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Abstract. This paper presents a novel cost aggregation network, called
Volumetric Aggregation with Transformers (VAT), for few-shot segmen-
tation. The use of transformers can benefit correlation map aggregation
through self-attention over a global receptive field. However, the tok-
enization of a correlation map for transformer processing can be detri-
mental, because the discontinuity at token boundaries reduces the lo-
cal context available near the token edges and decreases inductive bias.
To address this problem, we propose a 4D Convolutional Swin Trans-
former, where a high-dimensional Swin Transformer is preceded by a
series of small-kernel convolutions that impart local context to all pix-
els and introduce convolutional inductive bias. We additionally boost
aggregation performance by applying transformers within a pyramidal
structure, where aggregation at a coarser level guides aggregation at a
finer level. Noise in the transformer output is then filtered in the subse-
quent decoder with the help of the query’s appearance embedding. With
this model, a new state-of-the-art is set for all the standard benchmarks
in few-shot segmentation. It is shown that VAT attains state-of-the-art
performance for semantic correspondence as well, where cost aggrega-
tion also plays a central role. Code and trained models are available
at https://seokju-cho.github.io/VAT/.

1 Introduction

Semantic segmentation is a fundamental computer vision task that aims to la-
bel each pixel in an image with its corresponding class. Substantial progress
has been made in this direction with the help of deep neural networks and large-
scale datasets containing ground-truth segmentation annotations [37, 46, 3, 4, 60].
Manual labeling of pixel-wise segmentation maps, however, requires considerable
labor, making it difficult to add new classes. Towards reducing reliance on la-
beled data, attention has increasingly focused on few -shot segmentation [48, 54],
where only a handful of support images and their associated masks are used in
predicting the segmentation of a query image.

⋆ Equal contribution
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Fig. 1: Our VAT reformulates few-shot segmentation as semantic cor-
respondence. VAT sets a new state-of-the-art in few-shot segmentation, and
attains state-of-the-art performance for semantic correspondence as well.

The key to few-shot segmentation is in making effective use of the few sup-
port samples. Many works attempt this by extracting a prototype model from
the samples and using it for feature comparison with the query [57, 10, 35, 76].
However, such approaches disregard pixel-level pairwise relationships between
support and query features or the spatial structure of features, which may lead
to sub-optimal results.

To account for such relationships, we observe that few-shot segmentation can
be reformulated as semantic correspondence, which aims to find pixel-level cor-
respondences across semantically similar images which may contain large intra-
class appearance and geometric variations [13, 14, 43]. Recent semantic corre-
spondence models [49, 25, 50, 52, 42, 44, 34, 64, 41] follow the classical matching
pipeline [53, 47] of feature extraction, cost aggregation and flow estimation. The
cost aggregation stage, where matching scores are refined to produce more re-
liable correspondence estimates, is of particular importance and has been the
focus of much research [52, 42, 51, 22, 34, 29, 41, 6]. Recently, CATs [6] proposed
to use vision transformers [11] for cost aggregation, but its quadratic complex-
ity to the number of input tokens limits its applicability. It also disregards the
spatial structure of matching costs, which may hurt its performance.

In the area of few-shot segmentation, there also exist methods that attempt
to leverage pairwise information by refining features through cross-attention [81]
or graph attention [79, 67, 73]. However, they solely rely on raw correlation maps
without aggregating the matching scores. As a result, their correspondence may
suffer from ambiguities caused by repetitive patterns or background clutters [49,
25, 27, 64, 17]. To address this, HSNet [40] aggregates the matching scores with
4D convolutions, but its limited receptive fields prevent long-range context ag-
gregation and it lacks an ability to adapt to the input content due to the use of
fixed kernels.

In this paper, we introduce a novel cost aggregation network, called Volumet-
ric Aggregation with Transformers (VAT), that tackles the few-shot segmenta-
tion task through a proposed 4D Convolutional Swin Transformer. Specifically,
we first extend Swin Transformer [36] and its patch embedding module to han-
dle a high-dimensional correlation map. The patch embedding module is further
extended by incorporating 4D convolutions that alleviate issues caused by patch
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embedding, i.e., limited local context near patch boundaries and low inductive
bias. The high-dimensional patch embedding module is designed as a series of
overlapping small-kernel convolutions, bringing local contextual information to
each pixel and imparting convolutional inductive bias. To further boost perfor-
mance, we compose our architecture with a pyramidal structure that takes the
aggregated correlation maps at a coarser level as additional input at a finer level,
providing hierarchical guidance. Our affinity-aware decoder then refines the ag-
gregated matching scores in a manner that exploits the higher-resolution spatial
structure given by the query’s appearance embedding and finally outputs the
segmentation mask prediction.

We demonstrate the effectiveness of our method on several benchmarks [54,
31, 30]. Our work attains state-of-the-art performance on all the benchmarks
for few-shot segmentation and even for semantic correspondence, highlighting
the importance of cost aggregation for both tasks and showing its potential for
general matching. We also include ablation studies to justify our design choices.

