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Abstract. Few-shot segmentation is a challenging dense prediction task,
which entails segmenting a novel query image given only a small anno-
tated support set. The key problem is thus to design a method that
aggregates detailed information from the support set, while being robust
to large variations in appearance and context. To this end, we propose
a few-shot segmentation method based on dense Gaussian process (GP)
regression. Given the support set, our dense GP learns the mapping from
local deep image features to mask values, capable of capturing complex
appearance distributions. Furthermore, it provides a principled means of
capturing uncertainty, which serves as another powerful cue for the final
segmentation, obtained by a CNN decoder. Instead of a one-dimensional
mask output, we further exploit the end-to-end learning capabilities of
our approach to learn a high-dimensional output space for the GP. Our
approach sets a new state-of-the-art on the PASCAL-5i and COCO-20i

benchmarks, achieving an absolute gain of +8.4 mIoU in the COCO-20i

5-shot setting. Furthermore, the segmentation quality of our approach
scales gracefully when increasing the support set size, while achieving
robust cross-dataset transfer. Code and trained models are available at
https://github.com/joakimjohnander/dgpnet.

1 Introduction

Image few-shot segmentation (FSS) of semantic classes [28] has received in-
creased attention in recent years. The aim is to segment novel query images
based on only a handful annotated training samples, usually referred to as the
support set. The FSS method thus needs to extract information from the sup-
port set in order to accurately segment a given query image. The problem is
highly challenging, since the query image may present radically different views,
contexts, scenes, and objects than what is represented in the support set.

The core component in any FSS framework is the mechanism that extracts
information from the support set to guide the segmentation of the query image.
However, the design of this module presents several challenges. First, it needs

https://github.com/joakimjohnander/dgpnet
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Fig. 1. Performance of the proposed DGPNet approach on the PASCAL-5i and COCO-
20i benchmarks, compared to the state-of-the-art. We plot the mIoU (higher is better)
for different number of support samples. For our approach, we show the mean and
standard deviation over 5 experiments. Our GP-based method effectively leverages
larger support sets, achieving substantial improvements in segmentation accuracy. Our
method also excels in the extreme one-shot case, even outperforming all previously
reported results on COCO-20i.

to aggregate detailed yet generalizable information from the support set, which
requires a flexible representation. Second, the FSS method should effectively
leverage larger support sets, achieving scalable segmentation performance when
increasing its size. While perhaps trivial at first glance, this has proved to be a
major obstacle for many state-of-the-art methods, as visualized in Fig. 1. Third,
the method is bound to be queried with appearances not included in the support
set. To achieve robust predictions even in such common cases, the method needs
to assess the relevance of the information in the support images in order to
gracefully revert to e.g. learned segmentation priors when necessary.

We address the aforementioned challenges by densely aggregating informa-
tion in the support set using Gaussian Processes (GPs). Specifically, we use a
GP to learn a mapping between dense local deep feature vectors and their corre-
sponding mask values. The mask values are assumed to have a jointly Gaussian
distribution with covariance based on the similarity between the correspond-
ing feature vectors. This allows us to extract detailed relations from the sup-
port set, with the capability of modeling complex, non-linear mappings. As a
non-parametric model [25], the GP further effectively benefits from additional
support samples, since all given data is retained. As shown in Fig. 1, the seg-
mentation accuracy of our approach improves consistently with the number of
support samples. Lastly, the predictive covariance from the GP provides a prin-
cipled measure of the uncertainty based on the similarity with local features in
the support set.

Our FSS approach is learned end-to-end through episodic training, treating
the GP as a layer in a neural network. This further allows us to learn the output
space of the GP. To this end, we encode the given support masks with a neural
network in order to achieve a multi-dimensional output representation. In order
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to generate the final masks, our decoder module employs the predicted mean
query encodings, together with the covariance information. Our decoder is thus
capable of reasoning about the uncertainty when fusing the predicted mask en-
codings with learned segmentation priors. Lastly, we further improve our FSS
method by integrating dense GPs at multiple scales.

