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Abstract. Image matting refers to predicting the alpha values of un-
known foreground areas from natural images. Prior methods have fo-
cused on propagating alpha values from known to unknown regions.
However, not all natural images have a specifically known foreground.
Images of transparent objects, like glass, smoke, web, etc., have less or
no known foreground. In this paper, we propose a Transformer-based net-
work, TransMatting, to model transparent objects with a big receptive
field. Specifically, we redesign the trimap as three learnable tri-tokens
for introducing advanced semantic features into the self-attention mech-
anism. A small convolutional network is proposed to utilize the global
feature and non-background mask to guide the multi-scale feature prop-
agation from encoder to decoder for maintaining the contexture of trans-
parent objects. In addition, we create a high-resolution matting dataset
of transparent objects with small known foreground areas. Experiments
on several matting benchmarks demonstrate the superiority of our pro-
posed method over the current state-of-the-art methods.
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1 Introduction

Image matting is a technique to separate the foreground object and the back-
ground from an image by predicting a precise alpha matte as a result. It has
been widely used in many applications, such as image and video editing, back-
ground replacement, and virtual reality [5,46,18]. Image matting assumes that
every pixel in the image I is a linear combination of the foreground object F
and the background B by an alpha matte α:

I = αF + (1− α)B,α ∈ [0, 1] (1)
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As only the image I is known in this equation, the image matting is an ill-
posed problem. So many existing methods [5,18,38,43,46,29,22] take a trimap
as an auxiliary input. The trimap segments the image into three parts: known
foreground and background, and unknown area, indicated as white, black, and
gray, separately.

Most traditional methods, including both the sampling-based methods [2,7,43,12,15,36]
and propagation-based methods [5,17,38,18], utilize the known area samples to
find candidate colors or propagate the known alpha value. They heavily rely on
the information from known areas, especially the known foreground areas. Re-
cently, learning-based methods directly predict alpha mattes by neural network
learning from well-annotated datasets. Although these methods take a great im-
provement in image matting, they also need specific information from known
areas to predict unknown areas. However, according to [25], more than 50% pix-
els in the unknown areas cannot be correlated to pixels in the known regions due
to the limited reception field of deep learning methods. LFPNet [25] proposes a
Center-Surround Pyramid Pooling module to propagate the context feature from
the known regions to the near unknown regions. However, not all natural images
have a salient and opaque object as the known foreground [21]. Images of the
glass, bonfires, plastic bags, etc., have salient foregrounds but with transparent
or meticulous interiors; images of the web, smoke, water drops, etc., have non-
salient foregrounds. The corresponding trimaps of these kinds of images will have
very few or even no foreground areas. Most of the areas will be divided into the
unknown regions. It is very challenging for existing models to learn long-range
features with little known information. Furthermore, with the development of
modern cameras, picture resolution is becoming higher and higher. However, the
reception fields of existing models could not increase as the resolution of input
images do, which makes the problem even worse.

To address this issue, we make the first attempt to introduce Vision Trans-
former (ViT) [9] to extract features with a large receptive field. The Transformer
model is first proposed in natural language processing (NLP) and has achieved
great performance in computer vision tasks, such as classification [9,41,27], seg-
mentation [53,30], and detection [4,47]. It mainly consists of a multi-head self-
attention (MHSA) module and a multi-layer perception module. The MHSA
module could mine information in a global scope. Thus, the ViT model could
learn global semantic features of the foreground object with high-level posi-
tion relevance. To further help the model integrate the low-level appearance
features (e.g., texture) with high-level semantic features (e.g., shape), a Multi-
scale Global-guided Fusion (MGF) module is proposed. The MGF takes three
adjacent scales of features as input, uses the non-background mask to guide
the low-level feature, and employs the high-level feature to guide the informa-
tion integration. With this new MGF module, only foreground features could be
transmitted to the decoder, reducing the influence of background noises.

Since the DIM [46] concatenates the trimap and RGB image to feed into
the network, almost all subsequent trimap-based methods follow this strategy.
However, compared with the RGB image, the trimap is very sparse and has
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some high-level positional relevance [26]. Most areas in the trimap have the
same value, making convolution neural networks with small kernels inefficient in
extracting features. Inspired by the [cls] token in ViT, we propose a new form of
trimap named the tri-token map. Three learnable tokens are used to indicate the
foreground, background, and unknown categories. We denote them as tri-tokens.
Based on these tri-tokens, we propose a Tri-token Guided Transformer Block
(TGTB), which adds the query with the corresponding tri-tokens for introducing
the trimap information into the self-attention mechanism. With this high-level
position information, the Transformer module could identify which features are
from the known areas and which are from the unknown areas.

Besides, there has not been any testbed for images with transparent or non-
salient foreground objects. Previous datasets mainly focus on salient and opaque
foregrounds, like animals [20] and portraits [37,26], which have significantly been
investigated. To further help the community to dig into the transparent and non-
salient cases, we collect 460 high-solution natural images with large unknown
areas and manually label their alpha mattes.

