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Abstract. Few-shot segmentation (FSS) aims to segment objects in a
given query image with only a few labelled support images. The limited
support information makes it an extremely challenging task. Most pre-
vious best-performing methods adopt prototypical learning or affinity
learning. Nevertheless, they either neglect to further utilize support pixels
for facilitating segmentation and lose spatial information, or are not
robust to noisy pixels and computationally expensive. In this work, we
propose a novel end-to-end adaptive agent transformer (AAFormer) to
integrate prototypical and affinity learning to exploit the complementarity
between them via a transformer encoder-decoder architecture, includ-
ing a representation encoder, an agent learning decoder and an agent
matching decoder. The proposed AAFormer enjoys several merits. First,
to learn agent tokens well without any explicit supervision, and to make
agent tokens capable of dividing different objects into diverse parts in
an adaptive manner, we customize the agent learning decoder according
to the three characteristics of context awareness, spatial awareness and
diversity. Second, the proposed agent matching decoder is responsible
for decomposing the direct pixel-level matching matrix into two more
computationally-friendly matrices to suppress the noisy pixels. Extensive
experimental results on two standard benchmarks demonstrate that our
AAFormer performs favorably against state-of-the-art FSS methods.

Keywords: Few-shot Segmentation, Semantic Segmentation, Trans-
former

1 Introduction

Semantic segmentation is a fundamental task that has achieved conspicuous
achievements attributed to the development in deep neural network, especially
fully convolutional network (FCN) [21]. However, it is laborious and time-
consuming to gather massive pixel-level annotations as training data. To alleviate
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the data-hunger issue, considerable works [6,16,23,14] have turned their atten-
tion to the semi-supervised setting. However, neither fully supervised models
nor semi-supervised models generalize well to novel classes with extremely few
exemplars. In contrast, humans can easily identify a new object after only seeing
it once. Inspired by this, there has been increasing interest recently on few-shot
segmentation (FSS) [26] which can quickly adapt to novel categories.

In this work, we tackle the few-shot segmentation problem, where the goal is
to segment objects in a given query image Iq while only a few support images Is
with corresponding annotations Ms are available. Since there are usually large
intra-class variations such as scale, pose or background differences between the
support and query images, how to fully exploit limited information from support
samples for accurate segmentation is thus extremely challenging.

Avg Pooling

Comparison

Clustering

Comparison
Pixel Matching

Learner

Prediction Prediction Prediction
Prediction

(a) (b) (c) (d) 

  ��   ��  ��   ��   ��

Cross Cross

Pixel Matching

 ��  ��  ��  ��  ��  ��  ��  ��  ��

Single Prototype

Multiple Prototypes

�� �� �� �� �� �� �� ��

Fig. 1: Different learning formulation for few-shot segmentation. (a) Prototypical
learning methods with single prototype. (b) Prototypical learning methods with
multiple prototypes. (c) Affinity learning methods. (d) Our proposed AAFormer
that absorbs the merits of both prototypical learning and affinity learning methods
by modeling adaptive agent tokens for pixel-level matching.

Top-performing FSS methods can be roughly categorized as prototypical
learning methods and affinity learning methods. On one hand, prototypical
learning methods [33,10,43] adopt masked average pooling to achieve a single
prototype in the hope of being robust to noisy pixels, and perform feature
comparison between query pixels and a single prototype to segment the desired
object, as shown in Fig.1a. However, these methods inevitably drop the spatial
information. Moreover, relying solely on the single prototype focusing on global
foreground feature fails to capture the diverse object parts, which are crucial to
deal with object occlusion and large variations across images. To alleviate these
problems, recent works adopt EM algorithm [38] or clustering [20,17] to generate
multiple prototypes for better spatial coverage in foreground regions (see Fig.1b).
However, these methods only conduct matching between obtained prototypes
and query features without explicitly exploring the valuable pixel-level support
information, which can actually further contribute to the precise segmentation.
On the other hand, affinity learning methods [40,32,42] attempts to directly
leverage pixel-to-pixel similarity between support features and query features
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for segmentation (see Fig.1c). These approaches take advantage of the detailed
pixel-level support information and perform well in preserving spatial information.
However, direct pixel-level similarity is not only computation prohibitive, but
also tends to suffer from the confusion caused by background clutters or noisy
pixels because of neglecting contextual information. Overall, The above analysis
indicates that prototypical learning methods and affinity learning methods are
naturally complementary. The former mines the pixel context information against
noisy pixels and is computationally friendly, but fails to further utilize valuable
support pixels to facilitate segmentation and loses spatial information, while the
latter is just the other way around. Therefore, it is more desirable to integrate
these two formulations for exploiting their complementary potential by performing
pixel-level matching based on modeling diverse prototypes.