We perform comprehensive experiments on two benchmarks: PASCAL-5i [28]
and COCO-20i [22]. Our proposed DGPNet outperforms existing methods for 5-
shot by a large margin, setting a new state-of-the-art on both benchmarks. When
using the ResNet101 backbone, our DGPNet achieves an absolute gain of 8.4 for
5-shot segmentation on the challenging COCO-20i benchmark, compared to the
best reported results in the literature. We further demonstrate the cross-dataset
transfer capabilities of our DGPNet approach from COCO-20i to PASCAL and
perform detailed ablative studies to probe the effectiveness of our contributions.

2 Related Work

Few-Shot Segmentation The earliest work in few-shot segmentation (FSS),
by Shaban et al . [28], proposed a method for predicting the weights of a linear
classifier based on the support set, which was further built upon in later works
[29,15,4]. Instead of learning the classifier directly, Rakelly et al . [24] proposed to
construct a global conditioning prototype from the support set and concatenate
it to the query representation, with several subsequent works [6,48,35,22,46]. Re-
cent works have strived to improve prototype-based approaches. Azad et al . [2]
reduced the texture bias; Liu et al . [16] cross-referenced query and support fea-
tures with a neural network and iteratively refined the predicted masks; Xie
et al . [38] combined information at multiple feature levels with a graph neu-
ral network (with nodes being feature maps); and Wang et al . [33] proposed to
model the prototype with a unimodal normal distribution. A major limitation
of these methods is the unimodality assumption. Wu et al . [37] identified that
additional support images may actually contaminate the unimodal target class
representation, and proposed to weight the different support images. Zhang et

al . [44] instead opted for more flexible target class models, comprising multiple
feature vectors. Yang et al . [40], Liu et al . [17], and Li et al . [12] clustered feature
vectors to create a multi-modal target class representation. However, clustering
introduces extra hyperparameters, such as the number of clusters, as well as
optimization difficulties. In this work, we propose a mechanism that increases
the flexibility. The mechanism has few hyperparameters, primarily the choice of
covariance function. More closely related to this work are methods that consider
pointwise correspondences between the support and query set. These works have
mostly focused on attention or attention-like mechanisms [45,42,10,31,34,47].
The work of Min et al . [21] proposed a pointwise comparison that was then pro-
cessed with hypercorrelation layers. In contrast with these methods, we construct
a principled posterior over functions, which greatly aids the decoder.
Combining GPs and Neural Networks While early work focused on com-
bining GPs and neural networks in the standard supervised classification set-
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ting [27,36,5], there has recently been an increased interest in utilizing Gaussian
processes in the context of few-shot classification [23,30]. These works employ
the GP as the final output layer. This is problematic as the GP assumes the
output to have a Gaussian distribution. In contrast, the output in classification
has a categorical distribution. Thus, these works are forced to optimize proxies
of either the predictive or marginal log-likelihood.

In this work, we instead adopt the GP as an internal layer and train a decoder
to interpret the Gaussian output and make categorical predictions. As the GP
is no longer used to make the final categorical predictions, we have the option to
also learn the GP output space, further increasing its expressive power. Further-
more, we use a dense GP model to model the mapping from individual support
features to corresponding encoded mask values. Compared to few-shot image
classification, this leads to a high number of points and a high computational
cost. We show that this can be addressed by downsampling and compensating
the reduced resolution with a high-dimensional output space.

3 Method

3.1 Few-shot Segmentation

Few-shot segmentation is a dense few-shot learning task [28]. The aim is to
learn to segment objects from novel classes, given only a small set of annotated
images. A single instance of this problem, referred to as an episode, comprises a
small set of annotated samples, called the support set, and a set of samples on
which prediction is to be made, the query set. Formally, we denote the support
set as {(ISk,MSk)}Kk=1, comprising K image-mask pairs ISk ∈ R

H0×W0×3 and
MSk ∈ {0, 1}H0×W0 . A query image is denoted as IQ ∈ R

H0×W0×3 and the aim
is to predict its corresponding segmentation mask MQ ∈ {0, 1}H0×W0 .

To develop our approach, we first provide a general formulation for addressing
the FSS problem, which applies to several recent methods, including prototype-
based [12,15] and correlation-based [31,34] ones. Our formulation proceeds in
three steps: feature extraction, few-shot learning, and prediction. In the first
step, deep features are extracted from the given images,

x = F (I) ∈ R
H×W×D . (1)

These features provide a more disentangled and invariant representation, which
greatly aids the problem of learning from a limited number of samples.

