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Our evaluation ranks all methods according to the average precision for each class. We report the mean average precision AP at overlap 0.25 (AP 25%), overlap 0.5 (AP 50%), and

over overlaps in the range [0.5:0.95:0.05] (AP). Note that multiple predictions of the same ground truth instance are penalized as false positives

This table lists the benchmark results for the 3D semantic instance scenario.
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Fig. S1. Our DKNet ranks first on the mAP leaderboard of the ScanNetV2

benchmark. The snapshot is taken on 7 March 2022.
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This supplementary material consists of the following contents:

- More details on the backbone and training loss functions.

- Detailed algorithm for candidate mining and describing.
- Detailed algorithm for duplicated candidates merging.
- More details on the components of instance kernels.

- More details on transforming instance kernels into the weights of dynamic

convolutions layers.
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Fig. S2. Detailed network architecture. (a) Architecture of backbone. (b) Archi-
tecture of semantic branch and offset branch. V' denotes the number of voxels. The
number near linear layer denotes the number of output channels.

- More details on computing instance mask thresholds.

- More visualizations of the instance segmentation results.
- More details on the efficiency of DKNet.

More detailed results on ScanNetV2 [2] dataset.

S2 Backbone and Loss Function

As mentioned in Sec. 3.2, a 3D UNet-like backbone [12] is adopted to extract
point features F,, € RV*P. And two multi-layer perceptrons (MLPs) are used to
predict semantic masks and centroid offsets. We specify the detailed architectures
of these three components in Fig. S2. These three components are adopted from
PointGroup [6], which is common for recent top-performing methods [1,8].

Loss for Semantic Branch. The semantic prediction branch outputs S €
RY*C wwhere C is the number of categories. For point P;, S; denotes the proba-
bility of this point belonging to different semantic categories. Given the one-hot
ground truth semantic label 5}, the semantic loss L., can be computed as:

N N T4,
L = OB, 8) 11— oyl ()
i=1 Zi:l S;FSZ' + Zi:l SiTSi

where CE(z,y) denotes the cross entropy loss. The second term in Eq. S1 is the
multi-class dice loss [10], which can help address the imbalance between different
semantic categories.

Loss for Offset Branch. The offset branch estimates the centroid offsets for all
points, i.e., O € RVN*3, Given a point P;, we define the centroid of the instance
that covers this point as C} ;. Both the Euclidean norm and the direction are
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Fig. S3. Details of instance decoder. The instance decoder consists of two convolu-
tion layers. The elements in instance kernels are sequentially inserted into the weights
and biases for convolution layers.

considered to measure the difference between the estimated centroid offset vector
O; and the ground truth offset C}, ; — X;, where X; denotes the 3D coordinate
of the point F;. Then, the offset loss L,fs is computed as:

N
1 O, . (C P — Xz)
- E - X, idi (P 2
£Off N/ (HOl (Cpﬂ ’L)” + HOln . HCp,i — Xz”) ( 1)7 (S )

i=1

where I(P;) is an indicator function that outputs 1 when point P; belongs to
one instance, otherwise outputs 0. N’ denotes the number of points (excluding

background points), which can be obtained via N’ = Zi\il I(P;).

S3 Algorithms

Candidate Mining Algorithm As mentioned in Sec. 3.3 (line 219), we design a
customized non-maximum suppression algorithm with local normalization (LN-
NMS) to localize instance centroids from the predicted heatmaps. The detailed
candidate mining process is described in Algorithm 1. The semantic label B €
RY denotes the hard semantic label derived from the soft semantic masks S €
RNXC B; equals the category label with the maximum score in S;. Note that,
apart from localizing instance centroids, the candidate mining algorithm fetches
the “foreground points” and “background points” of each candidate to describe
the candidates for further processing, as mentioned in Sec.3.4 (line 244).
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Algorithm 1 Candidate mining algorithm & thresholds Ty, Qg, R
Input: centroids map H, coordinates X, semantic labels B,
dimension reduced features Fj.

Output: candidates Q = {Q1,Q2, ..., Qn'}
neighbor features Fr, = {Fy 1, Fn,2, ..., F N7}
background features Fy, = {Fy.1, Fp2, ..., Fp N7 }
initialize an empty candidates set @
initialize an empty neighbor features set F,
initialize an empty background features set Fj
initialize an array f(available) of length N with all ones
initialize counter k = 0
while k < Ty and f.sum() > 0 do

initialize distance array d of length N with all zeros

initialize neighbors feature f, of length C' with all zeros, counter k, = 0
9:  initialize background feature fi, of length C' with all zeros, counter k;, = 0
10:  /* Candidates mining */
11:  set ¢ = H.argmax()
12 set d=[|X — X4ll2, f[d< R] =0
13:  if Hy/H[d < R].maz() < Q¢ then
14: continue
15:  /* Candidates describing */
16:  for j € [1, N] with d; < R and B; == B, do

17: fn,k+:fd,j7kn++
18:  for j € [1, N] with d; < 2R and B;! = B, do
19: fooet = faj, kv ++

20:  Q.append(q)

21: F,.append(fn/kn)
22: Fy.append(fv/ks)
23: k++

24: return Q, Fy, Fy

Candidate Merging Algorithm As mentioned in Sec. 3.4, to aggregate du-
plicated candidates with the predicted merging score map A , we design a candi-
dates merging algorithm. Algorithm 2 illustrates this merging process in details.

