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In this document, we provide details on the experimental setting, more abla-
tion studies, more quantitative results on semantic correspondence benchmarks,
including SPair-71k [21], PF-PASCAL [6], and PF-WILLOW [5], and more qual-
itative results on all the benchmarks we used.

Appendix A. Experimental Setting for Semantic
Correspondence

Datasets. For the datasets we used, we follow the common protocol [20, 22,
26, 36, 8, 19, 2] and use standard benchmarks [5, 6, 21]. Specifically, we consider
SPair-71k [21], which provides a total of 70,958 image pairs with extreme and
diverse viewpoints, scale variations, and rich annotations for each image pair.
We also consider relatively small-scale datasets, which include PF-PASCAL [6]
containing 1,351 image pairs from 20 categories and PF-WILLOW [5] containing
900 image pairs from 4 categories, where each dataset provides corresponding
ground-truth annotations.

Evaluation metric. For evaluation on SPair-71k [21], PF-PASCAL [6], and
PF-WILLOW [5], we employ the percentage of correct keypoints (PCK). It is
computed as the ratio of estimated keypoints within the threshold from ground-
truths to the total number of keypoints. Concretely, given predicted keypoint
kpred and ground-truth keypoint kGT, we count the number of predicted key-
points that satisfy the following condition: d(kpred, kGT) ≤ α ·max(H,W ), where
d( · ) denotes Euclidean distance; α denotes a threshold value; H and W denote
height and width of the object bounding box or the entire image, respectively.
We evaluate on PF-PASCAL with αimg, and SPair-71k, and PF-WILLOW with
αbbox following the common protocol.

Implementation Details. We use ResNet-101 [7] pre-trained on ImageNet [3]
for the backbone feature extraction networks. We leave all the components in
VAT unchanged. However, we build a different objective function. As in [20, 22,
19], we assume ground-truth keypoints are provided. We utilize Average End-
Point Error (AEPE) [29] and compute it by averaging the Euclidean distance

⋆ Equal contribution
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between the ground-truth and estimated flow. Specifically, we compute the loss
as L = ∥FGT−Fpred∥2, where FGT is the ground-truth flow field and Fpred is the
predicted flow field. Note that we achieve this without making any modification
to the network architecture. To report the results for different α thresholds, we
employ the pre-trained weights released by authors, and simply evaluate without
making any changes to their architectures. We use the same data augmentation
used in CATs [2]. For the learning rate, we use the AdamW [17] optimizer
with 3e−5 for VAT and 3e−6 for the backbone feature networks. Finally, we use
appearance embedding from conv3 x, conv4 x and conv5 x as done for FSS-
1000 [13].

Appendix B. Additional Ablation Study

Backbones feature
FSS-1000 [13]
mIoU (%)

1-shot 5-shot

ResNet50 [7] 90.1 90.7
ResNet101 [7] 90.3 90.8
PVT [32] 90.0 90.6
Swin transformer [16] 89.8 90.2

Table 1. Ablation study of differ-
ent feature backbone.

Ablation study for feature back-
bone. Conventional few-shot segmenta-
tion methods only utilized CNN-based
feature backbones [7] for extracting fea-
tures. [34] observed that high-level fea-
tures contain semantics of objects which
could lead to overfitting and is not suit-
able to use for the task of few-shot seg-
mentation. Then the question naturally
arises, what about other networks? As ad-
dressed in many works [23, 4], CNN and
transformers see images differently, which
means that the kinds of backbone net-
works may affect the performance signif-
icantly, but this has never been explored
for this task. We thus exploit several well-
known vision transformer architectures to explore the potential differences that
may exist.

The results are summarized in Table 1. We find that both convolution- and
transformer-based backbone networks attain similar performance. We conjecture
that although it has been widely studied that convolutions and transformers see
differently [23], as they are pre-trained on the same dataset [3], the representa-
tions learned by models are almost alike. Note that we only utilized backbones
with a pyramidal structure, and the results may differ if other backbone networks
are used, which we leave for future exploration.