The main challenge in FSS, namely how to most effectively leverage the
annotated support samples, is encapsulated in the second step. As a general
approach, we consider a learner module Λ that employs the support set in order
to find a function f , which associates each query feature xQ ∈ R

D with an output

yQ ∈ R
E . Note that it is common to use a downsampled mask, setting E = 1,

but we are not restricted to do so. The goal is to achieve an output yQ that is
strongly correlated with the ground-truth query mask, allowing it to act as a
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Fig. 2. Overview of our approach. Support and query images are fed through an en-
coder to produce deep features xS and xQ respectively. The support masks are fed
through another encoder to produce yS (E = 1 in this figure). Using Gaussian process
regression, we infer the probability distribution of the query mask encodings yQ given
the support set and the query features (see equations 5-7). We create a representa-
tion of this distribution and feed it through a decoder. The decoder then predicts a
segmentation at the original resolution.

strong cue in the final prediction. Formally, we express this general formulation
as,

f = Λ({xSk,MSk}k) , yQ = f(xQ) . (2)

The learner Λ aggregates information in the support set {xSk,MSk}k in order
to predict the function f . This function is then applied to query features (2). In
the final step of our formulation, output from the function f on the query set is
decoded by a separate network as M̂Q = U(yQ,xQ) to predict the segmentation

M̂Q. An overview of our formulation is shown in Fig. 2.
The general formulation in (2) encapsulates several recent approaches for

few-shot segmentation. In particular, prototype-based methods, for instance
PANet [35], are retrieved by letting Λ represent a mask-pooling operation. The
function f then computes the cosine-similarity between the pooled feature vector
and the input query features. In general, the design of the learner Λ represents
the central problem in few-shot segmentation, since it is the module that extracts
information from the support set. Next, we distinguish three key desirable prop-
erties of this module.

3.2 Key Properties of Few-Shot Learners

As discussed above, the core component in few-shot segmentation is the few-
shot learner Λ. Much research effort has therefore been diverted into its design
[22,15,34,17,40,12]. To motivate our approach, we first identify three important
properties that the learner should possess.
Flexibility of f The intent in few-shot segmentation is to be able to segment
a wide range of classes, unseen during training. The image feature distributions
of different unseen classes are not necessarily linearly separable [1]. Prototypical
few-shot learners, which are essentially linear classifiers, would fail in such sce-
narios. Instead, we need a mechanism that can learn and represent more complex
functions f .
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Scalability in support set size K An FSS method should be able to effec-
tively leverage additional support samples and therefore achieve substantially
better accuracy and robustness for larger support sets. However, many prior
works show little to no benefit in the 5-shot setting compared to 1-shot. As
shown by Li et al . [12] and Boudiaf et al . [4], it is crucial that new information
is effectively incorporated into the model without averaging out useful cues.

Uncertainty Modeling Since only a small number of support samples are
available in FSS, the network needs to regularly handle unseen appearances in
the query images. For instance, the query may include novel backgrounds, scenes,
and objects. Since the function f predicted by the learner is not expected to gen-
eralize to such unseen scenarios, the network should instead utilize neighboring
predictions or learned priors. However, this can only be achieved if f models and
communicates the uncertainty of its prediction to the decoder.

3.3 Dense Gaussian Process Few-Shot Learner

As our key contribution, we propose a dense Gaussian Process (GP) learner
for few-shot segmentation. As a few-shot learning component, the GP possesses
all three properties identified in the previous section. It can represent flexible
and highly non-linear functions by selecting an appropriate kernel. It further
effectively benefits from additional support samples since all given data is re-
tained. Third, the GP explicitly models the uncertainty in the prediction by
learning a probabilistic distribution over a space of functions. Note that both
the learning and inference steps of the GP are differentiable functions. While
computational cost is a well-known challenge when deploying GPs, we demon-
strate that even simple strategies can be used to keep the number of training
samples at a tractable level for the FSS problem.