Our main contributions can be summarized as follows:

1. We propose a TGTB module, introducing the Vision Transformer module to
extract global semantic features with a big receptive field. We also redesign
the trimap as a tri-token map to directly bring location information to the
self-attention mechanism.

2. A MGF module is proposed to integrate multi-scale features, and the global
information is well organized to guide the integration with low-level Trans-
former features.

3. We build a high-resolution matting dataset with 460 images of the transpar-
ent or non-salient foreground. The dataset will be released to promote the
development of matting technology.

4. Experiments on three matting datasets demonstrate that the proposed Trans-
Matting method outperforms the current SOTA methods, indicating the ef-
fectiveness of our proposed modules.

2 Related Works

In this section, we first briefly review matting from two perspectives: traditional
methods and deep-learning methods. Then, we further give an overview of Vision
Transformer models, as the Tri-token Guided Transformer Block (TGTB) is one
of the main contributions of this work.

2.1 Traditional Matting

Traditional matting methods can be divided into two categories: sampling-based
and propagation-based methods. These methods mainly rely on low-level fea-
tures, like color, location, etc. The sampling-based methods [2,7,43,12,15,36] first
predict the colors of the foreground and background by evaluating the similar-
ity of colors between the known foreground, background, and unknown area
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in samples, and then predict alpha mattes. Various sampling techniques have
been investigated, including color cluster sampling [36], edge sampling [15], ray
casting [12], etc. The propagation-based methods [5,17,38] propagate the infor-
mation from the known foreground and background to the unknown area by
solving the sparse linear equation system [18], the Poisson equation system [13],
etc., to obtain the best global optimal alpha.

2.2 Deep-Learning Matting

In recent decades, deep learning technologies have boomed in various fields of
computer vision. The same goes for the image matting task. [40] combines the
sampling and deep neural network to improve the accuracy of alpha matting pre-
diction. The Indices matter method [29] proposes an index-guided method for
up-sampling and down-sampling to make the detailed information in the predic-
tion graph more complete. Based on providing a larger dataset Composition-1k
[46], DIM utilizes an encoder-decoder model to directly predict alpha mattes,
which effectively improves the accuracy. [39] introduces semantic classification
information of the matting region and uses learnable weights and multi-class
discriminators to revise the prediction results. [51] proposes a general matting
framework, which is conducive to obtaining better results under the guidance
of different qualities and forms. [26] further mines the information of the RGB
map and trimap and fuses the global information from these maps for obtaining
better alpha mattes. All of the above methods use trimap as guidance. Some
trimap-free methods can predict alpha mattes without using trimap. However,
the accuracy of these trimap-free methods still has a big gap compared to that
of the trimap-guided ones [6,49,35,48], indicating that the trimap could help the
model to capture information efficiently.

2.3 Vision Transformer

The Transformer is firstly proposed in [42] to model long-range dependencies
for machine translation and has demonstrated impressive performance on NLP
tasks. Inspired by this, numerous attempts have been made to adapt transform-
ers for vision tasks, and promising results have been shown for vision fields such
as image classification, objection detection, semantic segmentation, etc. In par-
ticular, ViT [9] divides the input image into patches with a size of 16 × 16 and
feeds the patch sequences to the vanilla Transformer model. To help the train-
ing process and improve the performance, DeiT [41] proposes a teacher-student
strategy, which includes a distillation token for the student to learn from the
teacher. Later, Swin [27], PVT [44], Crossformer [45], and HVT [32] combine
the Transformer and pyramidal structure to decrease the number of patches
progressively for obtaining multi-scale feature maps. To reduce computing and
memory complexity, Swin, HRFormer [52], and CrossFormer apply local-window
self-attention in Transformer, which also shows superior or comparable perfor-
mance compared to the counterpart CNNs. The powerful self-attention mech-
anism in Transformer shows great advantages over CNN by capturing global



TransMatting 5

Table 1. Comparison between different public matting datasets.

Image Matting Dataset total num TT num resolution

DAPM[37] 2000 0 800×600
Composition-1k[46] 481 86 1297×1082
Distinction-646[34] 646 79 1727×1565

AIM-500[21] 500 76 1260×1397
Transparent-460 (Ours) 460 460 3820×3766

attention of the whole image. However, some researchers [23] argue that locality
and globality are both essential for vision tasks. Therefore, various researchers
have tried combining the locality of CNN with the globality of Transformer to
improve performance further. LocalViT [23] brings depth-wise convolutions to
vision transformer to combine self-attention mechanism with locality, and shows
great improvement compared to the pure Transformer, like DeiT, PVT, and
TNT [14].