Motivated by the above discussions, we propose an end-to-end Adaptive Agent
Transformer (AAFormer) to integrate adaptive prototypes as agent into affinity-
based FSS (Fig.1d) via a transformer encoder-decoder architecture [30], including
a representation encoder, an agent learning decoder and an agent matching
decoder. In the representation encoder, we propose the self-attention mecha-
nism to capture the full image context information. Specifically, we aggregate
pixel-specific global context to each pixel position to obtain robust context-aware
pixel features that can represent object appearance well. In the agent learn-
ing decoder, we distill support information into condensed agent tokens to
establish the bridge between the support and query images. To learn the agent
tokens well without any explicit supervision, we elegantly design this decoder
customized for the following three characteristics. (a) Context awareness. We
introduce the masked cross attention mechanism that only attends agent tokens
with support pixels restricted to the foreground region. In this way, agent tokens
have the ability to further absorb foreground context from support pixels, and
adapt to occlusion and large variations across images. (b) Spatial awareness.
To make the part masks activated by the agent tokens more compact rather
than dispersive, we model the structural spatial information with the support
of distance transformation for agent tokens initialization. In addition, we also
introduce the position embedding in the agent learning process to make output
agent tokens sensitive to spatial location, and guide the part mask by learning
a local activation. (c) Diversity. To avoid the multiple agent tokens focusing
on the same object part, we impose the equal partition constraint to expand
the discrepancy among part masks. In specific, we allocate foreground pixels
evenly over agent tokens benefiting from the initial marginal distribution of
the optimal transport algorithm, and attain the optimal transport plan which
can be regarded as the refined part masks. In this case, agent tokens can de-
compose different target objects into diverse and complementary parts in an
adaptive manner. In the agent matching decoder, we decompose the massive
pixel-level support-query matching matrix into two more manageable matrices
based on obtained agent tokens at a light computational cost, and introduce the
alignment matrix for filtering out ambiguous matching caused by noisy pixels. In
specific, direct support-query matching is substituted by support-agent matching
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and agent-query matching. With a limited number of agent tokens, AAFormer
efficiently performs pixel-level matching with a drastically reduced complexity
compared to previous one. Besides, the alignment matrix guided by context-rich
agent tokens can filter out the matching weights between support and query
pixels that do not belong to the same object part. In this case, the noisy pixels
will be suppressed while the true correspondences enjoy higher weights.

The contributions of our method could be summarized as follows:

– We propose an Adaptive Agent Transformer (AAFormer) for the few-shot
segmentation in a unified framework. Specifically, we design the representation
encoder to acquire global context-aware pixel features, the agent learning
decoder to condense support information into agent tokens for bridging the
support and query images, and the agent matching decoder to decompose the
direct pixel-level matching matrix into two more computationally-friendly
matrices for suppressing the noisy pixels.

– To the best of our knowledge, this is the first work to absorb the merits of both
prototypical learning and affinity learning formulation by modeling adaptive
agent tokens for pixel-level matching. To learn agent tokens well without any
explicit supervision, and to make agent tokens capable of dividing different
objects into diverse parts in an adaptive manner, we further customize
the agent learning decoder according to the three characteristics of context
awareness, spatial awareness and diversity.

– Extensive experimental results with two different backbones on two challeng-
ing benchmarks demonstrate that our AAFormer performs favorably against
state-of-the-art FSS methods.

2 Related Work

2.1 Semantic Segmentation

Semantic segmentation is a task of assigning each pixel in a given image into
a category label, most promising segmentation methods are based on the Fully
Convolutional Network (FCN) [21]. Later, many remarkable breakthroughs come
from the enlargement of the receptive field. For example, Deeplab [4,5] integrates
dilated convolutions combined with pyramid pooling module [44] into the FCN
architecture. In addition to CNN based models, some recent works [35,27,7,8,45,2]
have applied transformer-based architectures for semantic segmentation [28], and
has resulted in comparable performance. For instance, Mask2former [7] treats
semantic segmentation as a binary mask prediction task based on set prediction
mechanism proposed by DETR [3]. However, these methods usually require
massive pixel-level annotations as training data and cannot generalize to novel
classes with only a few labelled images. In this paper, we focus on few-shot
segmentation to overcome these limitations.