Our dense GP learner predicts a distribution of functions f from the input
features x to an output y. First, the support feature maps are stacked and
reshaped as a matrix xS ∈ R

KHW×D. The query feature maps are reshaped
as xQ ∈ R

HW×D. Let yS and yQ be the corresponding outputs. The former
is obtained from the support masks and the latter is to be predicted with the
GP. The key assumption in the Gaussian process is that the support and query
outputs yS ,yQ are jointly Gaussian according to,

(
yS

yQ

)
∼ N

((
µS

µQ

)
,

(
KSS KSQ

K⊤
SQ KQQ

))
. (3)

For simplicity, we set the output prior means, µS and µQ, to zero. The covariance
matrix K in (3) is defined by the input features at those points and a kernel

κ : RD × R
D → R. In our experiments, we adopt the commonly used squared

exponential (SE) kernel

κ(xm, xn) = σ2
f exp(−

1

2ℓ2
∥xm − xn∥22) , (4)
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with scale parameter σf and length parameter ℓ. The kernel can be viewed as a
similarity measure. If two features are similar, then the corresponding outputs
are correlated.

Next, the posterior probability distribution of the query outputs is inferred
(see Fig. 2). The rules for conditioning in a joint Gaussian give us [25]

yQ|yS ,xS ,xQ ∼ N (µQ|S ,ΣQ|S) , (5)

where

µQ|S = K⊤
SQ(KSS + σ2

yI)
−1yS , (6)

ΣQ|S = KQQ −K⊤
SQ(KSS + σ2

yI)
−1KSQ . (7)

The measurements yS are assumed to have been obtained with some additive
i.i.d. Gaussian noise with variance σ2

y. This corresponds to adding a scaled iden-
tity matrix σ2

yI to the support covariance matrix KSS . The equations 4-7 thus
predict the distribution of the query outputs, represented by the mean value
and the covariance. Note that the asymptotic complexity is O((KWH)3). We
therefore need to work on a sufficiently low resolution. Next, we introduce a way
to incorporate more information into the predicted outputs while maintaining a
low resolution.

3.4 Learning the GP Output Space

The decoder strives to transform the query outputs predicted by the few-shot
learner into an accurate mask. This is a challenging task given the low resolution
and the desire to generalize to classes unseen during offline training. We therefore
explore whether additional information can be encoded into the outputs, yQ, in
order to guide the decoder. This information could for instance include the shape
of the mask or which of the object parts are at a given location. To this end, we
train a mask-encoder to construct the outputs,

ySk = G(MSk) . (8)

Here, G is a neural network with learnable parameters.
The aforementioned formulation allows us to learn the GP output space dur-

ing the meta-training stage. To the best of our knowledge, this has not previously
been explored in the context of GPs. There is some reminiscence to the attention
mechanism in transformers [32]. The transformer queries, keys, and values cor-
respond to our query features xQ, support features xS , and support outputs yS .
A difference is that in few-shot segmentation, there is a distinction between the
features used for matching and the output – the features stem from the image
whereas the output stems from the mask.

As mask encoder G, we employ a lightweight residual convolutional neural
network. The network predicts multi-dimensional outputs for the support masks
that are then reshaped into yS ∈ R

KHW×E . These are fed into (6) when the pos-
terior probability distribution of the query outputs is inferred. The two matrix-
vector multiplications are transformed into matrix-matrix multiplications and
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the result µQ|S ∈ R
HW×E is a matrix containing the multi-dimensional mean.

The covariance in (7) is kept unchanged. This setup corresponds to the assump-
tion that the covariance is isotropic over the output feature channels and that
the different output feature channels are independent.

3.5 Final Mask Prediction

Next, we decode the predicted distributions of the query outputs in order to pre-
dict the final mask (see Fig. 2). Since the output of the GP is richer, including
uncertainty and covariance information, we first need to consider what infor-
mation to give to the final decoder network. We employ the following output
features from the GP.
GP output mean The multi-dimensional mean µQ|S represents the best guess
of yQ. Ideally, it contains a representation of the mask MQ to be predicted. The
decoder works on 2D feature maps and µQ|S is therefore reshaped as zµ ∈
R

H×W×E .
GP output covariance The covariance ΣQ|S captures both the uncertainty
in the predicted query output yQ and the correlation between different query
outputs. The former lets the decoder network identify uncertain regions in the
image, and instead rely on, e.g., learnt priors or neighbouring predictions. More-
over, local correlations can tell whether two locations of the image are similar.
For each query output, we employ the covariance between it and each of its spa-
tial neighbours in an N ×N region. We represent the covariance as a 2D feature
map zΣ ∈ R

H×W×(N2) by vectorizing the N2 covariance values in the N × N

neighborhood. For more details, see Appendix E.
Shallow image features Image features extracted from early layers of deep
neural networks are of high resolution and permit precise localization of object
boundaries [3]. We therefore store feature maps extracted from earlier layers
of F and feed them into the decoder. These serve to guide the decoder as it
transforms the low-resolution output mean into a precise, high-resolution mask.