3 Matting Dataset

According to the transparency of foregrounds, we could divide the images of
matting into two types: 1) Transparent partially (TP): TP refers to that there
are significant foreground and uncertainty areas, and the foreground areas can
provide information for the prediction of uncertainty areas. For example, when
the foreground is human, the opaque and unknown regions are the hair or clothes.
2) Transparent totally (TT): there are minor or non-salient foreground areas, and
the entire image is semi-transparent or high transparent. These images include
glass, plastic bags, fog, water drops, etc.

As illustrated in Tab. 1, we select four popular image matting datasets for
comparison, including DAPM [37], Composition-1k, Distinctions-646 [34], and
AIM-500 [21]. The DAPM dataset consists only of portraits with no translucent
or transparent objects. The Composition-1k dataset contains multiple categories,
while most images are portraits (227 out of 481, TP-type). The Distinctions-646
dataset also mainly consists of portraits (343 out of 646, TP-type) [26]. The
AIM-500 dataset contains only 76 TT-type images (correspond to the Salient
Transparent/Meticulous type and the Non-Salient type in the original dataset)
but 424 TP-type images.

As we can see, the transparent objects in the above datasets only occupy a
small portion. This may be because it is much more difficult to label transparent
objects than other objects, limiting the progress of transparent objects in the
matting field. In this work, we propose the first large-scale dataset targeting var-
ious high transparent objects called Transparent-460 dataset. Our Transparent-
460 dataset includes 460 high-quality manually-annotated alpha mattes, where
410 images are for training and 50 for testing. Furthermore, to our best knowl-
edge, the resolution of our Transparent-460 is the highest (the average resolution
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Fig. 1. The structure of our TransMatting.

is up to 3820 × 3766) among all datasets with high transparent objects. We be-
lieve this new matting dataset will greatly advance the matting research on
objects with massive transparent areas.

4 Methodology

4.1 Motivation

By evaluating the results of some SOTA methods on TT and TP objects sepa-
rately on the Composition-1k dataset (Tab. 2), we find that the results of TT,
which denotes the total transparent objects, are much worse than TP, indi-
cating that TT objects are the key to affecting the overall evaluation results.
Furthermore, we find that most of the existing methods rely on the informa-
tion of the foreground region for predicting the unknown region [5,17,19,22,1].
However, such methods will become useless or ineffective when facing images
with no definite known regions. For example, [22] borrows features from both
the known and unknown regions; when the unknown region is overwhelming in
the images, the opacity propagation and the mattes prediction will face difficul-
ties. Therefore, global information with a large or global receptive field and local
features with inherent representation are needed to enhance the understanding
and recognition capacity for objects with totally unknown regions. Although we
can stack CNN layers to enlarge the receptive field, the information that covers
the whole image is still hard to be obtained [25]. Besides, CNN also lacks global
connectivity [23]. By contrast, the Transformer is good at modeling long-range
connectivity with its attention mechanism.
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Table 2. Performance of TT and TP objects on the Composition-1k dataset.

Methods
MSE↓ SAD↓

TT TP TT+TP TT TP TT+TP

IndexNet [29] 22.87 8.9 13 110.3 18.08 45.8
GCAMatting [22] 15.89 6.2 9.1 85.72 13.68 35.3
MGMatting [51] 13.01 4.65 7.18 77.88 11.87 31.76

TransMatting(Ours) 7.49 3.4 4.58 59.37 10.35 24.96

Moreover, most existing SOTA trimap-guided methods directly concatenate
the trimap with RGB image as input. However, the huge gap between the two
modalities of RGB image and trimap brings great difficulties in semantic feature
extraction. At the same time, the trimap cannot effectively help the model focus
on the region of interest. Therefore, a more efficient way to promote the guiding
role of trimap is needed.

In short, to improve the performance of TT objects, more global and local
features should be captured, and an effective guidance method for the trimap
should be developed.

4.2 Baseline Structure

To extract both the local and global features, we combine CNN and the Trans-
former model as our encoder. Specifically, the first part, like [51,22] is the same
as the first two stages of ResNet34-UNet (denoted as CNN Local Extractor in
Fig. 1). The second part consists of a stack of our proposed Tri-token Guided
Transformer Block (TGTB) based on the Swin Transformer [27]. As the decoder,
we adopt the original ResNet34-UNet, a widespread network in the matting field
[51,22].

4.3 Trimap Guided Methods

Almost all SOTA methods [26,51,22,46,50,39,3] use trimap as a guide and di-
rectly concatenate the RGB image and the annotated trimap as the model’s
input. However, the modalities of the RGB image and trimap are quite dif-
ferent. The RGB image scales from 0 to 255 and shows fine low-level features
like texture, color similarity, etc. The trimap includes three values, containing
high-level semantic information, like shape, location, etc., [26]. Thus, the direct
concatenation between them is not the most efficient way to extract features.