2 Related Work

Few-shot Segmentation. Inspired by the few-shot learning paradigm [48, 57],
which learns to learn a model for a novel task with only a limited number of
samples, few-shot segmentation has received considerable attention. Following
the success of [54], prototypical networks [57] and numerous other works [10, 45,
55, 68, 35, 76, 33, 74, 77, 59, 82, 28] proposed to extract a prototype from support
samples, which is used to identify foreground features in the query. In addition,
inspired by [80] which observed that simply adding high-level features in feature
processing leads to a performance drop, [62] proposed to instead utilize high-
level features to compute a prior map that helps to identify targets in the query
image. Many variants [59, 78] extended this idea of utilizing prior maps to act
as additional information for aggregating feature maps.

However, as methods based on prototypes or prior maps have apparent limi-
tations, e.g., disregarding pairwise relationships between support and query fea-
tures or spatial structure of feature maps, numerous recent works [79, 67, 40, 73,
32] utilize a correlation map to leverage the pairwise relationships between source
and query features. Specifically, [79, 67, 73] use graph attention, HSNet [40] pro-
poses 4D convolutions to exploit multi-level features, and [32] formulates the task
as an optimal transport problem. However, these approaches do not provide a
means to aggregate the matching scores, solely utilize convolutions for cost ag-
gregation, or use a handcrafted method that is neither learnable nor robust to
severe deformations.

Recently, [81] utilized transformers and proposed to use a cycle-consistent
attention mechanism to refine the feature maps to become more discriminative,
without considering aggregation of matching scores. [59] propose a global and
local enhancement module to refine the features using transformers and con-
volutions, respectively. [39] focuses solely on the transformer-based classifier by
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freezing the encoder and decoder. Unlike these works, we propose a 4D Convo-
lutional Swin Transformer for an enhanced and efficient cost aggregation.

Semantic Correspondence. The objective of semantic correspondence is to
find correspondences between semantically similar images with additional chal-
lenges posed by large intra-class appearance and geometric variations [34, 6, 41].
This is highly similar to the few-shot segmentation setting in that few-shot seg-
mentation also aims to label objects of the same class with large intra-class
variation, and thus recent works on both tasks have taken similar approaches.
The latest methods [52, 42, 51, 22, 34, 29, 41, 6] in semantic correspondence focus
on the cost aggregation stage to find reliable correspondences and demonstrated
its importance. Among them, [41] proposed to use 4D convolutions for cost aggre-
gation, though exhibiting apparent limitations due to the limited receptive fields
of convolutions and lack of adaptability. CATs [6] resolves this issue and sets a
new state-of-the-art by leveraging transformers [65] to aggregate the cost vol-
ume. However, it disregards the spatial structure of correlation maps and imparts
less inductive bias, i.e., translation equivariance, which limits its generalization
power [36, 7, 8]. Moreover, its quadratic complexity may limit applicability when
it is used to aggregate correlation maps on its own. In this paper, we propose to
resolve the aforementioned issues.

Vision Transformer. Recently, transformer [65], the standard architecture in
Natural Language Processing (NLP), has been widely adopted in Computer Vi-
sion. Since the pioneering work on ViT [11], numerous works [39, 81, 59, 23, 71,
6, 36] have adopted transformers to replace CNNs or to be used together with
CNNs in a hybrid manner. However, due to quadratic complexity to sequence
length, transformers often suffer from large a computational burden. Efficient
transformers [69, 24, 75, 70] aim to reduce the computational load via an approx-
imated or simplified self-attention. Swin Transformer [36], a network we extend
from, reduces computation by performing self-attention within pre-defined local
windows. However, these works inherit the issues caused by patch embedding,
which we alleviate by incorporating 4D convolutions.

3 Methodology

3.1 Problem Formulation

The goal of few -shot segmentation is to segment objects from unseen classes
in a query image given only a few annotated examples [66]. To mitigate the
overfitting caused by insufficient training data, we follow the common protocol
of episodic training [66]. Let us denote the training and test sets as Dtrain and
Dtest, respectively, where the object classes of both sets do not overlap. Under
the K-shot setting, multiple episodes are formed from both sets, each consisting
of a support set S = {(xks ,mk

s)}Kk=1, where (xks ,m
k
s) is k-th support image and

its corresponding mask pair, and a query sample (xq,mq), where xq is a query
image and mq is its paired mask. During training, our model takes a sampled
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Fig. 2: Overall network architecture. Our network consists of feature extrac-
tion and cost computation, a pyramidal transformer encoder, and an affinity-
aware transformer decoder.

episode from Dtrain and learns a mapping from S and xq to a prediction mq. At
inference, our model predicts m̂q given randomly sampled S and xq from Dtest.