2.2 Few-Shot Segmentation

Few-shot segmentation [26] tackles a challenging task of segmenting novel class
query images with only a few labeled support images available. Existing FSS
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methods can be roughly categorized into two categories: prototypical learning
methods and affinity learning methods. For prototypical learning, most meth-
ods [10,41,38,20,43,39] adopt masked average pooling to achieve a single prototype
and perform feature comparison with query pixels to segment the desired object.
For example, PANet [33] performs a prototype alignment regularization that
encourages the prototypes to contain more consistent information. However, these
methods are prone to inevitably drop the spatial information [17]. To alleviate
these problems, recent works [38,20,17] attempt to generate multiple prototypes
by EM algorithm or clustering for better spatial coverage in foreground regions.
For instance, Zhang et al. [39] encode the uncovered support feature for initial
prediction as a extra auxiliary prototype to reduce information loss. However,
these methods neglect exploring the valuable pixel-level support information,
which can actually further contribute to the precise segmentation.

Different from prototypical learning, affinity learning methods [32,40,42,39]
attempt to directly leverage pixel-level support-query matching for segmentation.
For example, PFENet [29] constructs the class-agnostic prior mask to guide
the segmentation by calculating the maximum support-query similarity in high-
level features. CyCTR [42] introduces the cycle-consistent attention operation
to aggregate beneficial support pixel-level features. However, direct pixel-level
similarity is not only computation prohibitive, but also tends to suffer from the
confusion caused by background clutters or noisy pixels because of neglecting
contextual information. Apart from existing methods, our method absorbs the
merits of both prototypical learning and affinity learning methods by modeling
adaptive agent tokens for pixel-level matching with a transformer encoder-decoder
architecture.

3 The Proposed Approach

3.1 Problem Definition

Widely used episodic meta-training [31] is adopted in few-shot segmentat. Specif-
ically, we denote the training set as Dtrain and the testing set as Dtest, the cate-
gories of the two sets Ctrain and Ctest are disjoint (Ctrain ∩ Ctest = ∅). To train
the model, a set of episodes are sampled from Dtrain, each of which is composed
of a support set S and a query set Q. In the K -shot setting, S = {(Iks ,Mk

s )}Kk=1,
where the Iks and the Mk

s are the i-th support image and its corresponding
ground-truth binary mask. Meanwhile, Q = (Iq,Mq), where the Iq and Mq are
the query image of the same class in S and its ground-truth, respectively. In each
episode, the model makes prediction on the Iq of Q conditioned on the S, and
Mq is provided to supervise the training process.

3.2 Overview

As illustrated in Fig.2, the proposed AAFormer mainly includes three modules,
the representation encoder, the agent learning decoder and the agent matching
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decoder. Among them, the representation encoder is applied to consider the global
context to learn robust features that effectively represent object appearance.
The agent learning decoder is responsible for adaptively absorbing contextual
information into agent tokens, and makes these regions discovered by learnt agent
tokens compact and diverse. The agent matching decoder is used to equip each
query pixel with beneficial support information to facilitate the classification.
The details are as follows.
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Fig. 2: Framework of our proposed Adaptive Agent Transformer (AAFormer).
There are three modules in the AAFormer, i.e., a representation encoder, an
agent learning decoder and an agent matching decoder.

3.3 Representation Encoder

We design the representation encoder to acquire robust context-aware pixel
features that can represent object appearance well. Given the backbone features
Fs ∈ Rh×w×c and query feature map Fq ∈ Rh×w×c obtained from the pretrained
ResNet [13]. To cope with the difference in the distribution of targets on scale
and pose, we adopt self-attention mechanism in the representation encoder to
capture the long-range context information. Sepcificly, we flatten the spatial
dimensions of Fs and Fq as 1D sequences. Then we obtain the queries, keys and
values from Fs ∈ Rhw×c and Fq ∈ Rhw×c. Note that we denote the superscript
as ∗ and ∗ ∈ {s, q} for brevity. Formally,

Q∗ = F∗WQ
∗ , K∗ = F∗WK

∗ , V∗ = F∗WV
∗ , (1)

where WQ
∗ ∈ Rc×ck ,WK

∗ ∈ Rc×ck ,WV
∗ ∈ Rc×cv are linear projections. Then

we can calculate the attention weight matrix S ∈ Rhw×hw with the scaled dot-
product attention and the output context-aware pixel features are computed



Agent Transformer for Few-shot Segmentation 7

through the following equation:

F̂∗ = Attention(Q∗,K∗,V∗) = Softmax(
Q∗(K∗)T√

dk
)V∗. (2)

Among which
√
dk is a scaling factor for stabilizing the training and T denotes

the transpose operation. Following the standard transformer [30], the Eq. (2)
is implemented with the multi-head mechanism and the feed-forward network
(FFN) is further applied to obtain the final output F̂s and F̂q. In this way, The
obtained pixel features are supported by its global context so that are more
robust to background clutters and can better represent object appearance.