Although trimap can explicitly indicate the region of interest, it is still hard
to take full advantage of this information. To the best of our knowledge, we are
the first to attempt to harmonize the RGB image and trimap rather than simply
concatenating them. We insert a learnable trimap into the Transformer module
to guide the model to concentrate on the valuable area, making the network
learning more efficient and robust.
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4.4 Tri-token

Inspired by the [cls] token in Vision Transformer, we design a new tri-token
(shown in Fig. 1) structure, aiming to introduce the high-level semantic in-
formation directly into the self-attention mechanism to replace the inefficient
concatenation methods. Given a vanilla Trimap ∈ RH×W , we generate three
learnable tri-tokens (denoted as Tokeni, i = {0, 1, 2}) with different initializa-
tion to represent the known foreground, known background, and unknown areas,
respectively. Every tri-token is a 1D vector, that is, Tokeni ∈ RC . Then we re-
place every pixel in the trimap with the corresponding tri-token to generate the
tri-token map, formulated as:

Trimap[Trimap == i] = Tokeni, i = {0, 1, 2} (2)

In this manner, the tri-token map can directly guide the self-attention process in
the Transformer to pay more attention to the unknown areas for self-updating.

4.5 Tri-token Guided Transformer Block

Global connectivity is much more important for the prediction of total transpar-
ent objects. CNN does not have global attention, and its receptive field cannot
cover the whole image [25], which leads to poor estimation for pixels outside
receptive fields, while Transformer has global attention, and its receptive field
can cover every pixel at the first layer.

The Transformer consists of multi-head self-attention (MHSA) and Multi-
layer Perceptron (MLP) blocks. The self-attention mechanism can be thought of
as a mapping between a query and a collection of key-value pairs. The output is
a weighted sum of the values, and the weights are assigned by the compatibility
function between the query and the relevant key. This can be implemented by
Scaled Dot-Product Attention [42], in which a softmax function is used to ac-
tivate the dot products of query and all keys for obtaining the weights. MHSA
means that more than one self-attention is performed in parallel.

Like [27,45,52], we use non-overlapping windows whose size is M × M to
divide the feature maps. The MHSA is performed within each window. The
formulations of vanilla attention and our tri-token attention in a specific window
are shown as follows:

Attention(Q,K, V ) = Softmax(QKT /
√
d)V (3)

Tri-token Attention(Q,K, V ) = Softmax((Q+ Tri-token)KT /
√
d)V (4)

where Q,K, V ∈ RM2×d represent the query, key, and value in the attention
mechanism, respectively. d is the query/key dimension. In the Tri-token Atten-
tion formulation,Q,K, and V are the same as that in the standard self-attention.
The Tri-token is our proposed learnable trimap that adds to the query for form-
ing a new tri-token query. In this way, our tri-token attention mechanism can
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selectively aggregate contexts and evaluate which region should be paid more
attention to with the guidance of our learnable tri-tokens.

In this way, we combine the self-attention and tri-tokens to focus on more
valuable regions by considering the relationship between non-background and
background areas, and finally achieve the best performance. We use our tri-
token attention every five blocks in each Tri-token Guided Transformer Block
(TGTB).

4.6 Multi-scale Global-guided Fusion Module

In the multi-scale feature pyramid structure, in-depth features contain more
global information, while shallow features have rich local information like tex-
ture, color similarity, etc. Fusing these features is vital for accurately predicting
alpha mattes for high transparent objects [35]. Although the direct sum opera-
tion can realize feature fusion, the details in the shallow features may attenuate
the impact of the advanced semantics, resulting in some subtle regions miss-
ing [35]. To address this issue, we propose a Multi-scale Global-guided Fusion
(MGF) module in the decoder process (see Fig. 1 for details), with both the
non-background information and the advanced semantic features as guidance,
to fuse the high-level semantic information and the lower ones effectively.

Specifically, we denote three adjacent features from shallow to deep as Tn−1,
Tn, and Tn+1. The Tn−1 is first down-sampled, then the Hadamard product
is employed between the non-background mask and Tn−1 to extract the low-
level features of non-background, which helps to reduce the impact of complex
background influence. This can guide the network to pay more attention to the
foreground and unknown areas. After that, the Tn−1 is concatenated with Tn,
and a convolution layer is performed to align the channel of fused features. We
mark this feature as Tf .

For the Tn+1, we first perform a global average pooling to generate channel-
wise statistics and then use two fully connected (FC) layers to squeeze channels.
As shown in Fig. 1, features output from the two FC layers are denoted as γ
and β, separately. To fully capture channel-wise dependencies, we add a sigmoid
function to activate γ and perform broadcast multiplication with Tf for channel
re-weighting. After that, broadcast addition is performed between the channel-
weighted feature and β. A convolution layer is used to fuse information from
different groups. Notably, a skip connection from Tn is employed for obtaining
the final fused features of MGF.