3.2 Motivation and Overview

The key to few-shot segmentation is how to effectively utilize the support sam-
ples provided for a query image. While conventional methods [62, 59, 81, 77, 28]
utilize global- or part-level prototypes extracted from support features, recent
methods [79, 67, 40, 73, 32, 81] instead leverage pairwise matching relationships
between query and support. However, exploring such relationships is notori-
ously challenging due to intra-class variations, background clutters, and repet-
itive patterns. One of the state-of-the-art methods, HSNet [40], aggregates the
matching scores with 4D convolutions. However, solely utilizing convolutions
may limit performance due to limited receptive fields or lack of adaptability
for convolutional kernels. While there has been no approach to aggregate the
matching scores with transformers in few-shot segmentation, CATs [6] proposes
cost aggregation with transformers in semantic correspondence, demonstrating
the effectiveness of transformers as a cost aggregator. On the other hand, the
quadratic complexity of transformers with respect to the number of tokens may
limit its utility for segmentation. The absence of operations that impart induc-
tive bias, i.e., translation equivariance, may limit its performance as well. Also,
CATs [6] defines the tokens of a correlation map in a way that disregards spatial
structure, which is likely to be harmful.

The proposed Volumetric Aggregation with Transformers (VAT) is designed
to overcome these problems. In the following, we first describe its feature extrac-
tion and cost computation. We then present a general extension of Swin Trans-
former [36] for cost aggregation. Subsequently, we present 4D Convolutional Swin
Transformer for resolving the aforementioned issues. Lastly, we introduce sev-
eral additional techniques including Guided Pyramidal Processing (GPP) and
Affinity-aware Transformer Decoder (ATD) to further boost performance, and
combine them to complete the design.
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3.3 Feature Extraction and Cost Computation

We extract features from query and support images and compute an initial
cost between them following the conventional process [49, 58, 52, 51, 64, 17, 6].
Given query and support images, xq and xs, we use a CNN [16, 56] to produce
a sequence of L feature maps, {(F l

q, F
l
s)}Ll=1, where F

l
q and F l

s denote query and
support feature maps at the l-th level. A support mask, ms, is used to encode
segmentation information and filter out the background information as done
in [28, 40, 78]. We obtain a masked support feature as F̂ l

s = F l
s ⊙ ψl(ms), where

⊙ denotes the Hadamard product and ψl(·) denotes a function that resizes the
given tensor followed by expansion along the channel dimension of the l-th layer.

Given a pair of feature maps, F l
q and F l

s, we compute a correlation map using
the inner product between l-2 normalized features such that

Cl(i, j) = ReLU

(
F l
q(i) · F̂ l

s(j)

∥F l
q(i)∥∥F̂ l

s(j)∥

)
, (1)

where i and j denote 2D spatial positions of feature maps. As done in [40],
we collect correlation maps computed from all the intermediate features of the
same spatial size and stack them to obtain a stacked correlation map Cp ∈
Rhq×wq×hs×ws×|Lp|, where (hq, wq) and (hs, ws) are the height and width of the
query and support feature maps, respectively, and Lp is a subset of CNN layer
indices {1, ..., L} at pyramid layer p, containing correlation maps of identical
spatial size.

3.4 Pyramidal Transformer Encoder

In this section, we present 4D Convolutional Swin Transformer for aggregating
the correlation maps and then incorporate it into a pyramidal architecture.

Cost Aggregation with Transformers. For a transformer to process a corre-
lation map, a means for token reduction is essential, since it would be infeasible
for even an efficient transformer [69, 24, 75, 70, 36] to handle a correlation map
otherwise. However, when one employs a transformer for cost aggregation, the
problem of how to define the tokens for correlation maps, which differ in shape
from images, text or features [65, 11], is non-trivial. The first attempt to pro-
cess correlation maps is CATs [6], which reshapes the 4D correlation maps into
2D maps and performs self-attention in 2D. This disregards the spatial struc-
ture of correlation maps, i.e., over both support and query, which could limit
its performance. To address this, one may treat all the spatial entries, e.g.,
hq × wq × hs × ws, as tokens and treat Lp as the feature dimension for tokens.
However, this results in a substantial computational burden that increases with
larger correlation maps. This prevents the use of standard transformers [65, 11]
and encourages use of efficient versions as in [69, 24, 75, 70, 36]. However, the
use of simplified (or approximated) self-attention may be sub-optimal for per-
formance, as will be discussed in Section 4.4. Furthermore, as proven in the
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Fig. 3: Illustration of shifted
4D windows in VTM. It com-
putes self-attention within the
partitioned windows and con-
siders inter-window interactions
by shifting the windows.

optical flow and semantic correspondence literature [58, 51], neighboring pixels
tend to have similar correspondences. To preserve the spatial structure of cor-
relation maps, we choose to use Swin Transformer [36] as it not only provides
efficient self-attention computation, but also maintains the smoothness property
of correlation maps while still providing sufficient long-range self-attention.