Effectiveness of Data Augmentation. We explore the effectiveness of data
augmentation for few-shot segmentation. In this experiment, we employ two
types of data augmentation, which are introduced either in PFE-Net [28] or
CATs [2]. We summarize the augmentation types in Table 4 and Table 3. For
this ablation study, we use two datasets, PASCAL-5i [27] and FSS-1000 [13]. The
results are summarized in Table 2. Note that we use the same augmentation
types and probability as theirs. For a fair comparison, we keep all the other
experimental settings the same, e.g., number of iterations and learning rate.
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PFE-Net Aug. [28] CATs Aug. [2]
PASCAL-5i [27] FSS-1000 [13]

mIoU (%) mIoU (%)
50 51 52 53 mean

✗ ✗ 70.0 72.5 64.8 64.2 67.9 90.3
✓ ✗ 68.4 72.3 64.4 63.9 67.3 90.0
✗ ✓ 65.7 72.2 62.3 64.3 66.1 90.1
✓ ✓ 65.2 71.1 63.2 63.4 65.7 90.2

Table 2. Ablation study of Data Augmentation.

As PFE-Net [28] does not address the effectiveness of data augmentation
and CATs [2] is designed for the semantic correspondence task, we are the first
to analyze the effectiveness of data augmentation in the few-shot segmenta-
tion setting. Overall, we observe that using the data augmentation techniques
severely affects the overall performance. Interestingly, although the augmenta-
tion technique introduced by CATs [2] showed a significant performance boost
in the semantic correspondence task, it attains the lowest mIoU when evalu-
ated on PASCAL-5i [27] and the second lowest for FSS-1000 [13]. The severe
performance drop in PASCAL-5i [27] indicates a detrimental influence of using
CATs [2] data augmentation. However, given the small difference to the best
performance (0.3%) for FSS-1000 [13], the results may differ in a retrial. For
PFE-Net [28] data augmentation, we observe results to be on par with the best
reported results. However, at fold 0, there is a large gap between them, which in-
dicates the detrimental effects of data augmentation on performance. Using both
augmentations results in a large performance drop for PASCAL-5i [27], arguably
due to the detrimental effects of both augmentations, but for FSS-1000 [13], we
observe only a small difference.

Augmentation type Probability

(I) ToGray 0.2
(II) Posterize 0.2
(III) Equalize 0.2
(IV) Sharpen 0.2
(V) RandomBrightnessContrast 0.2
(VI) Solarize 0.2
(VII) ColorJitter 0.2

Table 3. CATs [2] Aug. Type.

Strong Aug. type Probability

(I) RandScale 1
(II) Crop 1
(III) Gaussian Blur 0.5
(IV) Horizontal Flip 0.5
(V) Rotate 0.5

Table 4. PFE-Net [28] Aug. Type.

Consequently, we conjecture that the detrimental effects on PASCAL-5i [27]
and seemingly trivial effects on FSS-1000 [13] could be attributed to a few rea-
sons: First, as shown in Table 2, since the difference between the results of the
non-data augmentation approach and the PFE-Net [28] augmentation approach
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is only 0.6% for PASCAL-5i, this may be due to the implementation details.
For the training, we followed HSNet [18] to force randomness for diverse episode
combinations, which may have made such a gap. Second, although the data aug-
mentation may help transformers by providing inductive bias and addressing the
heavy need for data, for few-shot setting, where the objective is to predict labels
of unseen classes, the results may be different to that of semantic correspondence.
It was demonstrated [2] that for semantic correspondence, data augmentation
indeed helps to boost the performance, but a different problem formulation for
few-shot segmentation may result in detrimental effects. Third, since we act
on correlation maps, applying data augmentation may significantly affect the
matching distribution at each pixel. Unlike those works directly working on fea-
ture refinement [28, 35], where adopting data augmentation has a direct influence
on feature maps, VAT aggregates the correlation maps computed between the
features extracted from augmented images, which may result in different effects
(performance drop) when the objective is to predict unseen classes. Lastly, com-
bining both augmentations may increase the difficulty of learning, which in turn
impacts accuracy.