In short, considering that fusing low-level features directly may cause a neg-
ative impact on the advanced semantics [35], two techniques are proposed here.
Firstly, the non-background mask is introduced into the fusion process to filter
out the complex background information and further help to concentrate more
attention on the foreground and unknown areas. Secondly, the global channel-
wise attention from higher-level features is used for re-weighting and enhancing
the important information in the fused features.
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4.7 Loss Function

Following [51], we use three losses, including the alpha loss (Lα), Compositional
loss [46] (Lcomp), and Laplacian loss [16] (Llap). As formulated below, their
weights are set as 0.4, 1.2, and 0.16, respectively.

Lfinal = 0.4 ∗ Lα + 1.2 ∗ Lcomp + 0.16 ∗ Llap (5)

5 Experiments

In this section, we show our experimental settings and compare our evaluation
results on the test set of Composition-1k [46], Distinction-646 [34], and our
Transparent-460 datasets with other state-of-the-art methods.

5.1 Dataset

Composition-1k contains 431 and 50 unique foreground objects and manually
labeled alpha mattes as training and test sets, respectively. Every foreground
object is composited with 100 (for training set) and 20 (for test set) background
images from COCO [24] and Pascal VOC [10]. As a result, there are 43,100
images for training and 1,000 images for testing.

Distinction-646 comprises 646 distinct foreground objects. Similar to the
Composition-1k, 50 objects are divided as the test set. Following the same com-
position rule, there are 59,600 and 1000 images for training and testing, respec-
tively.

Our Transparent-460 mainly consists of transparent and non-salient ob-
jects as the foreground, like water drops, jellyfish, plastic bags, glass, crystals,
etc. We collect 460 high-resolution images and carefully annotate them with
Photoshop. Considering the transparent objects are very meticulous, we keep
the original resolution of all collected images (up to 3820 × 3766 pixels on aver-
age). To our best knowledge, this is the first transparent object matting dataset
in such a high resolution.

5.2 Evaluation Metrics

Following [16,3,29,26], we use four metrics for evaluation, including the Sum of
Absolute Differences (SAD), Mean Squared Error (MSE), Gradient error (Grad.)
and Connectivity error (Conn). It is notable that the unit of MSE value is set
to 1e-3 for easy reading.

5.3 Implementation Details

We use PyTorch [33] to implement our proposed method. All the experiments
are trained for 200,000 iterations. We initialize our network with ImageNet [8]
pre-trained weights. The ablation experiments in Tab. 3, 4, 5 are done with 2
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Table 3. The effectiveness of our proposed TGTB and MGF modules on the
Composition-1k dataset.

TGTB MGF SAD ↓ MSE ↓ Grad. ↓ Conn.↓

29.14 6.34 12.06 25.21
✓ 27.45 5.66 11.77 24.30

✓ 27.21 5.57 11.23 23.25
✓ ✓ 26.83 5.22 10.62 22.14

NVIDIA Tesla V100 GPU with a batch size of 32. Moreover, to compare our
method with the existing SOTA methods, we use a batch size of 64 with 4
NVIDIA Tesla V100 GPU to train our proposed method in Tab. 6, 7, 8. The
Adam optimizer is utilized, and the initial learning rate is set to 1e-4 with the
same learning rate decay strategy as [51,28]. For a fair comparison, we follow
the data augmentation methods used in [22], like random crop, rotation, scaling,
shearing, etc. Moreover, the trimaps for training are generated using dilation and
erosion ways on alpha images by random kernel sizes from 1 to 30. Finally, we
crop 512×512 patches on the center of the unknown area of alpha and composite
them with the background from COCO. We use the same training conditions on
the Composition-1k and Distinction-646 datasets.

5.4 Ablation Study

To evaluate the effectiveness of our new proposed modules of TGTB and MGF,
and the performance with different hyper-parameters, we design the ablation
study on the Composition-1k dataset.

Evaluate the effectiveness of our proposed modules. The quantita-
tive results under the SAD, MSE, Gradient, and Connectivity errors with and
without our proposed TGTB and MGF modules are illustrated in Tab. 3. As we
can see, with the TGTB module, the four metrics listed above decrease to 27.45,
5.66, 11.77, and 24.30, respectively. The main reason is that our redesigned tri-
token map is more suitable for propagating location information than simply
concatenating to the input image. The MGF module could solely achieve similar
performance, indicating that our proposed multi-scale feature fusion strategy
can also help the decoder to make better use of the local and global information.
When combined with the TGTB and MGF modules, the model achieves the best
performance, indicating the effectiveness of the two new proposed modules.

Determine where to introduce tri-tokens. There are four TGTB stages
in our encoder model. Tab. 4 reports the performance with different positions to
introduce tri-tokens. As the position goes deep, the feature map size decreases,
making more position information lose. On the other hand, deep stages have
learned more abstract semantic features, which is suitable for mutual learning
with tri-tokens. As shown in Tab. 4, both shallow and deep stages benefit from
tri-tokens, indicating that the tri-tokens in TGTB modules could guide the en-
coder to focus on the right regions.
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Table 4. Ablation results on the
Composition-1k dataset with different po-
sitions to introduce the proposed tri-
tokens.