To employ Swin Transformer [36] for cost aggregation, we need to extend it
to process higher dimensional input, specifically a 4D correlation map. We first
follow the conventional patch embedding procedure [11] to embed correlation
maps, as they cannot be processed by transformers due to the large number of to-
kens. However, we extend the patch embedding module to a Volumetric Embed-
ding Module (VEM) which handles higher dimensional inputs, such that Mp =
VEM(Cp). Following a procedure similar to patch embedding, we reshape the cor-
relation map to a sequence of flattened 4D windows using a large convolutional
kernel, e.g., 16×16×16×16. Then, we extend the self-attention computations, as
shown in Fig. 3, by evenly partitioning the query and support spatial dimen-
sions of Mp into non-overlapping sub-correlation maps M′,p ∈ Rn×n×n×n×D.
We compute self-attention within each partitioned sub-correlation map. Subse-
quently, we shift the windows by a displacement of

(
⌊n
2 ⌋, ⌊

n
2 ⌋, ⌊

n
2 ⌋, ⌊

n
2 ⌋
)
pixels

from the previously partitioned windows, then perform self-attention within the
newly created windows. Then as done in the original Swin Transformer [36],
we simply roll the correlation map back to its original form. In computing self-
attention, we use relative position bias and take the values from an expanded
parameterized bias matrix, following [19, 20, 36]. We leave the other components
of Swin Transformer blocks unchanged, e.g., Layer Normalization (LN) [1] and
MLP layers. We call this extension the Volumetric Transformer Module (VTM).
To summarize, the overall process is defined as:

Ap = VTM(Mp). (2)

4D Convolutional Swin Transformer. Although the proposed cost aggrega-
tion with transformers can solve the aforementioned issues of using CNNs and
the high computational burden of using standard transformers, it may not avoid
the issue that other transformers share [11, 69, 24, 75, 70]: lack of translation
equivariance. This is primarily caused by utilizing non-overlapping operations
prior to self-attention computation. Although Swin Transformer alleviates the
issue to some extent by using relative positioning bias [36], it provides an in-
sufficient approximation. We argue that the Volumetric Embedding Module is
what needs to be addressed as it leads to several issues. First, the use of large
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Fig. 4: Overview of 4D Convolutional Swin Transformer. We replace the
VEM with VCM and the output undergoes VTM for cost aggregation.

non-overlapping convolution kernels only provides limited inductive bias. Rela-
tively lower translation equivariance is achieved from non-overlapping operations
compared to that which are overlapping. This limited inductive bias results in
relatively lower generalization power and performance [72, 8, 7, 36]. Furthermore,
we argue that for dense prediction tasks, disregarding window boundaries due
to non-overlapping kernels hurts overall performance due to discontinuity.

To address the above issues, we replace the Volumetric Embedding Module
(VEM) with a module consisting of a series of overlapping convolutions, which
we call the Volumetric Convolution Module (VCM). Concretely, we sequentially
reduce spatial dimensions of the support and query by applying 4D spatial max-
pooling, overlapping 4D convolutions, ReLU, and Group Normalization (GN),
where we project the multi-level similarity vector at each 4D position, i.e., pro-
jecting a vector size of |Lp|, to an arbitrary fixed dimension denoted as D.
Considering receptive fields as a 4D window, i.e., m×m×m×m, we obtain a
tensor Cp ∈ Rh′,p

q ×w′,p
q ×h′,p

s ×w′,p
s ×D from Cp, where h′,ps , w′,p

s , h′,pq , and w′,p
q are the

processed sizes. Note that a different size of m can be chosen for the support and
query spatial dimensions. An overview of VCM is illustrated in Fig. 4. Overall,
we define such a process as the following:

Mp = VCM(Cp). (3)

In this way, our model benefits from additional inductive bias as well as better
handling at window boundaries.

Moreover, to stabilize the learning, we propose an additional technique to
enforce the networks to estimate residual matching scores as complementary
details. We add residual connections in order to expedite the learning process [16,
6, 83], accounting for the fact that at the initial phase when the input Mp is fed,
erroneous matching scores are inferred due to randomly-initialized parameters of
transformers, which could complicate the learning process as the networks need
to learn the complete matching details from random matching scores.

Guided Pyramidal Processing. Following [40, 59], we also employ a coarse-
to-fine approach through pyramidal processing as illustrated in Fig. 2. Motivated
by numerous recent works [81, 41, 6, 40] in both semantic matching and few-shot
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segmentation which have demonstrated that leveraging multi-level features can
boost performance by a large margin, we also use a pyramidal architecture.

In our coarse-to-fine approach, which we refer to as Guided Pyramidal Pro-
cessing (GPP), the aggregation of a finer-level correlation map Ap is guided by
the aggregated correlation map of the previous (coarser) level Ap+1. Concretely,
an aggregated correlation map Ap+1 is up-sampled into a map up(Ap+1) which
is added to the next level’s correlation map Ap to serve as guidance. This process
is repeated until the finest-level aggregated map is computed and passed to the
decoder. As shown in Table 4, GPP leads to appreciable performance gains.

With GPP, the pyramidal transformer encoder is finally defined as:

Ap = VTM(VCM(Cp) + up(Ap+1)), (4)

where up(·) denotes bilinear upsampling.