We finally predict the query mask by feeding the above information into a
decoder U ,

M̂Q = U(zµ, zΣ ,xQ,shallow) . (9)

Note that while it would be possible to sample from the inferred distribution
of yQ, we instead feed its parameters into the decoder that predicts the final
mask. As a decoder U , we adopt DFN [43]. DFN processes its input at one scale
at a time, starting with the coarsest scale. In our case, this is the concatenated
mean and covariance. At each scale, the result at the previous scale is upsampled
and processed together with any input at that scale. After processing the finest
scaled input, the result is upsampled to the mask scale and classified with a
linear layer and a softmax function.

3.6 FSS Learner Pyramid

Many computer vision tasks benefit from processing at multiple scales or multi-
ple feature levels. While deep, high-level features directly capture the presence
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of objects or semantic classes, the mid-level features capture object parts [31].
In semantic segmentation, methods begin with high-level features and then suc-
cessively add mid-level features while upsampling [18]. In object detection, a
detection head is applied to each level in a feature pyramid [13]. Tian et al . [31]
discuss and demonstrate the benefit of using both mid-level and high-level fea-
tures for few-shot segmentation. We therefore adapt our framework to be able
to process features at different levels.

We take features from our image encoder F extracted at multiple levels A.
Let the support and query features at level a ∈ A be denoted as xa

S and xa
Q.

From the mask encoder G we extract corresponding support outputs ya
S . We

then introduce a few-shot learner Λa for each level a. For efficient inference, the
support features and outputs are sampled on a grid such that the total stride
compared to the original image is 32. The query features retain their resolution.
Each few-shot learner then infers a posterior distribution over the query outputs
ya
Q, parameterized by µa

Q|S and Σa
Q|S . These are then fed into the decoder,

which processes them one scale at a time.

4 Experiments

We validate our proposed approach by conducting comprehensive experiments
on two FSS benchmarks: PASCAL-5i [28] and COCO-20i [22].

4.1 Experimental Setup

Datasets We conduct experiments on the PASCAL-5i [28] and COCO-20i [22]
benchmarks. PASCAL-5i is composed of PASCAL VOC 2012 [7] with additional
SBD [8] annotations. The dataset comprises 20 categories split into 4 folds. For
each fold, 15 categories are used for training and the remaining 5 for testing.
COCO-20i [22] is more challenging and is built from MS-COCO [14]. Similar to
PASCAL-5i, the COCO-20i benchmark is split into 4 folds. For each fold, 60
base classes are used for training and the remaining 20 for testing.
Implementation Details Following previous works, we employ ResNet-50 and
ResNet-101 [9] backbones pre-trained on ImageNet [26] as image encoders. We
let the dense GP work with feature maps produced by the third and the fourth
residual module. In addition, we place a single convolutional projection layer
that reduces the feature map down to 512 dimensions. As mask encoder, we use
a light-weight CNN (see Appendix E). We use σ2

y = 0.1, σ2
f = 1, and ℓ2 =

√
D in

our GP. We train our models for 20k and 40k iterations à 8 episodes for PASCAL-
5i and COCO-20i, respectively. On one NVIDIA A100 GPU, this takes up to
10 hours. We use the AdamW [11,19] optimizer with a weight decay factor of
10−3 and a cross-entropy loss with 1 to 4 background to foreground weighting.
We use a learning rate of 5 · 10−5 for all parameters save for the image encoder,
which uses a learning rate of 10−6. The learning rate is decayed with a factor
of 0.1 when 10k iterations remain. We freeze the batch normalization layers of
the image encoder. Episodes are sampled in the same way as we evaluate. We
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Table 1. State-of-the-art comparison on the PASCAL-5i and COCO-20i benchmarks
in terms of mIoU (higher is better). In each case, the best two results are shown in
magenta and cyan font, respectively. Asterisk ∗ denotes re-implementation by Liu et

al . [15]. Our DGPNet achieves state-of-the-art results for 1-shot and 5-shot on both
benchmarks. When using ResNet101, our DGPNet achieves absolute gains of 5.5 and
8.4 for 1-shot and 5-shot segmentation, respectively, on the challenging COCO-20i

benchmark, compared to the best reported results in the literature.