Position SAD↓ MSE↓ Grad.↓ Conn.↓

1 31.68 7.24 14.20 27.42
4 29.50 6.20 13.18 25.23

1,2,3,4 26.83 5.22 10.62 22.14

Table 5. Ablation results on the
Composition-1k dataset with local or
(and) global features in the proposed MGF
module.

local global SAD↓ MSE↓ Grad.↓ Conn.↓

27.45 5.66 11.77 24.30
✓ 27.16 5.34 11.03 22.60

✓ 27.39 5.46 11.43 23.20
✓ ✓ 26.83 5.22 10.62 22.14

Input                 Trimap DIM                    IndexNet MGMatting Ours                  GT

Fig. 2. Visual comparison of our TransMatting against SOTA methods on the
Composition-1k test set.

The impact of local and global features in MGF. Tab. 5 reports the
effectiveness of our MGF module with and without local or global branches. The
local branch is proposed to integrate Tn−1 with the non-background mask, and
the global branch is responsible for introducing global features from Tn+1 to
guide the feature flow. As we can see from Tab. 5, combining local and global
branches could achieve the best performance compared with using one of them
solely. The main reason is the effectiveness of our MGF in fusing local (texture,
border) and global (semantic, location) features for modeling unknown regions.

5.5 Comparison with Prior Work

To evaluate our method’s performance, we compare it with other state-of-the-art
models on the following three datasets. Notably, we achieve the best performance
on all three datasets.

Testing on Composition-1k. We show the quantitative and visual results
on Tab. 6 and Fig. 2. Without any test-time augmentations, our proposed Trans-
Matting outperforms other SOTA methods on all four evaluation metrics by only
using the Composition-1k training set for training. As illustrated in Tab. 6, our
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Table 6. The quantitative results on the Composition-1k test set [46]. † denotes results
with test-time augmentation.

Methods SAD↓ MSE↓ Grad.↓ Conn.↓
AlphaGAN [31] 52.4 30 38 53

DIM [29] 50.4 14 31.0 50.8
IndexNet [29] 45.8 13 25.9 43.7

AdaMatting [3] 41.7 10 16.8 -
ContextNet [16] 35.8 8.2 17.3 33.2

GCAMatting [22] 35.3 9.1 16.9 32.5
MGMatting [51] 31.5 6.8 13.5 27.3
TIMI-Net [26] 29.08 6.0 12.9 27.29

FBAMatting [11] † 25.8 5.2 10.6 20.8

TransMatting(Ours) 24.96 4.58 9.72 20.16

Input                       Trimap DIM            IndexNet MGMatting Ours          GT

Fig. 3. Visual comparison of our TransMatting against SOTA methods on our
Transparent-460 test set.

model decreases the MSE and Grad metrics heavily: from 5.2, 10.6 to 4.58 and
9.72, respectively, indicating the effectiveness of our TransMatting.

Testing on Distinction-646. Tab. 7 compares the performance of our
TransMatting with other state-of-the-art methods on Distinction-646. For a fair
comparison, we follow the whole inference protocol in [34,51] to calculate the
metrics based on the whole image. Without any additional tuning, our method
outperforms all the SOTA methods.

Testing on our Transparent-460 . Based on their release codes, we train
IndexNet and MGMatting methods on our dataset and compare them with ours
in Tab. 8. Our Transparent-460 dataset mainly focuses on transparent and non-
salient foregrounds, which is very difficult for existing image matting methods.
Surprisingly, as illustrated in Tab. 8, our TransMatting achieves promising re-
sults with only a 4.02 MSE error. Furthermore, to evaluate the generalization
performance of our model. We train our TransMatting on the Composition-1k
training set and directly test it on the Transparent-460 test set. The results are
shown in Tab. 9. Thanks to the big receptive field and well-designed multi-scale
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Table 7. The quantitative results on the Distinction-646 test set.

Methods SAD↓ MSE↓ Grad.↓ Conn.↓

KNNMatting [5] 116.68 25 103.15 121.45
DIM [46] 47.56 9 43.29 55.90

HAttMatting [34] 48.98 9 41.57 49.93
GCAMatting [22] 27.43 4.8 18.7 21.86
MGMatting [51] 33.24 4.51 20.31 25.49

TransMatting (Ours) 25.65 3.4 16.08 21.45

Table 8. The quantitative results on our proposed Transparent-460 test set.