3.5 Affinity-Aware Transformer Decoder

Given the aggregated correlation map produced by the pyramidal transformer
encoder, a transformer-based decoder generates the final segmentation mask.
To improve performance, we propose to conduct further aggregation within the
decoder with the aid of the appearance embedding obtained from query feature
maps. The query’s appearance embedding can help in two ways. First, appear-
ance affinity information is an effective guide for filtering noise in matching
scores, as proven in the stereo matching literature, e.g., Cost Volume Filtering
(CVF) [18, 58]. In addition, the higher-resolution spatial structure provided by
an appearance embedding can be exploited to improve up-sampling quality, re-
sulting in a highly accurate prediction mask m̂q where fine details are preserved.

For the design of our Affinity-aware Transformer Decoder (ATD), we take the
average over the support image dimensions of Ap, concatenate it with the ap-
pearance embedding from query feature maps, and then aggregate by transform-
ers [65, 69, 70, 36] with subsequent bilinear interpolation. The process is defined
as the following:

m̂q = ATD([A′,p,P(Fq)]), (5)

where A′,p ∈ Rh′,p
q ×w′,p

q ×D is extracted by average pooling on Ap over the
spatial dimensions of the support image, P(·) is a linear projection, P(Fq) ∈
Rh′,p

q ×w′,p
q ×c, and [ ·, · ] denotes concatenation. We sequentially refine the output

immediately after bilinear upsampling to recapture fine details and integrate
appearance information.

3.6 Extension to K-Shot Setting

Given K pairs of support image and mask {(xis,mi
s)}Ki=1 and a query image xq,

our model forward-passes K times to obtain K different query masks m̂k
q . We

sum up all the K predictions at each spatial location, and if the sum divided by
K exceeds a threshold τ , the location is predicted as foreground, and otherwise
it is background.



10 S. Hong et al.

Backbone
network Methods

1-shot 5-shot # learnable
50 51 52 53 mIoU FB-IoU mBA 50 51 52 53 mIoU FB-IoU mBA params

ResNet50 [16]

PANet [68] 44.0 57.5 50.8 44.0 49.1 - - 55.3 67.2 61.3 53.2 59.3 - - 23.5M
PFENet [62] 61.7 69.5 55.4 56.3 60.8 73.3 - 63.1 70.7 55.8 57.9 61.9 73.9 - 10.8M
ASGNet [28] 58.8 67.9 56.8 53.7 59.3 69.2 - 63.4 70.6 64.2 57.4 63.9 74.2 - 10.4M
CWT [39] 56.3 62.0 59.9 47.2 56.4 - - 61.3 68.5 68.5 56.6 63.7 - - -
RePRI [2] 59.8 68.3 62.1 48.5 59.7 - 49.0 64.6 71.4 71.1 59.3 66.6 - 43.8 -
HSNet [40] 64.3 70.7 60.3 60.5 64.0 76.7 53.9 70.3 73.2 67.4 67.1 69.5 80.6 54.5 2.6M
CyCTR [81] 65.7 71.0 59.5 59.7 64.0 - - 69.3 73.5 63.8 63.5 67.5 - - -

VAT (ours) 67.6 72.0 62.3 60.1 65.5 77.8 54.4 72.4 73.6 68.6 65.7 70.1 80.9 54.8 3.2M

ResNet101 [16]

FWB [45] 51.3 64.5 56.7 52.2 56.2 - - 54.8 67.4 62.2 55.3 59.9 - - 43.0M
DAN [67] 54.7 68.6 57.8 51.6 58.2 71.9 - 57.9 69.0 60.1 54.9 60.5 72.3 - -
PFENet [62] 60.5 69.4 54.4 55.9 60.1 72.9 - 62.8 70.4 54.9 57.6 61.4 73.5 - 10.8M
ASGNet [28] 59.8 67.4 55.6 54.4 59.3 71.7 - 64.6 71.3 64.2 57.3 64.4 75.2 - 10.4M
CWT [39] 56.9 65.2 61.2 48.8 58.0 - - 62.6 70.2 68.8 57.2 64.7 - - -
RePRI [2] 59.6 68.6 62.2 47.2 59.4 - 45.1 66.2 71.4 67.0 57.7 65.6 - 42.0 -
HSNet [40] 67.3 72.3 62.0 63.1 66.2 77.6 53.9 71.8 74.4 67.0 68.3 70.4 80.6 54.4 2.6M
CyCTR [81] 67.2 71.1 57.6 59.0 63.7 73.0 - 71.0 75.0 58.5 65.0 67.4 75.4 - -

VAT (ours) 70.0 72.5 64.8 64.2 67.9 79.6 54.7 75.0 75.2 68.4 69.5 72.0 83.2 54.8 3.3M

Table 1: Performance comparison on PASCAL-5i [54]. Best results in
bold, and second best are underlined.