S4 Instance kernels

To obtain a discriminative instance kernel, we encode semantic, positional and
shape information to represent instance. The position and semantic information
comes from candidate coordinates and point features. Shape information is thus
encoded by splitting ‘foreground points’ and ‘background points’. As illustrated
in Fig. S4, ‘foreground points’ sketch a basic shape of instance (a chair). In
Table S1 we show the performance when the position (coordinates) or shape
(mixing foreground and background points for feature pooling) is ablated. One
can observe that both information is vital for instance kernels.
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Algorithm 2 Candidate merging algorithm
Input: merging score map A, centroids map H, candidates Q).
Output: instance centroid map M;,s € ]RN/

1: initialize an array M;,s = arange(N')

2: while A.maz() > 0.5 do

3: 4,j = col, row of A.argmaz()

4 G = (Mins == Mins[i]), Gj = (Mins == Mins[j]), G = where(Gi U G])
5. ¢= H[Q|G]].argmax()

6: update M;,s[G] = Mins|c]

7:  for m in G do
8

9
10:

for n in G do
update A[m,n] = 0
return Mins

Table S1. Component analysis. Table S2. Kernel shape analysis.

Info. components‘mAP APQ@50 APQ25 Kernel shape/size‘mAP AP@50 AP@25

W /o coord. 495 66.3 759  [8,1]/169 50.6 67.8 76.4
W /o shape 49.3 643 752  [16,1]/337 508 66.7 76.9
W /o both 479 63.6 738  [16,8,1]/465 512 67.1  77.0
Full 50.8 66.7 769 [16,16,1]/609  |50.9 66.0 765

S5 Dynamic Convolution

To generate instance masks, point features are fed into different instance de-
coders consisting of a few dynamic convolution layers. The parameters of dy-
namic convolutions are conditioned on the corresponding instance kernels. As
shown in Fig. S3, we instantiate the instance decoder with two convolution
layers, which have 16 and 1 output channels (its kernel shape is [16,1]). The
elements in one instance kernel are sequentially inserted into the weight vectors
and biases of these two convolution layers. Hence, the length of instance ker-
nels L depends on the specific configuration of the instance decoder. As for the
instance decoder in Fig. S3, L can be computed by:

Convl #weight = (16 +3) x 1 x 1 x 16 = 304, #bias =16 x 1 =16, (S3)
Conv2 #weight =16 x 1 x 1 x 1 =16, #bias=1x1=1, (S4)
L=304+16+16+1 =337, (S5)
To evaluate the effect of kernel size, we design a series of ablation experiments.

As illustrated in Table S2, DKNet is stable under varying instance kernel sizes
and dynamic convolution layer shapes.

S1 Thresholds for Soft Instance Mask

As mentioned in Section 3.5, in post-processing, we use the Otsu algorithm [11]
to binarize the predicted soft instance masks. Otsu algorithm divides the pixels
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Fig. S5. Visualizations on ScanNetV2 validation set.
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Fig. S6. The robustness against th errors in semantic predictions. Although
errors occur in the semantic results (left parts), the instance decoder can still recover
correct instance masks (right parts).

in a grey image into the foreground or the background category, whose essential
idea is to maximize the inter-class variance. We re-purpose this idea to binarize
the soft instance masks M € R’*¥ | As the original algorithm functions on pixels
with discrete gray levels, similarly, we discreteize the value ([0, 1]) of soft instance
mask into K confidence levels. Therefore, the quantified instance mask M’ can
be obtained by:

M| = |MyxK]|, (S6)

where M, denotes the k' instance mask. Taking the quantified masks as inputs,
Otsu algorithm processes each point in Mj as a pixel in an image, and outputs
T, for each instance. Instead of using fixed threshold, Otsu algorithm can
adaptively generate thresholds, which can better preserve the shape of instance
with weak responses.

S6 More Visualizations

More visualizations of instance segmentation results and intermediate centroid
maps are shown in Fig. S5. Base denotes the baseline method without candi-
date aggregation while Full denotes our full method. We also observe that, by
reconstructing instance masks from instance kernels, some errors in semantic
predictions can be corrected. We show some examples in Fig S6.

S7 Efficiency

Here we specify the training and inference time of the proposed DKNet. Training
DKNet on ScanNetV2 [2] with default settings consumes about 72 GPU hours
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Table S3. Inference time of different stages in DKNet on RTX 3090.