Methods SAD↓ MSE↓ Grad.↓ Conn.↓

IndexNet [29] 573.09 112.53 140.76 327.97
MGMatting [51] 111.92 6.33 25.67 103.81

TransMatting (Ours) 88.34 4.02 20.99 82.56

fusion module, our model reduces nearly half of the SAD, MSE, and Conn. errors
compared to the SOTA methods.

Table 9. The generalization results on our proposed Transparent-460 test set.

Methods SAD↓ MSE↓ Grad.↓ Conn.↓

DIM [46] 356.2 49.68 146.46 296.31
IndexNet [29] 434.14 74.73 124.98 368.48

MGMatting [51] 344.65 57.25 74.54 282.79
TIMI-Net [26] 328.08 44.2 142.11 289.79

TransMatting(Ours) 192.36 20.96 41.8 158.37

6 Conclusion

In order to generalize to transparent and non-salient foregrounds, matting algo-
rithms must have the ability to mine long-range features and utilize the semantic
features in trimap. In this paper, we propose a novel Transformer-based network
by redesigning a tri-token map to introduce the trimap semantic features into the
long-range dependencies of the self-attention mechanism. Furthermore, a multi-
scale global-guided fusion module is proposed to take the global information
and local non-background mask as a guide to fuse multi-scale features for bet-
ter modeling the unknown regions in transparent objects. Experiments on the
Composition-1k, Distinctions-646, and our proposed Transparent-460 datasets
demonstrate that our TransMatting outperforms the state-of-the-art methods.
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11. Forte, M., Pitié, F.: f , b, alpha matting. arXiv preprint arXiv:2003.07711 (2020)
12. Gastal, E.S., Oliveira, M.M.: Shared sampling for real-time alpha matting. In:

Computer Graphics Forum. vol. 29, pp. 575–584. Wiley Online Library (2010)
13. Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random walks for interac-

tive alpha-matting. In: Proceedings of VIIP. vol. 2005, pp. 423–429 (2005)
14. Han, K., Xiao, A., Wu, E., Guo, J., Xu, C., Wang, Y.: Transformer in transformer.

Advances in Neural Information Processing Systems 34 (2021)
15. He, K., Rhemann, C., Rother, C., Tang, X., Sun, J.: A global sampling method for

alpha matting. In: CVPR 2011. pp. 2049–2056. IEEE (2011)
16. Hou, Q., Liu, F.: Context-aware image matting for simultaneous foreground and

alpha estimation. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 4130–4139 (2019)

17. Lee, P., Wu, Y.: Nonlocal matting. In: CVPR 2011. pp. 2193–2200. IEEE (2011)
18. Levin, A., Lischinski, D., Weiss, Y.: A closed-form solution to natural image mat-

ting. IEEE transactions on pattern analysis and machine intelligence 30(2), 228–
242 (2007)

19. Levin, A., Rav-Acha, A., Lischinski, D.: Spectral matting. IEEE transactions on
pattern analysis and machine intelligence 30(10), 1699–1712 (2008)

https://doi.org/10.1007/978-3-030-58452-8_13
http://arxiv.org/abs/2005.12872
http://arxiv.org/abs/2005.12872


16 Huanqia Cai et al.

20. Li, J., Zhang, J., Maybank, S.J., Tao, D.: End-to-end animal image matting. arXiv
e-prints pp. arXiv–2010 (2020)

21. Li, J., Zhang, J., Tao, D.: Deep automatic natural image matting. arXiv preprint
arXiv:2107.07235 (2021)

22. Li, Y., Lu, H.: Natural image matting via guided contextual attention. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 11450–11457
(2020)

23. Li, Y., Zhang, K., Cao, J., Timofte, R., Van Gool, L.: Localvit: Bringing locality
to vision transformers. arXiv preprint arXiv:2104.05707 (2021)

24. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: European conference
on computer vision. pp. 740–755. Springer (2014)

25. Liu, Q., Xie, H., Zhang, S., Zhong, B., Ji, R.: Long-range feature propagating for
natural image matting. In: Proceedings of the 29th ACM International Conference
on Multimedia. pp. 526–534 (2021)

26. Liu, Y., Xie, J., Shi, X., Qiao, Y., Huang, Y., Tang, Y., Yang, X.: Tripartite
information mining and integration for image matting. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 7555–7564 (2021)

27. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022
(2021)

28. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983 (2016)

29. Lu, H., Dai, Y., Shen, C., Xu, S.: Indices matter: Learning to index for deep image
matting. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 3266–3275 (2019)

30. Lu, Z., He, S., Zhu, X., Zhang, L., Song, Y.Z., Xiang, T.: Simpler Is Better: Few-
Shot Semantic Segmentation With Classifier Weight Transformer. In: ICCV 2021.
pp. 8741–8750. https://openaccess.thecvf.com/content/ICCV2021/html/

Lu_Simpler_Is_Better_Few-Shot_Semantic_Segmentation_With_Classifier_

Weight_Transformer_ICCV_2021_paper.html

31. Lutz, S., Amplianitis, K., Smolic, A.: Alphagan: Generative adversarial networks
for natural image matting. arXiv preprint arXiv:1807.10088 (2018)