3.4 Agent Learning Decoder
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Fig. 3: Illustration of the Agent Learning
Decoder(1-st row) and the Agent Match-
ing Decoder (2-nd row).

Agent learning decoder aims to con-
dense support information into a set
of agent tokens for bridging the sup-
port and query images. We first elab-
orate the initialization of the agent to-
kens which can accelarate the training
and make the agent tokens spatial-
aware. Specificly, Following [15], Eu-
clidean distance transform is used to
iteratively select a set of seed points
that far away from each other as well
as the boundaries, please refer to the
Supplementary Materials for spe-
cific practices. We then adopt the fea-
tures at the chosen seed points that
distribute uniformly in the masked re-
gion as initial agent tokens denoted
by Fa ∈ RK×c, where the K is the
number of agent tokens.

In order to make agent tokens
context-aware, we introduce the
masked cross-attention between the agent tokens and support features to ef-
ficiently aggregate the relevent forground contextual information into correspond-
ing agent tokens. Concretely, we first calculate a masked attention weight matrix:

S = Softmax(
Qa(Ks)T√

dk
+M), Qa = FaWQ

a , Ks = FsWK
s , (3)

where the additional attention mask M at feature location (m,n) is

M =

{
0, if N(m,n) = 1

−∞, otherwise
, (4)
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among which the N ∈ {0, 1}K×hw denote the duplication of M ∈ R1×hw from
R1×hw to RK×hw and the M is the flattened support mask. The masked cross-
attention only attends within the foreground region of the support mask for agent
tokens, which not only makes agent tokens rich in forground context, but also
leads to faster convergence [7].
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Fig. 4: Process of obtaining the refined
part mask via OT algorithm.

We found that without constrain-
ing the agent learning process, multi-
ple agent tokens tend to focus on the
same area. For the purpose of learning
more diverse agent tokens, we fur-
ther constrain the attention matrix to
evenly allocate the forground pixels to
different agent tokens. Concretly, we
model the pixels allocating as the Op-
timal Transport (OT) problem. The
goal of the OT problem is to find a
transportation planT∗ at a global min-
imal transportation cost, which can be
solved elegantly using Sinkhorn algo-
rithm with linear programming [9]. As
illustrated in Fig.4., we are intrested
in condensing the foreground support features into different agent tokens. The
cost matrix is defined as (1 − Sfg), where the Sfg ∈ RK×N is the matrix of
similarity between agent tokens and forground support features, and the N is the
amount of the foreground support pixels specified by support mask. The higher
similarity in Sfg leads to a lower corresponding transport cost. We denote the
transport plan as T ∈ RK×N and the optimization function is as follows:

max
T∈T

Tr
(
TT(1− Sfg)

)
+ ϵH(T), H(T) = −

∑
ij

Tij logTij , (5)

where H(T) is the entropy function, and ϵ is the parameter that controls the
smoothness of the mapping and is set to be 0.05 in our experiments. We impose
the equal partition constraints on T:

T =

{
T ∈ RK×N

+ | T1 =
1

K
· 1,TT1 =

1

N
· 1

}
, (6)

where 1 denotes the vector of all ones in the appropriate dimension. Eq.(6)
enforces that each agent token is assigned the same number of forground pixels
thus preventing a trivial solution where all pixels are assigned to a single agent
token. So that different agent tokens responsible for different areas that are
mutual complementary. As shown in Fig.4, we zero-pad the T∗ to result in the
refined part mask Ŝ. The final output agent tokens are acquired from the weighted
sum of Vs:

F̂a = FFN(Ŝ)Vs (7)

Benefiting from ALD, the output agent tokens decompose different target objects
into diverse and complementary parts in an adaptive manner.
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3.5 Agent Matching Decoder

Agent matching decoder is designed to equip query pixels with salutary in-
formation from support features in a robust and efficient way. Different from
previous methods [32,42] that perform dense similarity calculation directly of two
branches, we decompose the massive pixel-level support-query matrix into two
more mangeable matrices and introduce an extra alignment matrix for filtering
out ambiguous matching. Formally:

Sas =
Qa(Ks)T√

dk
, Qa = F̂aWQ

a , Ks = F̂sWK
s , (8)

Sqa =
Qq(Ka)T√

dk
, Qq = F̂qWQ

q , Ka = F̂aWK
a , (9)