Backbone Method
PASCAL-5i COCO-20i

1-shot 5-shot 1-shot 5-shot

ResNet50

CANet [46] CVPR’19 55.4 57.1 40.8∗ 42.0∗

PGNet [45] ICCV’19 56.0 58.5 36.7∗ 37.5∗

RPMM [40] ECCV’20 56.3 57.3 30.6 35.5
CRNet [16] CVPR’20 55.7 58.8 - -
DENet [15] MM’20 60.1 60.5 42.8 43.0
LTM [42] MM’20 57.0 60.6 - -
PPNet [17] ECCV’20 51.5 62.0 25.7 36.2
PFENet [31] TPAMI’20 60.8 61.9 - -
RePri [4] CVPR’21 59.1 66.8 34.0 42.1
SCL [44] CVPR’21 61.8 62.9 - -
SAGNN [38] CVPR’21 62.1 62.8 - -
CWT [20] ICCV’21 56.4 63.7 32.9 41.3
CMN [39] ICCV’21 62.8 63.7 39.3 43.1
MLC [41] ICCV’21 62.1 66.1 33.9 40.6
MMNet [37] ICCV’21 60.2 61.8 37.2 37.4
HSNet [21] ICCV’21 64.0 69.5 39.2 46.9

CyCTR [47] NeurIps’21 64.2 65.6 40.3 45.6

DGPNet (Ours) 63.5±0.4 73.5±0.3 45.0±0.4 56.2±0.4

ResNet101

FWB [22] CVPR’19 56.2 60.0 21.2 23.7
DAN [34] ECCV’20 58.2 60.5 24.4 29.6
PFENet [31] TPAMI’20 60.1 61.4 38.5 42.7
RePri [4] CVPR’21 59.4 65.6 - -
VPI [33] WACV’21 57.3 60.4 23.4 27.8
ASGNet [12] CVPR’21 59.3 64.4 34.6 42.5
SCL [44] CVPR’21 - - 37.0 39.9
SAGNN [38] CVPR’21 - - 37.2 42.7
CWT [20] ICCV’21 58.0 64.7 32.4 42.0
MLC [41] ICCV’21 62.6 68.8 36.4 44.4
HSNet [21] ICCV’21 66.2 70.4 41.2 49.5

CyCTR [47] NeurIps’21 64.3 66.6 - -

DGPNet (Ours) 64.8±0.5 75.4±0.4 46.7±0.3 57.9±0.3

randomly flip images horizontally followed by resizing to a size of 384× 384 for
PASCAL-5i and 512× 512 for COCO-20i.

Evaluation We evaluate our approach on each fold by randomly sampling 5k
and 20k episodes respectively, for PASCAL-5i and COCO-20i. This follows the
work of Tian et al . [31] in which it is observed that the procedure employed by
many prior works, using only 1000 episodes, yields fairly high variance. Addi-
tionally, following Wang et al . [35], Liu et al . [17], Boudiaf et al . [4], and Zhang
et al . [44], our results in the state-of-the-art comparison are computed as the
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Table 2. Performance comparison (mIoU, higher is better), when performing cross-
dataset evaluation from COCO-20i to PASCAL. When using the same ResNet50 back-
bone, our approach achieves significant improvements for both 1-shot and 5-shot set-
tings, with absolute gains of 5.8 and 11.3 mIoU over RePRI [4].

Backbone Method 1-Shot 5-Shot

ResNet50

RPMM [40] 49.6 53.8
PFENet [31] 61.1 63.4
RePRI [4] 63.1 66.2
HSNet [21] 61.6 68.7

DGPNet (Ours) 68.9±0.4 77.5±0.2

ResNet101
HSNet [21] 64.1 70.3
DGPNet (Ours) 70.1±0.3 78.5±0.3

average of 5 runs with different seeds. We also report the standard deviation.
Performance is measured in terms of mean Intersection over Union (mIoU). First,
the IoU is calculated per class over all episodes in a fold. The mIoU is then ob-
tained by averaging the IoU over the classes. As in the original work on FSS by
Shaban et al . [28], we calculate the IoU on the original resolution of the images.