Total Backbone Encoding Decoding Post-processing
357.5ms 160.6ms 129.3ms 16.3ms 45.9ms

Table S4. Full quantitative results of APQ50 on the ScanNetV?2 test set. Best
performance is in boldface.
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3D-BoNet[13] [48.8|100.0 67.2 59.0 30.1 48.4 9.8 62.0 30.6 34.1 25.9 12.5 43.4 79.6 40.2 49.9 51.3 90.9 43.9

MTML[7] 54.9(100.0 80.7 58.8 32.7 64.7 0.4 81.5 18.0 41.8 36.4 18.2 44.5 100.0 44.2 68.8 57.1 100.0 39.6
3D-MPA[3] 61.1{100.0 83.3 76.5 52.6 75.6 13.6 58.8 47.0 43.8 43.2 35.8 65.0 85.7 42.9 76.5 55.7 100.0 43.0
PointGroup[6]|63.6|100.0 76.5 62.4 50.5 79.7 11.6 69.6 38.4 44.1 55.9 47.6 59.6 100.0 66.6 75.6 55.6 99.7 51.3

GICN[9] 63.8100.0 89.5 80.0 48.0 67.6 14.4 73.7 35.4 44.7 40.0 36.5 70.0 100.0 56.9 83.6 59.9 100.0 47.3
DyCo3D|[5] 64.1(100.0 84.1 89.3 53.1 80.2 11.5 58.8 44.8 43.8 53.7 43.0 55.0 85.7 53.4 76.4 65.7 98.7 56.8
Occuseg(4] 67.2(100.0 75.8 68.2 57.6 84.2 47.7 50.4 52.4 56.7 58.5 45.1 55.7 100.0 75.1 79.7 56.3 100.0 46.7
SSTNet (8] 69.8(100.0 69.7 88.8 55.6 80.3 38.7 62.6 41.7 55.6 58.5 70.2 60.0 100.0 82.4 72.0 69.2 100.0 50.9
HAIS[1] 69.9(100.0 84.9 82.0 67.5 80.8 27.9 75.7 46.5 51.7 59.6 55.9 60.0 100.0 65.4 76.7 67.6 99.4 56.0
Ours 71.8/100.0 81.4 78.2 61.9 87.2 22.4 75.1 56.9 67.7 58.5 72.4 63.3 98.1 51.5 81.9 73.6 100.0 61.7

Table S5. Full quantitative results of mAP on the ScanNetV2 test set. Best
performance is in boldface.

=)
3 < 8 5 = E @ 8 2
E] 5 2 s £ 15
A= g £ =5 =7 8 T 5 & 7 PR
Iz ;2 o:Eo: o182 E g ¢ ozoe oz f0C
approachesE:Qﬁouuov’cgmguj33283

3D-BoNet[13] [25.3|51.9 32.4 25.1 13.7 34.5 3.1 41.9 6.9 16.2 13.1 5.2 20.2 33.8 14.7 30.1 30.3 65.1 17.8
MTML([7] 28.2|57.7 38.0 18.2 10.7 43.0 0.1 42.2 5.7 17.9 16.2 7.0 22.9 51.1 16.1 49.1 31.3 65.0 16.2
3D-MPA(3] 35.5[45.7 48.4 29.9 27.7 59.1 4.7 33.2 21.2 21.7 27.8 19.3 41.3 41.0 19.5 57.4 35.2 84.9 21.3
PointGroup[6][40.7 |63.9 49.6 41.5 24.3 64.5 2.1 57.0 11.4 21.1 35.9 21.7 42.8 66.0 25.6 56.2 34.1 86.0 29.1
GICNI[9] 34.1158.0 37.1 34.4 19.8 46.9 5.2 56.4 9.3 21.2 21.2 12.7 34.7 53.7 20.6 52.5 32.9 72.9 24.1
DyCo3D[5] 39.5[64.2 51.8 44.7 25.9 66.6 5.0 25.1 16.6 23.1 36.2 23.2 33.1 53.5 22.9 58.7 43.8 85.0 31.7
Occusegl[4] 48.6|80.2 53.6 42.8 36.9 70.2 20.5 33.1 30.1 37.9 47.4 32.7 43.7 86.2 48.5 60.1 39.4 84.6 27.3

SSTNet[8] 50.6|73.8 54.9 49.7 31.6 69.3 17.8 37.7 19.8 33.0 46.3 57.6 51.5 85.7 49.4 63.7 45.7 94.3 29.0
HAIS[1] 45.7|170.4 56.1 45.7 36.4 67.3 4.6 54.7 19.4 30.8 42.6 28.8 45.4 71.1 26.2 56.3 43.4 88.9 34.4
Ours 53.2|81.5 62.4 51.7 37.7 74.9 10.7 50.9 30.4 43.7 47.5 58.1 53.9 77.5 33.9 64.0 50.6 90.1 38.5

on an single RTX 3090. In terms of inference, DKNet is relatively efficient; the
average inference time (per scene) of DKNet on a Titan XP is 521 ms, which is
on par with recent bottom-up approaches PointGroup [6] (452 ms) and HAIS [1]
(339 ms) on the same device, only introducing limited latency (100-200 ms).
Note that, DKNet is much more efficient than recent top-down approach such
as GICN [9] (8615 ms).

S8 Full Evaluation Results

The results under AP@50 and mAP metrics on ScanNetV2 benchmark are re-
ported in Table S4 and Table S5.
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