Sqs = Softmax(SsaSaq +A), (10)

where the WK
∗ ,W

Q
∗ and ∗ ∈ {s, a, q} denote the linear projection, and the

aligning matrix A ∈ Rhw×hw is obtained by

A(i, j) =

{
0, if argmaxt S

as(t, i) = argmaxt S
qa(j, t)

−∞, otherwise
, (11)

where (i, j) ∈ {1, 2, . . . , hw} and t ∈ {1, 2, . . . ,K}. In this way, A filters out these
attention weights between the support and query pixels that do not belong to the
same agent token. We inplant this support-query correlation into the multi-head
attention mechnism within the decoder, and given the support-query attention
matrix Sqs we can retrieve the corresponding support features via the weighted
sum of Vs and a FFN:

F̄q = FFN((Ssq)Vq), Vq = F̂sWV , (12)

The obtained F̄q is reshaped back to spatial dimensions and processed by a small
convolution block to result in the final prediction. The convlution block consists
of one 3× 3 convolution, one ReLU activation and one 1× 1 convolution. The
proposed alignment matrix injects the contextual information into the pixel-wise
matching to filter out the matching weights between support and query pixels
that do not belong to the same object part. Besides, the decomposition in Eq.(10)
converts the computation complexity from o(c(hw)2) to o(K(hw)2), where the c
is the hidden dimension of decoder and K ≪ c, which makes our approach more
efficient.

4 Experiments

4.1 Dataset and Evaluation Metric

Dataset. We evaluate our approach on two widely used few-shot segmentation
datasets, Pascal-5i [11] and COCO-20i [18]. For Pascal-5i, which consists of the
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Table 1: Comparison with other state-of-the-art methods for 1-shot and 5-shot
segmentation on Pascal-5i. The mIoU of each fold and the FB-IoU of four folds
are reported. Best results in bold.

Method Backbone
mIoU(1-shot) FB-IoU mIoU(5-shot) FB-IoU

50 51 52 53 Mean (1-shot) 50 51 52 53 Mean (5-shot)

PANet[ICCV2019] [33]

Vgg-16

42.3 58.0 51.1 41.2 48.1 66.5 51.8 64.6 59.8 46.5 55.7 70.7

FWB[ICCV2019] [24] 47.0 59.6 52.6 48.3 51.9 - 50.9 62.9 56.5 50.1 55.1 -

SG-One[TCYB2020] [43] 40.2 58.4 48.4 38.4 46.3 63.1 41.9 58.6 48.6 39.4 47.1 65.9

PMM[ECCV2020] [38] 47.1 65.8 50.6 48.5 53.0 - 50.0 66.5 51.9 47.6 54.0 -

ASR[CVPR2021] [19] 50.2 66.4 54.3 51.8 55.7 - 53.7 68.5 55.0 54.8 58.0 -

CANet[CVPR2019] [41]

Res-50

52.5 65.9 51.3 51.9 55.4 66.2 55.5 67.8 51.9 53.2 57.1 69.6

PGNet[ICCV2019] [40] 56.0 66.9 50.6 50.4 56.0 69.9 57.7 68.7 52.9 54.6 58.5 70.5

PPNet[ECCV2020] [20] 47.8 58.8 53.8 45.6 51.5 - 58.4 67.8 64.9 56.7 62.0 -

PMM[ECCV2020] [38] 55.2 66.9 52.6 50.7 56.3 - 56.3 67.3 54.5 51.0 57.3 -

PFENet[TPAMI2020] [29] 61.7 69.5 55.4 56.3 60.8 73.3 63.1 70.7 55.8 57.9 61.9 73.9

SCLNet[CVPR2021] [39] 63.0 70.0 56.5 57.7 61.8 71.9 64.5 70.9 57.3 58.7 62.9 72.8

ASGNet[CVPR2021] [17] 58.8 67.9 56.8 53.7 59.3 69.2 63.7 70.6 64.2 57.4 63.9 74.2

MMNet[ICCV2021] [34] 62.7 70.2 57.3 57.0 61.8 - 62.2 71.5 57.5 62.4 63.4 -

RePRI[CVPR2021] [1] 60.2 67.0 61.7 47.5 59.1 - 64.5 70.8 71.7 60.3 66.8 -

CWT[ICCV2021] [22] 56.3 62.0 59.9 47.2 56.4 - 61.3 68.5 68.5 56.6 63.7 -

SAGNN[CVPR2021] [36] 64.7 69.6 57.0 57.2 62.1 73.2 64.9 70.0 57.0 59.3 62.8 73.3

ASR[CVPR2021] [19] 55.2 70.4 53.4 53.7 58.2 72.9 59.4 71.9 56.9 55.7 61.0 74.1

CMN[ICCV2021] [37] 64.3 70.0 57.4 59.4 62.8 72.3 65.8 70.4 57.6 60.8 63.7 72.8

CyCTR[NIPS2021] [42] 67.8 72.8 58.0 58.0 64.2 - 71.1 73.2 60.5 57.5 65.6 -

AAFormer (Ours) Res-50 69.1 73.3 59.1 59.2 65.2 73.8 72.5 74.7 62.0 61.3 67.6 76.2