32. Pan, Z., Zhuang, B., Liu, J., He, H., Cai, J.: Scalable visual transformers with
hierarchical pooling. arXiv e-prints pp. arXiv–2103 (2021)

33. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

34. Qiao, Y., Liu, Y., Yang, X., Zhou, D., Xu, M., Zhang, Q., Wei, X.: Attention-
guided hierarchical structure aggregation for image matting. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13676–
13685 (2020)

35. Qiao, Y., Liu, Y., Zhu, Q., Yang, X., Wang, Y., Zhang, Q., Wei, X.: Multi-scale
information assembly for image matting. In: Computer Graphics Forum. vol. 39,
pp. 565–574. Wiley Online Library (2020)

36. Shahrian, E., Rajan, D., Price, B., Cohen, S.: Improving image matting using
comprehensive sampling sets. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 636–643 (2013)

https://openaccess.thecvf.com/content/ICCV2021/html/Lu_Simpler_Is_Better_Few-Shot_Semantic_Segmentation_With_Classifier_Weight_Transformer_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Lu_Simpler_Is_Better_Few-Shot_Semantic_Segmentation_With_Classifier_Weight_Transformer_ICCV_2021_paper.html
https://openaccess.thecvf.com/content/ICCV2021/html/Lu_Simpler_Is_Better_Few-Shot_Semantic_Segmentation_With_Classifier_Weight_Transformer_ICCV_2021_paper.html


TransMatting 17

37. Shen, X., Tao, X., Gao, H., Zhou, C., Jia, J.: Deep automatic portrait matting. In:
European conference on computer vision. pp. 92–107. Springer (2016)

38. Sun, J., Jia, J., Tang, C.K., Shum, H.Y.: Poisson matting. In: ACM SIGGRAPH
2004 Papers, pp. 315–321 (2004)

39. Sun, Y., Tang, C.K., Tai, Y.W.: Semantic image matting. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11120–
11129 (2021)

40. Tang, J., Aksoy, Y., Oztireli, C., Gross, M., Aydin, T.O.: Learning-based sam-
pling for natural image matting. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 3055–3063 (2019)

41. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning. pp. 10347–10357. PMLR (2021)

42. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

43. Wang, J., Cohen, M.F.: Optimized color sampling for robust matting. In: 2007
IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–8. IEEE
(2007)

44. Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., Shao,
L.: Pyramid vision transformer: A versatile backbone for dense prediction with-
out convolutions. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 568–578 (2021)

45. Wang, W., Yao, L., Chen, L., Cai, D., He, X., Liu, W.: Crossformer: A versatile
vision transformer based on cross-scale attention. arXiv e-prints pp. arXiv–2108
(2021)

46. Xu, N., Price, B., Cohen, S., Huang, T.: Deep image matting. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. pp. 2970–2979
(2017)

47. Yang, J., Li, C., Zhang, P., Dai, X., Xiao, B., Yuan, L., Gao, J.: Focal self-attention
for local-global interactions in vision transformers. arXiv preprint arXiv:2107.00641
(2021)

48. Yang, X., Qiao, Y., Chen, S., He, S., Yin, B., Zhang, Q., Wei, X., Lau, R.W.:
Smart scribbles for image matting. ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM) 16(4), 1–21 (2020)

49. Yang, X., Xu, K., Chen, S., He, S., Yin, B.Y., Lau, R.: Active matting. Advances
in Neural Information Processing Systems 31 (2018)

50. Yu, H., Xu, N., Huang, Z., Zhou, Y., Shi, H.: High-resolution deep image matting.
arXiv preprint arXiv:2009.06613 (2020)

51. Yu, Q., Zhang, J., Zhang, H., Wang, Y., Lin, Z., Xu, N., Bai, Y., Yuille, A.:
Mask guided matting via progressive refinement network. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 1154–
1163 (2021)

52. Yuan, Y., Fu, R., Huang, L., Lin, W., Zhang, C., Chen, X., Wang, J.: Hrformer:
High-resolution transformer for dense prediction. arXiv preprint arXiv:2110.09408
(2021)

53. Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J.,
Xiang, T., Torr, P.H., Zhang, L.: Rethinking Semantic Segmentation from a
Sequence-to-Sequence Perspective with Transformers. In: 2021 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 6877–6886.



18 Huanqia Cai et al.

IEEE. https://doi.org/10.1109/CVPR46437.2021.00681, https://ieeexplore.

ieee.org/document/9578646/

https://doi.org/10.1109/CVPR46437.2021.00681
https://ieeexplore.ieee.org/document/9578646/
https://ieeexplore.ieee.org/document/9578646/

	TransMatting: Enhancing Transparent Objects Matting with Transformers