Backbone
feature Methods

1-shot 5-shot
200 201 202 203 mean FB-IoU mBA 200 201 202 203 mean FB-IoU mBA

ResNet50 [16]

PMM [76] 29.3 34.8 27.1 27.3 29.6 - - 33.0 40.6 30.3 33.3 34.3 - -
RPMM [76] 29.5 36.8 28.9 27.0 30.6 - - 33.8 42.0 33.0 33.3 35.5 - -
PFENet [62] 36.5 38.6 34.5 33.8 35.8 - - 36.5 43.3 37.8 38.4 39.0 - -
ASGNet [28] - - - - 34.6 60.4 - - - - - 42.5 67.0 -
RePRI [2] 32.0 38.7 32.7 33.1 34.1 - 6.31 39.3 45.4 39.7 41.8 41.6 - 4.21
HSNet [40] 36.3 43.1 38.7 38.7 39.2 68.2 53.0 43.3 51.3 48.2 45.0 46.9 70.7 53.8
CyCTR [81] 38.9 43.0 39.6 39.8 40.3 - - 41.1 48.9 45.2 47.0 45.6 - -

VAT (ours) 39.0 43.8 42.6 39.7 41.3 68.8 54.2 44.1 51.1 50.2 46.1 47.9 72.4 54.9

Table 2: Performance comparison on COCO-20i [31].

4 Experiments

4.1 Implementation Details

We use ResNet50 and ResNet101 [16] pre-trained on ImageNet [9] and freeze
the weights during training, following [40, 80]. No data augmentation is used for
training, as explained in the supplementary material. We set the input image
sizes to 417 or 473, following [28, 2]. The window size for Swin Transformer is
set to 4. We use AdamW [38] with a learning rate of 5e − 4. Feature maps
from conv3 x (p = 3), conv4 x (p = 4) and conv5 x (p = 5) are taken for cost
computation. The K-shot threshold τ is set to 0.5 and the embedding dimension
D to 128. For appearance affinity, we take the last layers from conv2 x, conv3 x
and conv4 x when training on FSS-1000 [30], and conv4 x is excluded when
training on PASCAL-5i [54] and COCO-20i [31]. We set c to 16, 32, and 64 for
conv2 x, conv3 x, and conv4 x.

4.2 Experimental Settings

Datasets. We evaluate our approach on three standard few-shot segmentation
datasets, PASCAL-5i [54], COCO-20i [31], and FSS-1000 [30]. PASCAL-5i con-
tains images from PASCAL VOC 2012 [12] with added mask annotations [15].
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Backbone
feature Methods

mIoU FB-IoU mBA
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ResNet50 [16]
FSOT [32] 82.5 83.8 - - - -
HSNet [40] 85.5 87.8 91.0 92.5 62.1 63.3

VAT 90.1 90.7 93.8 94.2 68.3 68.4

ResNet101 [16]
DAN [67] 85.2 88.1 - - - -
HSNet [40] 86.5 88.5 91.6 92.9 62.4 63.6

VAT 90.3 90.8 94.0 94.4 68.0 68.6

Table 3: Mean IoU comparison on FSS-1000 [30].

It consists of 20 object classes, and as done in OSLSM [54], they are evenly
divided into 4 folds i ∈ {0, 1, 2, 3} for cross-validation, where each fold contains
5 classes. COCO-20i contains 80 object classes, and as done for PASCAL-5i,
the dataset is evenly divided into 4 folds of 20 classes each. FSS-1000 is a more
diverse dataset consisting of 1000 object classes. Following [30], we divide the
1000 categories into 3 splits for training, validation and testing, which consist
of 520, 240 and 240 classes, respectively. For PASCAL-5i and COCO-20i, we
follow the common evaluation practice [40, 62, 35] and standard cross-validation
protocol, where each fold i is used for evaluation with the other folds used for
training.

Evaluation Metric. Following common practice [80, 62, 40, 81], we adopt mean
intersection over union (mIoU) and foreground-background IoU (FB-IoU) as
our evaluation metrics. The mIoU averages over all IoU values for all object
classes such that mIoU = 1

C

∑C
c=1 IoUc, where C is the number of classes in

each fold, e.g., C = 20 for COCO-20i. FB-IoU disregards the object classes and
instead averages over foreground and background IoU (IoUF and IoUB) such that
FB− IoU = 1

2 (IoUF + IoUB). We additionally adopt Mean Boundary Accuracy
(mBA) introduced in [5] to evaluate the model’s ability to capture fine details. To
measure mBA, we first sample 5 radii in [3, w+h

300 ] at a uniform interval, where
w and h are width and height of input image, and average the segmentation
accuracy within each radius from the ground-truth boundary.