FWB[ICCV2019] [24]

Res-101

51.3 64.5 56.7 52.2 56.2 - 54.9 67.4 62.2 55.3 59.9 -

DAN[ECCV2020] [32] 54.7 68.6 57.8 51.6 58.2 62.3 57.9 69.0 60.1 54.9 60.5 63.9

PFENet[TPAMI2020] [29] 60.5 69.4 54.4 55.9 60.1 72.9 62.8 70.4 54.9 57.6 61.4 73.5

ASGNet[CVPR2021] [17] 59.8 67.4 55.6 54.4 59.3 71.7 64.6 71.3 64.2 57.3 64.4 75.2

RePRI[CVPR2021] [1] 59.6 68.6 62.2 47.2 59.4 - 66.2 71.4 67.0 57.7 65.6 -

CWT[ICCV2021] [22] 56.9 65.2 61.2 48.8 58.0 - 62.6 70.2 68.8 57.2 64.7 -

CyCTR[NIPS2021] [42] 69.3 72.7 56.5 58.6 64.3 72.9 73.5 74.0 58.6 60.2 66.6 75.0

AAFormer (Ours) Res-101 69.9 73.6 57.9 59.7 65.3 74.9 75.0 75.1 59.0 63.2 68.1 77.3

Pascal VOC 2012 dataset with extra annotations from SBD [12], 20 categories
are divided into 4 folds with 5 classes per fold for cross-validation, as done in [26].
For COCO-20i, we follow the the data split protocol in [24] to separate the 80
classes evenly into 4 folds, where each fold contains 60 classes for training and the
remaining 20 classes for testing. During inference, 1,000 episodes are randomly
sampled from the test split.
Evaluation Metric. Following the previous practices [29,33,43,41,42], we adopt
two evaluation metrics, i.e., mean intersection-over-union (mIoU) and foreground-
background IoU (FB-IoU). We mainly focus on the mIoU metric as it reflects
the average result over all classes thus alleviating the performance bias of scarce
classes.

4.2 Implementation Details

Our models are trained 200 epochs with batch size 4 for Pascal-5i and 50
epochs with batch size 24 for COCO-20i. We adopt the ImageNet [25] pretrained
ResNet50 and Resnet101 [13] as the backbone to extract features in our ex-
periments for fair comparison. Given the support feature Fs ∈ Rh×w×c and
query feature Fq ∈ Rh×w×c, we set the number of the cross layers in our agent
learning decoder to 1, and set 2 in the representation encoder. Please see the
supplementary material for more implementation details.
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Table 2: Comparison with other state-of-the-art methods for 1-shot and 5-shot
segmentation on COCO-20i. The mIoU of each fold and the FB-IoU of four folds
are reported. Best results in bold.

Method Backbone
mIoU(1-shot) FB-IoU mIoU(5-shot) FB-IoU

200 201 202 203 Mean (1-shot) 200 201 202 203 Mean (5-shot)

PPNet[ECCV2020] [20]

Res-50

28.1 30.8 29.5 27.7 29.0 - 39.0 40.8 37.1 37.3 38.5 -

PMM[ECCV2020] [38] 29.5 36.8 28.9 27.0 30.6 - 33.8 42.0 33.0 33.3 35.5 -

MMNet[ICCV2021] [34] 34.9 41.0 37.2 37.0 37.5 - 37.0 40.3 39.3 36.0 38.2 -

RePRI[CVPR2021] [1] 31.2 38.1 33.3 33.0 34.0 - 38.5 46.2 40.0 43.6 42.1 -

ASR[CVPR2021] [19] 30.6 36.7 32.7 35.4 33.9 - 33.1 39.5 34.2 36.2 35.8 -

CMN[ICCV2021] [37] 37.9 44.8 38.7 35.6 39.3 61.7 42.0 50.5 41.0 38.9 43.1 63.3

CyCTR[NIPS2021] [42] 38.9 43.0 39.6 39.8 40.3 - 41.1 48.9 45.2 47.0 45.6 -

FWB[ICCV2019] [24]