Ablation study for ATD. In this ablation study, we show a quantitative
comparison between the proposed ATD and a decoder without transformers [30,
31, 33, 16] to find out whether the model benefits from the use of transform-
ers for further cost aggregation and filtering with the aid of the appearance
embedding. For convenience, we call this Appearance-aware Decoder (AD). To
implement this, we only exclude the transformers within ATD and leave all the
other components and training settings unchanged, e.g., network architecture,
hyperparameters, learning rate and number of iterations. As shown in Table 5,

Components
FSS-1000 [13]

mIoU (%) FB-IoU (%) mBA (%)
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Convolutions 87.3 88.8 92.2 93.2 66.8 67.2
Transformers 90.3 90.8 94.0 94.4 68.0 68.6

Table 5. Ablation study for ATD.

we observe a large performance gap between AD and ATD, which demonstrates
that using transformer allows for more effective aggregation, filtering and inte-
gration of correlation maps and appearance embedding. More specifically, we
observe a 3% mIoU difference and find similar differences for FB-IoU and mBA.
Without using transformers, where only convolutions are used, we observe that
the results are equal to that of (VI) in the ablation study for VAT. This indicates
that meaningful aggregation may not have occurred. It should be noted that we
observe highly competitive results for mBA for both approaches, confirming a
positive effect from the high-resolution spatial structure of the appearance em-
bedding.
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Ablation study for VCM. For this ablation study, we aim to further support
our claims that the VCM (overlapping convolutions) compensates for the lack
of inductive bias and alleviates the detrimental effects caused at window bound-
aries. To this end, we use Linear transformer [10], Fastformer [33] and Swin
Transformer [16] to validate the effectiveness. Note that we already reported the
results for the ones with VCM, but we additionally provide FB-IoU and mBA
results. For the implementation of VEM, we refer the readers to Algorithm 1.

Components
FSS-1000 [13]

mIoU (%) FB-IoU (%) mBA (%)
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

VEM + Linear Transformer [10] 87.0 87.4 90.7 91.0 65.0 64.9
VEM + Fastformer [33] 87.1 87.6 90.9 91.2 65.3 65.2
VEM + Swin Transformer [16] 89.9 90.5 92.9 94.0 67.8 68.2

VCM + Linear Transformer [10] 87.7 88.3 92.3 92.2 66.5 66.7
VCM + Fastformer [33] 87.8 88.2 91.8 91.9 66.4 66.4
VCM + Swin Transformer [16] 90.3 90.8 94.0 94.4 68.0 68.6

Table 6. Ablation study for VCM.

As shown in Table 6, we find a similar pattern to the results for VCM. Swin
Transformer attained the best results, while Linear Transformer [10] and Fast-
former [33] show similar results. Interestingly, when VCM is replaced with VEM,
the performance difference for Swin Transformer and the other two differ sub-
stantially. Specifically, for Swin Transformer, the mIoU is 89.9% when equipped
with VEM, which is a 0.4% performance drop and is a relatively lower drop
compared to those of Linear Transformer and Fastformer. This could be due to
the relative position bias that Swin Transformer provides, which the other two
transformers lack. Furthermore, we suspect that the lower mIoU results could be
explained by one of the following factors: simplified self-attention computation,
local smoothness property of a correlation map, and consideration of spatial
structure.

Appendix C. Limitations

An apparent limitation is that since our approach acts on correlation maps, we
need to explicitly compute the global correlation maps and store them. This
is indeed memory expensive, and increases with the spatial resolution of the
correlation maps. Although we utilize a coarse-to-fine architecture, this does not
make the training feasible when resolutions are high. Specifically, given a spatial
resolution of feature maps at size 128×128, the resultant size of correlation maps
is at least 1284, and counting the level dimensions as well as other pyramidal
levels p, it is difficult to train with a sufficient batch size even with NVIDIA
GeForce RTX-3090 GPUs. This might limit the accessibility of this approach.
We also visualize failure cases in Fig. 1.
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Support Set Query Ours Ground Truth

Fig. 1. Failure cases.
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Appendix D. More Results
Quantitative Results for Semantic Correspondence. As shown in Table 7,
we provide per-class quantitative results on SPair-71k [21] in comparison to other
semantic correspondence methods, including CNNGeo [24], WeakAlign [25], NC-
Net [26], HPF [20], SFNet [12], DCC-Net [8], GSF [9], SCOT [15], DHPF [22],
CHM [19], MMNet [36], PMNC [11] and CATs [2].