4.3 Few-shot Segmentation Results

Table 1 summarizes quantitative results on PASCAL-5i [54]. The tests were con-
ducted on two backbone networks, ResNet50 and ResNet101 [16]. The proposed
method outperforms the others on almost all the folds in terms of both mIoU
and FB-IoU. It surpasses the others, including HSNet [40], in mBA as well, since
our ATD helps to improve up-sampling quality by providing higher-level spatial
structure for reference. Consistent with this, VAT also attains state-of-the-art
performance on COCO-20i [31], as shown in Table 2. Interestingly, for the most
recent dataset specifically created for few-shot segmentation, FSS-1000 [30], VAT
outperforms HSNet [40] and FSOT [32] by a large margin, almost a 4.6% increase
in mIoU compared to HSNet with ResNet50 as shown in Table 3. VAT sets a
new state-of-the-art for all of these benchmarks. We note that our method out-
performs HSNet [40] despite having more learnable parameters, which is known
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to have an inverse relation to generalization power [61], a trend seen in Table 1.
With the proposed method, i.e., 4D convolutional Swin Transformer, that is
designed to address the issues like lack of inductive bias, VAT can have a larger
number of learnable parameters than that of HSNet [40], yet VAT has greater
generalization power as well.

4.4 Ablation Study

We conducted ablations on FSS-1000 [30], a large-scale dataset specifically con-
structed for few-shot segmentation.

50 100 150 200 250

25

30

35

40

Epochs

m
Io
U

HSNet
VAT

1

Fig. 5: Convergence comparison.
Although VAT starts at a lower
mIoU, it quickly exceeds HSNet [40].

Effectiveness of each component in
VAT. As the baseline model, we take
the architecture composed of VEM and
the 2D convolution decoder used in
HSNet [40]. We then progressively add our
components one-by-one as shown in Ta-
ble 4. Note that we included (IV) and (V)
to show the effectiveness of VCM alone
and the performance of a model highly
similar to HSNet [40], respectively.

As summarized in Table 4, each com-
ponent helps to boost performance. Start-
ing from the baseline (I), adding Swin
Transformer (II) brings a large gain,
which indicates that Swin Transformer ef-
fectively performs cost aggregation thanks to its approximated inductive bias and
ability to consider spatial structure. When the VEM is replaced by VCM (III),
we also observe a significant improvement, which confirms that the issues due to
non-overlap are alleviated. We note that (IV) also highlights the importance of
inductive bias. As (V) is approximately equivalent to HSNet [40], we first com-
pare it with (III), which shows the superiority of the proposed 4D Convolutional
Swin Transformer. By including the additional components in (VI) and (VII),
the performance is further boosted. Moreover, we observe a large gain in mBA by
adding ATD. This shows that the higher-resolution spatial structure provided by
appearance embeddings help to refine the fine details. We additionally provide
a visualization of convergence in comparison to HSNet [40] in Fig. 5. Thanks to
the early convolutions [72], VAT quickly converges and exceeds HSNet [40] even
though it starts at a lower mIOU.

Base architecture of VTM. As summarized in Table 5, we provide an ab-
lation study to evaluate the effectiveness of different aggregators for VTM.
For cost aggregation, there exists a few learnable aggregators, including MLP-
, convolution- and transformer-based aggregators, any of which could be used
as a base architecture for VTM. It should be noted that the use of standard
transformer [65] and MLP-mixer [63] is not feasible due to memory require-
ments. Specifically, we calculated the memory consumption of each and found
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Components
FSS-1000 [30]

mIoU (%) mBA (%)
1-shot 5-shot 1-shot 5-shot

(I) Baseline 80.0 81.8 56.7 56.9
(II) + Swin Trans. 85.4 87.4 58.8 59.5
(III) + VCM 87.0 88.6 60.1 61.3
(IV) only VCM 86.4 88.0 59.6 60.1
(V) (IV) + 4D mix 86.4 87.8 59.9 59.6
(VI) (III) + GPP 87.3 88.8 60.7 61.4
(VII) + ATD 90.3 90.8 68.0 68.6

Table 4: Ablation study
for VAT.

Different aggregators
FSS-1000 [30] Memory Run-time

mIoU (%) mBA (%) (GB) (ms)

Standard transformer [65] OOM OOM 84 N/A
MLP-Mixer [63] OOM OOM OOM N/A
Center-pivot 4D convolutions [40] 88.1 66.5 3.5 52.7
Linear transformer [24] 87.7 66.5 3.5 56.8
Fastformer [70] 87.8 66.4 3.5 122.9

4D Conv. Swin transformer (Ours) 90.3 68.0 3.8 57.3

Table 5: Ablation study for VTM. OOM:
Out of Memory.

that using standard transformer requires approximately 84 GB per batch, while
the memory for MLP-Mixer could not be measured as it is much greater than
standard transformer. Also, we note that the architecture with center-pivot con-
volutions is equivalent to a deeper version of the architecture with VCM.

For a fair comparison, we only replace VTM with another aggregator and
leave all the other components in our architecture unchanged. We observe that
our method outperforms the other aggregators by a large margin. Interestingly,
although center-pivot 4D convolution [40] also focuses on locality as in Swin
Transformer [36], the performance gap indicates that the ability to adaptively
consider pixel-wise interactions is critical. Also, we conjecture that the SW-MSA
operation helps to compensate for the lack of global aggregation, which center-
pivot convolutions lack. Another interesting point is that Linear Transformer [24]
and Fastformer [70], which benefit from the global receptive fields of transformers
and approximate the self-attention computation, achieve similar performance.