4.2 State-of-the-Art Comparison

We compare our proposed DGPNet with state-of-the-art FSS approaches on the
PASCAL-5i and COCO-20i benchmarks, see Table 1. Following prior works, we
report results given a single support example, 1-shot, and given five support
examples, 5-shot. On PASCAL-5i with a ResNet50 backbone, recently proposed
approaches – RePri [4], SCL [44], SAGNN [38], CWT [20], CMN [39], MLC [41],
MMNet [37], HSNet [21], and CyCTR [47] – range from 56.4 mIoU to 64.2
mIoU. Our proposed DGPNet obtains a competitive performance of 63.5 mIoU.
Where the powerful dense Gaussian process of DGPNet really shines, however,
is when additional support examples are given. In the 5-shot setting, these re-
cently proposed approaches range from 61.8 mIoU to 69.5 mIoU. Our proposed
DGPNet obtains 73.5 mIoU, setting a new state-of-the-art for 5-shot few-shot
segmentation on PASCAL-5i.

On the challenging COCO-20i benchmark, the previous best reported 1-shot
result comes from the work of Liu et al . [15], 42.8 mIoU. In their work, however,
no significant improvement is reported when additional support examples are
given. Three other approaches – CMN [39], HSNet [21], and CyCTR [47] –
obtain performance close to the work of Liu et al . [15], from 39.3 mIoU to 40.3
mIoU. Compared to the work of Liu et al . [15], CMN, HSNet, and CyCTR scale
better with additional support examples, obtaining between 43.1 mIoU and 46.9
mIoU, with HSNet reporting the largest gain, 7.7 mIoU. Our proposed DGPNet
obtains a 1-shot performance of 45.0 mIoU, setting a new state-of-the-art. As
additional support examples are given, the gap to prior works increases. In the
5-shot setting, DGPNet obtains 56.2 mIoU, beating the previous best approach,
HSNet, by 9.7 mIoU. Our per-fold results, including the standard deviation for
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each fold, are provided in Appendix A. Qualitative examples are found in Fig. 3
and Appendix F.
Scaling Segmentation Performance with Increased Support Size As
discussed earlier, the FSS approach is desired to effectively leverage additional
support samples, thereby achieving superior accuracy and robustness for larger
shot-sizes. We therefore analyze the effectiveness of the proposed DGPNet by
increasing the number of shots on PASCAL-5i and COCO-20i. Fig. 1 shows the
results on the two benchmarks. We use the model trained for 5-shot in all cases,
except for 1-shot. Compared to most existing works, our DGPNet effectively
benefits from additional support samples, achieving remarkable improvement in
segmentation accuracy with larger support sizes.

We provide a qualitative comparison between different support set sizes in
Fig. 3. For this comparison, we use COCO-20i. In general, the 1-shot setting is
quite challenging for several classes due to major variations in where the object
appears and what it looks like. If the single support sample is too different from
the query sample, the model tends to struggle. With five support samples, the
model performs far better. At five, the benefit of additional support samples
seems to saturate, with ten samples often bringing only marginal improvements.
An example is the train episode in Fig. 3, where minor improvements are ob-
tained when going from five to ten support samples.
Cross-dataset Evaluation

In Table 2, we present the cross-dataset evaluation capabilities of our DGP-
Net from COCO-20i to PASCAL. For this cross-dataset evaluation experiment,
we followed the same protocol as in Boudiaf et al . [4], where the folds are con-
structed to ensure that there is no overlap with COCO-20i training folds. When
using the same ResNet50 backbone, our approach obtains 1-shot and 5-shot
mIoU of 68.9 and 77.5, respectively, with absolute gains of 5.8 and 11.3 over
RePRI [4]. Further, DGPNet achieves segmentation mIoU of 70.1 and 78.5 in
1-shot and 5-shot setting, respectively, using ResNet101. For more details on the
experiment, see Appendix A.