Methods aero. bike bird boat bott. bus car cat chai. cow dog hors. mbik. pers. plan. shee. trai. tv all

CNNGeo [24] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6
WeakAlign [25] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9
NC-Net [26] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1

HPF [20] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2

SCOT [15] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6
DHPF [22] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3
CHM [19] 49.1 33.6 64.5 32.7 44.6 47.5 43.5 57.8 21.0 61.3 54.6 43.8 35.1 43.7 38.1 33.5 70.6 55.9 46.3
MMNet [36] 43.5 27.0 62.4 27.3 40.1 50.1 37.5 60.0 21.0 56.3 50.3 41.3 30.9 19.2 30.1 33.2 642 43.6 40.9
PMNC [11] 54.1 35.9 74.9 36.5 42.1 48.8 40.0 72.6 21.1 67.6 58.1 50.5 40.1 54.1 43.3 35.7 74.5 59.9 50.4
CATs [2] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9

VAT† (ours) 49.8 36.8 70.1 33.5 46.1 46.0 31.1 69.9 15.7 69.9 57.2 47.2 38.5 41.8 43.0 35.5 75.0 61.8 48.4
VAT (ours) 58.8 40.0 75.3 40.1 52.1 59.7 44.2 69.1 23.3 75.1 61.9 57.1 46.4 49.1 51.8 41.8 80.9 70.1 55.5

Table 7. Per-class quantitative evaluation on SPair-71k [21] benchmark.

More results for mBA comparison. In Table 8 and Table 9, we provide per
fold quantitative results for mBA. Note that we obtained the mBA results for
HSNet [18] and RePRI [1] using the pre-trained weights and code released by
the authors. We omit the results for CyCTR [35] as the official code and weights
by the authors are not publicly available.

Qualitative Results. As shown in Figure 2, Figure 3, Figure 4, Figure 5
and Figure 6, we provide qualitative results on all the benchmarks, which in-
cludes PASCAL-5i [27], COCO-20i [14], FSS-1000 [13], PF-PASCAL [6], PF-
WILLOW [5] and SPair-71k [21].
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Backbone
network Methods

1-shot 5-shot
50 51 52 53 mean 50 51 52 53 mean

ResNet50 [7]
RePRI [1] 45.8 53.7 46.6 50.0 49.0 45.4 46.9 41.8 41.0 43.8
HSNet [18] 53.9 54.7 53.3 53.6 53.9 54.6 55.1 54.0 54.2 54.5
VAT (ours) 55.1 55.1 53.8 53.6 54.4 55.4 55.3 54.5 53.9 54.8

ResNet101 [7]
RePRI [1] 47.6 47.6 41.9 43.3 45.1 46.4 44.4 38.4 38.7 42.0
HSNet [18] 53.9 54.4 53.5 53.9 53.9 54.3 54.7 54.2 54.2 54.4
VAT (ours) 54.7 54.6 53.9 55.5 54.7 55.0 55.0 54.5 54.8 54.8

Table 8. mBA comparison on PASCAL-5i [27].

Backbone
feature Methods

1-shot 5-shot
200 201 202 203 mean 200 201 202 203 mean

ResNet50 [7]
RePRI [1] 6.84 6.16 5.76 6.46 6.31 5.44 4.45 3.49 3.47 4.21
HSNet [18] 53.1 52.9 53.0 53.0 53.0 53.6 53.8 54.1 53.7 53.8
VAT (ours) 54.1 54.0 54.5 54.0 54.2 54.6 54.8 55.4 54.7 54.9

Table 9. mBA comparison on COCO-20i [14].
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Support Set Query Ours Ground Truth Support Set Query Ours Ground Truth

Fig. 2. Qualitative results on PASCAL-5i [27].
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Support Set Query Ours Ground Truth Support Set Query Ours Ground Truth

Fig. 3. Qualitative results on COCO-20i [14].
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Support Set Query Ours Ground Truth Support Set Query Ours Ground Truth

Fig. 4. Qualitative results on FSS-1000 [13].
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Support Query Support Query Support Query Support Query

Fig. 5. Qualitative results on PF-PASCAL [6] (left) and PF-WILLOW [5]
(right).
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Support QuerySupport QuerySupport Query

Fig. 6. Qualitative results on SPair-71k [21].
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