We additionally provide memory and run-time comparison to other aggrega-
tors in Table 5. The results are obtained using a single NVIDIA GeForce RTX
3090 GPU and Intel Core i7-10700 CPU.We observe that VAT is relatively slower
and consumes more memory. However, 0.3 GB more memory consumption and
5 ms slower run time is a minor sacrifice for better performance.

Can VAT also perform well on semantic correspondence? To tackle the
few-shot segmentation task, we reformulated it as finding semantic correspon-
dences under large intra-class variations and geometric deformations. This sug-
gests that the proposed method could be effective for semantic correspondence
as well. Here, we compare VAT to other state-of-the-art methods in semantic
correspondence.

In order to ensure a fair comparison, we note whether each method lever-
ages multi-level features and fine-tunes the backbone networks. We additionally
denote the types of cost aggregation. Note that the only difference we made
for this experiment is the objective function for loss computation. Following the
common protocol [42, 44, 83, 21, 41, 6], we use standard benchmarks for this task
and our model was trained on the training split of PF-PASCAL [14] when eval-
uated on the test split of PF-PASCAL [14] and PF-WILLOW [13], and trained
on SPair-71k [43] when evaluated on SPair-71k [43]. Experimental setting and
implementation details can be found in supplementary material.

As shown in Table 6, VAT either sets a new state-of-the-art [43, 13] or attains
the second highest PCK [14], indicating the importance of cost aggregation in
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Methods F.T. Feat. Data Aug. Cost Aggregation
SPair-71k [43] PF-PASCAL [14] PF-WILLOW [13]
PCK @ αbbox PCK @ αimg PCK @ αbbox

0.03 0.05 0.1 0.15 0.03 0.05 0.1 0.15 0.05 0.1 0.15

NC-Net [52] ✓ ✗ 4D Conv. - - 20.1 - 30.9 54.3 78.9 86.0 33.8 67.0 83.7
SCOT [34] - ✗ OT-RHM - - 35.6 - - 63.1 85.4 92.7 47.8 76.0 87.1
CHM [41]* ✓ ✗ 4D Conv. 14.9 27.2 46.3 57.5 67.5 80.1 91.6 94.9 52.7 79.4 87.5
MMNet [83] ✓ ✗ - - - 40.9 - - 77.6 89.1 94.3 - - -
PMNC [26] ✓ ✗ 4D Conv. - - 50.4 - 71.6 82.4 90.6 - - - -

DHPF [44]*
✓ ✗ RHM 11.0 20.9 37.3 47.5 52.0 75.7 90.7 95.0 49.5 77.6 89.1
✓ ✓ RHM - - 39.4 - - - - - - - -

CATs [6]*
✓ ✗ Transformer 10.2 21.6 43.5 55.0 41.6 67.5 89.1 94.9 46.6 75.6 87.5
✓ ✓ Transformer 13.8 27.7 49.9 61.7 49.9 75.4 92.6 96.4 50.3 79.2 90.3

VAT
✓ ✗ Transformer 14.9 28.3 48.4 59.1 54.6 72.9 91.1 95.6 46.0 78.8 91.3
✓ ✓ Transformer 19.6 35.0 55.5 65.1 62.7 78.2 92.3 96.2 52.8 81.6 91.4

Table 6: Quantitative results on SPair-71k [43], PF-PASCAL [14] and
PF-WILLOW [13]. *: The results are obtained using pretrained weights pro-
vided by authors or taken from papers.

both few-shot segmentation and semantic correspondence. It also has the poten-
tial to benefit general-purpose matching networks as well. Furthermore, when
data augmentation is used, we observe a relatively large performance gain com-
pared to DHPF [44], showing that augmentation helps to address the heavy need
for data and lack of inductive bias in transformers [11, 6]. Although VAT is on
par with state-of-the-art on PF-PASCAL [14], we argue that PF-PASCAL [14]
is almost saturated, which makes a comparison difficult. Also, it should be noted
that for performance on PF-WILLOW [13], VAT outperforms other methods by
large margin, which clearly shows superior generalization power of the proposed
4D Convolutional Swin Transformer.

5 Conclusion

In this paper, we presented a novel cost aggregation network for few-shot seg-
mentation. To address issues that arise from tokenization of a correlation map
for transformer processing, we proposed a 4D Convolutional Swin Transformer,
where a high-dimensional Swin Transformer is preceded by a series of small-
kernel convolutions. To boost aggregation performance, we applied transformers
within a pyramidal structure, and the output is then filtered and in the subse-
quent decoder with the help of image’s appearance embedding. We have shown
that the proposed method attains state-of-the-art performance for all the stan-
dard benchmarks for both few-shot segmentation and semantic correspondence,
where cost aggregation plays a central role.
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