Res-101

17.0 18.0 21.0 28.9 21.2 - 19.1 21.5 23.9 30.1 23.7 -

PFENet[TPAMI2020] [29] 34.3 33.0 32.3 30.1 32.4 58.6 38.5 38.6 38.2 34.3 37.4 61.9

SCLNet[CVPR2021] [39] 36.4 38.6 37.5 35.4 37.0 - 38.9 40.5 41.5 38.7 39.9 -

CWT[ICCV2021] [22] 30.3 36.6 30.5 32.2 32.4 - 38.5 46.7 39.4 43.2 42.0 -

SAGNN[CVPR2021] [36] 36.1 41.0 38.2 33.5 37.2 60.9 40.9 48.3 42.6 38.9 42.7 63.4

AAFormer (Ours) Res-50 39.8 44.6 40.6 41.4 41.6 67.7 42.9 50.1 45.5 49.2 46.9 68.2

4.3 Comparison with State-of-the-art Methods

Pascal-5i. In Tabel 1, we compare our proposed AAFormer with the state-of-the-
art few-shot segmentation methods. We consistently observe that our AAFormer
outperforms all previous models under both 1-shot and 5-shot settings, which
strongly proves the effectiveness of our method. For fair comparison, we report
results with the ResNet-50 and Resnet-101 backbones. Specificly, Our approach
achieves 65.3% and 68.1% in the 1-shot and 5-shot settings with the ResNet-101
backbone that significantly outperforms the recent prototypical learning methods
(e.g., ASGNet), achieving a large margin of 6.0% and 3.7% in mIoU. This is
because the prototypic learning methods only leverage the correlation between
the prototypes and query features without considering the pixel-level support
features, while the agent matching decoder in our method further explores the
pixel-wise support information and contributes to accurate segmentation. With
the more lightweight ResNet50 backbone, the performance of AAFormer is also
in the lead. Compared with the best affinity learning method (CyCTR), our
method has a clear lead and obtains 1.0% mIoU gain in the 1-shot setting and
2.0% in the 5-shot setting.

COCO-20i. In Tabel 2 we report the comparison on COCO-20i, which is much
more difficult than Pascal-5i with more complex cases, such as drastic object
appearance differences, messy scenes and severe occlusion. In the absence of
careful parameter adjustments, our AAFormer also achieves superior results than
the existing best performing method (CyCTR), i.e., obtains 1.3% and 1.3% mIoU
gain in the 1-shot and 5-shot settings. This demostrates the the stability of our
method. We analyze that the performance can also benefit from the proposed
representation encoder, which can capture the full image context information
for better representing the object appearance to deal with complex cases. While
conducting feature processing on the raw backbone features tends to be confused
by the background clutters or other interferent.
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4.4 Ablation Study and Analysis

Table 3: Ablation study results. Experiments are
conducted on Pascal-50 for 1-shot setting with
ResNet-50.

REnc AMD ALD mIoU
62.2

✓ 64.9
✓ ✓ 67.4
✓ ✓ ✓ 69.1

(a) Ablation of model
components.

Init. Update mIoU
DT K-Means 67.4
DT ALD(w/o OT) 68.3
DT ALD(w/ OT) 69.1

Learnable ALD(w/ OT) 68.5

(b) Ablation of agent ini-
tialization and update.

To look deeper into our
method, we perform a series
of ablation studies to ana-
lyze each component of our
AAFormer, including the rep-
resentation encoder (REnc),
the agent matching decoder
(AMD) and the agent learn-
ing decoder (ALD). Note that
we remove all modules except
the encoder with two resid-
ual blocks to conduct direct
pixel-level matching between
the support and query images
as our baseline.

67.3
67.8

67.6

68.9 69.1

67.6

63

64

65

66

67

68

69

70

1 5 9 12 14 16

m
Io

U

64.9

Baseline + REnc (without ALD & AMD)

Fig. 5: Comparisons of perfor-
mance with different number of
agent tokens.

Effectiveness of the Representation En-
coder. As shown in Tabel 3a, The introduction
of the representation encoder achieves a cer-
tain performance lift compared with the base-
line, e.g., 2.7% in mIoU. The improvements
can be mainly ascribed to the proposed repre-
sentation encoder that can effectively capture
robust context information for representing
object appearance well even in complex cases.
Effectiveness of the Agent Matching De-
coder. From the comparison between the 2-nd
and the 3-rd row of Table 3a, we observe that
the agent matching decoder significantly im-
proves the performance, e.g.,2.5% in mIoU.
Note that the agent tokens in the 3-rd row are produced from the K-Means
clustering. We conclude that this performance gain comes from the alignment
matrix in the agent learning decoder, which can filter out the matching weights
between support and query pixels that do not belong to the same object part for
more accurate segmentation.
Effectiveness of the Agent Learning Decoder. With the utilization of the
agent learning decoder, further improvements can be observed, e.g., 2.4% mIoU.
This proves that our agent learning decoder can adaptively learn spatial-aware
and diverse agent tokens to absorb the local context of support pixels and make
the agent matching decoder more effective in reducing background noises.
Analysis of the Agent Learning Process. To explore effectiveness of different
ways to learn agents, we evaluate multiple combinations of initialization and
update of agent tokens. Naively, we first initialize the agents with the help of
distance transformation (DT), and then update them by K-Means algorithm.
The way is similar to [17] and the result is displayed in the first row of Table 3b.
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Fig. 6: Qualitative com-
parison with the baseline.
AAFormer can achieve more
accurate segmentation.