4.3 Ablation Study

Here, we analyze the impact of the key components in our proposed architecture.
We first investigate the choice of kernel, κ. Then, we analyze the impact of the
predictive covariance provided by the GP and the benefits of learning the GP
output space. Last, we experiment with dense GPs at multiple feature levels. All
experiments in this section are conducted with the ResNet50 backbone. Detailed
experiments are provided in the Appendix. In each experiment, we also report
the mean gain over a baseline (Mean ∆), where the mean is computed over the
1-shot and 5-shot performance on PASCAL-5i and COCO-20i.
Choice of Kernel Going from a linear few-shot learner to a more flexible func-
tion requires an appropriate choice of kernel. We consider the homogenous linear

kernel as our baseline. Note that the homogenous linear kernel is equivalent to
Bayesian linear regression under appropriate priors [25]. To make our learner
more flexible, we consider two additional choices of kernels, the Exponential and



Dense Gaussian Processes for Few-Shot Segmentation 13

Support 1 Support 2-5 Support 6-10 Query 1-shot 5-shot 10-shot

Fig. 3. Right: Qualitative results of our approach given 1, 5, and 10 support samples.
The 1-shot results are based on (see left) Support 1; the 5-shot results on Support
1 and Support 2-5; and the 10-shot Support 1, Support 2-5, and Support 6-10. The
results are from COCO-20i and human faces have been pixelized in the visualization,
but the model makes predictions on the non-pixelized images.

Squared Exponential (SE) kernels. The kernel equations are given in Appendix C.
In Table 3, results on both the PASCAL and COCO benchmarks are presented.
Both the Exponential and SE kernels greatly outperform the linear kernel, with
the SE kernel leading to a mean gain of 5.5 in mIoU. These results show the
benefit of a more flexible and scalable learner.

Incorporating Uncertainty and Learning the GP Output Space We
adopt the SE kernel and analyze the performance of letting the decoder process
the predictive covariance provided by the dense GP. With the covariance in a



14 J. Johnander et al.

Table 3. Performance of different kernels on the PASCAL-5i and COCO-20i bench-
marks. Notably, both the Exponential and SE kernels significantly outperform the
linear kernel, confirming the need for a flexible learner. Measured in mIoU (higher is
better). Best results are in bold.

Kernel
PASCAL-5i COCO-20i

1-shot 5-shot 1-shot 5-shot Mean ∆

Linear 58.6 61.8 37.1 45.3 0.0
Exponential 59.3 67.3 40.9 51.8 4.1
SE 62.1 69.9 41.7 51.2 5.5

Table 4. Analysis of learning the GP
output space (GPO) and incorporating
covariance (Cov). Performance in mIoU
(higher is better). Best results are in bold.

Cov GPO
PASCAL-5i COCO-20i

1-shot 5-shot 1-shot 5-shot Mean ∆

62.1 69.9 41.7 51.2 0.0
✓ 62.5 71.8 43.8 53.7 1.7

✓ 61.7 72.7 43.1 54.2 1.7
✓ ✓ 62.5 72.6 44.7 55.0 2.5

Table 5. Performance of different mul-
tilevel configurations of the dense GP
few-shot learner on the PASCAL-5i

and COCO-20i benchmarks. Measured in
mIoU (higher is better). Best results are
in bold.

PASCAL-5i COCO-20i

Str. 16 Str. 32 1-shot 5-shot 1-shot 5-shot Mean ∆

✓ 62.5 72.6 44.7 55.0 0.0
✓ 60.4 69.3 40.7 51.1 -3.9
✓ ✓ 63.9 73.6 45.3 56.4 1.4

5×5 window, we obtain a gain of 1.7 mIoU. Then, we add the mask-encoder and
learn the GP output space (GPO). This leads to a 1.7 improvement in isolation,
or a 2.5 mIoU gain together with the covariance.
Multilevel Representations Finally, we investigate the effect of introducing a
multilevel hierarchy of dense GPs. Specifically we investigate using combinations
of stride 16 and 32 features. The results are reported in Table 5. The results show
the benefit of using dense GPs at different feature levels, leading to an average
gain of 1.4 mIoU.

5 Conclusion

We have proposed a few-shot learner based on Gaussian process regression for
the few-shot segmentation task. The GP models the support set in deep feature
space and its flexibility permits it to capture complex feature distributions. It
makes probabilistic predictions on the query image, providing both a point es-
timate and additional uncertainty information. These predictions are fed into a
CNN decoder that predicts the final segmentation. The resulting approach sets
a new state-of-the-art on 5-shot PASCAL-5i and COCO-20i, with absolute im-
provements of up to 8.4 mIoU. Our approach scales well with larger support sets
during inference, even when trained for a fixed number of shots.
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