction.

The overall architecture of our approach is shown in Fig.(1). For backbone
feature extractor, as proven in CANet [7] and PFENet [6], directly adopting
high-level features that are more class-specific than middle-level features leads
to performance degradation in few-shot segmentation. So we apply middle-level
features for subsequent feature processing. Specifically, we feed the {Iks }Kk=1 and
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Algorithm 1 The Initialization Process of Agent Tokens

Input: The set X representing the locations of foreground pixels, the set L
containing both background pixel locations (B) and labelled seed points (P ),
and the number of agent tokens K;

Output: Initial agent tokens Fa = {fak }
K
k=1;

1: Initializing the set P = {};
2: for k in {1, 2, . . . ,K} do
3: Calculating the distance transform between locations y ∈ L and a specific

foreground location x ∈ X:

D(x) = min
y∈L

∥x− y∥2 ;

4: Selecting the furthest distance p∗:

p∗ = argmax
x

D(x);

5: Updating P = P ∪ {p∗}, L = B ∪ P , and getting the support feature
which can be seen as an initial agent token fak at location p∗;

6: end for
7: return Fa

Iq to shared ResNet50 [3], then we apply a channel-wise concatenation of the
features from block-3 and block-4, followed by a 1 × 1 convolution layer to
reduce the dimension to h× w × d, where the d is the hidden dimension which
can be adjusted in experiments. The parameters of the backbone networks are
kept unchanged during training for a better generalization of the model as proven
in [7,6]. In order to correctly utilize high-level semantic clues, like [6], we compute
the similarity between query pixel features fq ∈ F q

h and foreground support pixel
features fs ∈ F s

h ⊙ Ms, where the F s
h and F q

h are support features and query
features from block-5 of ResNet50 [3], respectively. Then we take the maximum
similarity among all support pixels as the foreground probability of query features
cq ∈ R as:

cq = max
s∈{1,2,...,hw}

(cos (fq, fs)) , (1)

where ‘cos’ denotes the cosine similarity. The similarity map will be normalized
to the range of [0, 1] using a min-max normalization then we obtain the prior
mask P that tells the probability of pixels belonging to a target class. The prior
mask is then concatenated with the query middle-level feature. We also extract
the middle-level mask averaged support feature and then concatenate to both
query and support feature for pixel-wise comparison, the concatenation of the
features are processed by a 1x1 convolution to obtain the support feature map
Fs ∈ Rh×w×c and query feature map Fq ∈ Rh×w×c, where h, w denote the
height, width of the feature map. The Fs and Fq as well as Ms are fed into the
AAFormer to obtain the final prediction.
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Fig. 2: More qualitative comparison with the baseline. AAFormer can achieve
more accurate segmentation.

2 More Details of Initial Agent Tokens

In this section, as a sub-module that can make the agent learning decoder spatial-
aware, we elaborate the complete initialization process of agent tokens benefiting
from distance transform (DT). Formally, given the support mask, we can obtain
the set X representing the locations of foreground pixels, and the set L containing
background pixel locations (B) and labelled seed points (P ), i.e., L = B ∪ P
and initially P = {}. Then, an Euclidean distance transform is used to iteratively
place seed points spaced at the maximum distance from the boundaries and any
other seed points to obtain initial agent tokens Fa ∈ RK×c. The detailed process
is described in Algorithm 1. In this way, the initialization of seed points which
uniformly distributed in the foreground region will results in faster convergence.

3 More Details of Implementation

As data augmentation is significant to mitigate the over-fitting problems, we
first resize and crop the input samples to 473× 473, then rotate them randomly
from −10◦ to 10◦. We set the number of the cross layers in our agent learning
decoder as 1 and as 2 in the agent matching decoder. The hidden dimension of
MLP layer is set to three times of input hidden dimension and the input hidden
dimension is set to 384 for all transformer blocks. The ϵ of sinkhorn algorithm is
set to 0.05 and the default setting of the maximum iteration is 10. Dice loss [5]
is adopted to train our model. The parameters of all the transformer blocks are
optimized with AdamW optimizer [4] and the learning rate is set to 1×10−4 with
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the weight decay 1× 10−2. We adopt the SGD optimizer with ‘poly’ policy [1]
to decay the learning rate by multiplying (1− currentiter

maxiter
)poewr to optimize the

rest of the parameters, the power equals to 0.9 and we use the initial learning
rate 2.5× 10−3, momentum 0.9 and weight decay 1× 10−4. Our experiments are
conducted on four GeForce RTX GPUs.

4 More Visualizations

We show more qualitative results on Pascal-5i [2]. We can observe that our
baseline model fails to accurately segment the target objects when the background
clutters occur in the support images or the appearance of target objects vary
a lot. Differently, our method utilizes the agent tokens to inject the contextual
information to pixel-level matching, which is more robust to noisy pixels thus
yielding more precise segmentation.
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