Part 1

Part 2

Part 3

with OT w/o OT with OT w/o OT with OT w/o OT with OT w/o OT

Fig. 7: Visualization of the learned agent tokens
with OT and without OT. As we can see, these
agent tokens adaptively decompose the object
into different parts benefiting from OT.

Then we replace the K-Means algorithm by the agent learning decoder (without
OT algorithm) to update the initial agent tokens. We can observe that there
is a 0.9% mIoU improvement, showing our proposed ALD can better make the
agents represent foreground context than traditional K-Means algorithm. And
the performance improvement of 0.8% mIoU can be obtained by adding OT
algorithm to the ALD, which indicates that the equal partition constraint brought
by OT is beneficial to make the agents learn to adaptively decompose different
target objects into diverse and complementary parts. When we use learnable
tokens as the initialization of the agents, the mIoU is degraded by 0.6%, which
is not surprising as query tokens will lose the structural spatial information
compared to DT initialization. Despite, its performance is approximate to DT
initialization with ALD (without OT), once again validating that our ALD can
produce powerful agent tokens.
Hyperparameter Evaluations. In Fig. 5, we conduct quantitative experiment
to analyze how many agent tokens K are better for segmentation. We can observe
that the performance continues to grow until K = 14, which means that it is
sufficient for agent learning decoder by mining fourteen different object parts.

4.5 Visualizations

Visualization of Learned Agent Tokens. We visualize the part masks acti-
vated by agent tokens to qualitatively evaluate the effect of the optimal transport
algorithm. As shown in Fig.7, we can observe that without OT, multiple proto-
types tend to focus on the same part containing large background noises. And
thanks to the equal partition constraint from OT, the agent tokens successfully
divide different target objects into diverse and complementary parts in an adap-
tive manner. For example, the three part masks in object dog (in the fifth column)
focus on the head, body, and limbs respectively.
Visualization of Part Correspondence. Under the extreme challenge, we
visualize part masks which come from the same class of support-query image
pairs and are activated by a specific agent token, as shown in Fig.8. As we can
see, intrinsic semantic correspondence is established between the pair of part
masks obtained from the same agent token. For example, in the object human
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#3
Agent
Token

Occlusion Different Poses Different Scales

#1
Agent
Token

#2
Agent
Token

#1
Agent
Token

Support

Query

Fig. 8: Visualization of part correspondence. As
we can see, the pair of part masks obtained from
the same agent token have intrinsic semantic
consistency.

Query

Support
with AMD

Support
w/o AMD

Version 2

Fig. 9: Visualization of pixel correspondence. The
green and red arrows point to the top five sup-
port pixels that match the query pixel with and
without AMD module, respectively.

(the second column), the part
head of the query image can
accurately match with the cor-
responding part masks of the
support image, even though
the objects in the two im-
ages have different poses. This
proves that our ALD module
enables diverse agent tokens
to activate on the same latent
semantic regions. In this way,
agent tokens can adapt to oc-
clusions, different poses and
different scales across images.
Visualization of Pixel Cor-
respondence. To vividly
present the effect of our AMD
module, we visualize differ-
ences in pixel correspondences
according to whether AMD ex-
its. As shown in Fig.9, with
the utilization of AMD mod-
ule, the top five pixels corre-
sponding to the query points
tend to line in the foreground
of support images. While these
ones will contain large background noises without the AMD module to perform
direct pixel matching. This is in line with the design idea of AMD module, i.e.,
filtering out the unreasonable matching weights.

5 Conclusion

In this paper, we propose a novel adaptive agent transformer (AAFormer) to in-
tegrate prototypical and affinity learning to exploit the complementarity between
them via a transformer encoder-decoder architecture. Extensive experimental
results on two standard benchmarks demonstrate that AAFormer performs fa-
vorably against state-of-the-art FSS methods.
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