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Abstract. RGB-D salient object detection (SOD) enjoys significant ad-
vantages in understanding 3D geometry of the scene. However, the geom-
etry information conveyed by depth maps are mostly under-explored in
existing RGB-D SOD methods. In this paper, we propose a new frame-
work to address this issue. We augment the input image with multiple
different views rendered using the depth maps, and cast the conventional
single-view RGB-D SOD into a multi-view setting. Since different views
captures complementary context of the 3D scene, the accuracy can be
significantly improved through multi-view aggregation. We further de-
sign a multi-view saliency detection network (MVSalNet), which firstly
performs saliency prediction for each view separately and incorporates
multi-view outputs through a fusion model to produce final saliency pre-
diction. A dynamic filtering module is also designed to facilitate more ef-
fective and flexible feature extraction. Extensive experiments on 6 widely
used datasets demonstrate that our approach compares favorably against
state-of-the-art approaches.

Keywords: RGB-D Salient Object Detection, multi-view augmenta-
tion, multi-view fusion

1 Introduction

RGB-D salient object detection (SOD) aims to identify and segment the most
conspicuous objects in the input scene considering both RGB images and the cor-
responding depth maps. With the rapid development of depth sensors, RGB-D
SOD has found wide applications in surveillance [54], autonomous driving [43],
and robotics [42], to name a few. Since additional depth information permits
comprehensive understanding of the 3D geometry, RGB-D SOD is inherently
more superior than its RGB based counterpart in handling challenging scenar-
ios, including background clutter, illumination variation, etc., and therefore has
attracted increasingly more attention from the community.

⋆ Corresponding author.
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Fig. 1. Framework comparison. (a)(b) Existing RGB-D SOD methods mainly use the
input depth map as an additional feature channel. (c) We leverage the 3D geometry of
the input depth to perform multi-view saliency detection.

Since the depth map and RGB images are from two different modalities with
significant cross-modal gap, it is not a trivial task to perform SOD by simultane-
ously utilizing the two input data modalities. As such, recent research efforts [5,
30] mainly focus on cross-modal fusion between the input RGB and depth for
SOD (cf. Figure 1 (a), (b)). Although significant progress has been achieved,
these existing methods mostly use the depth information as an additional in-
put channel to provide low-level cues like edges, contours, and regions, while
the essential 3D geometry information are under-explored. This drawback may
potentially restrict the merits of existing RGB-D SOD, leading to unsatisfactory
performance.

As we humans move freely in the 3D world, we can perceive the scene from
different views, allowing more precise foreground detection even at adversarial
cases. In fact, the human vision system are also binocular for more effective 3D
perception. All these evidences indicate that multi-view perception enabled by
3D geometry can significantly benefit vision tasks.

Motivated by above observations, we propose a new framework to fully ex-
plore the geometry information for RGB-D SOD. Instead of using depth map as
only low-level cues, we leverage the contained 3D geometry to render the input
image under different views, which allows multi-view perception to be mimicked
from a single static image. SOD can then be performed for each view indepen-
dently and the generated single view predictions are eventually fused to produce
the final saliency maps (As illustrated in Figure 1 (c)). Since different views may
capture different context of input scene and are complementary to each other,
the saliency predictions aggregated from multiple views are shown to be more
accurate and robust.

We implement the above idea by designing a multi-view saliency detection
network (MVSalNet), which contains multiple saliency prediction streams for the
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augmented input views, and a multi-view fusion module to incorporate single-
view saliency predictions into the final result. To ensure more effective deep
feature extraction, we further design a dynamic filtering module (TDF) using
transformer networks, which generates position-specific filters according to the
input features, leading to more flexible and adaptive convolutions. The entire
network can be learned in an end-to-end manner, and compares favorably against
existing RGB-D SOD methods.

Our new framework provides an alternative idea for RGB-D SOD. Since single
view RGB-D SOD is reformulated as multi-view RGB SOD, the cross-modal gap
between RGB image and depth is naturally resolved. Besides, as existing RGB
SOD methods can be easily incorporated into our framework for single-view
saliency prediction, our method has the potential to benefit from advances in
RGB SOD domain.

In summary, the contribution of this paper can be summarized as follows.

– We present a new framework for RGB-D SOD with multi-view augmentation,
which can effectively leverage the geometry information carried in input
depth maps.

– We design a multi-view saliency prediction network with dynamic filtering
modules, which can not only enhance saliency prediction in each single view,
but also enables cross-view prediction fusion, yielding more accurate SOD
results.

Our method sets new state of the art on 6 benchmark datasets. Extensive eval-
uation has justified the effectiveness of our contribution.

2 Related Work

2.1 RGB-D Salient Object Detection

Traditional methods are mainly based on hand-crafted features, such as con-
trast [36], shape [7], compactness [8], background enclosure [16] and so on. As
the representation ability of the hand-crafted features is limited, all the above
models can not cope with complex scenes. While recently, deep learning-based
methods have made significant progress [18, 50, 46] due to the powerful ability in
discriminative feature representation. Based on the scope of this paper, we divide
existing deep-based models into single-stream models [41, 54] and multi-stream
models [15, 48]. The single-stream models directly fuse RGB images and depth
maps to send to the network. For example, DANet [52] uses depth-enhanced dual
attention to generate contrasted features for the decoder. For the multi-stream
models, the frameworks employ parallel networks to extract and fuse multi-
modal features with various strategies. For example, Zhang et al. [48] propose
an asymmetric two-stream network and design a flow ladder module for RGB
stream and a depth attention module for depth stream. Generally speaking,
single-stream model is lighter and multi-stream model has better performance.
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However, unlike the aforementioned methods in which depth cues are only
treated as the direct input of the feature extractor. In this paper, we further ex-
ploit the use of depth information. As the depth information contains abundant
geometric prior knowledge, we utilize the depth cues to rotate the corresponding
RGB images. Then we get multi-view saliency results and fuse them to generate
the final output. This results in two major benefits: 1) We generate multi-view
RGB images to replace the original depth map, in this way, we explicitly elim-
inate the modal gap; 2) The noise in low-quality depth map is largely reduced
as we use late-fusion [19] to fuse the multi-view saliency results.

2.2 Novel View Synthesis

In some tasks, new views can be synthesized as a data augmentation method. [55]
formulates the 3D object detection problem as the detection of rotated bound-
ing boxes in images from bird’s eye view generated using the homography. [26]
randomly manipulates the camera system, including its focal length, receptive
field and location, to generate new training images with geometric shifts. [53]
introduces a perspective-aware data augmentation that synthesizes new training
examples with more diverse views by perturbing the existing ones in a geomet-
rically consistent manner. Inspired by them, we propose to generate multi-view
RGB images in RGB-D SOD.

2.3 Attention Mechanism and Transformer

Fully-convolutional networks [31] are mature architecture for dense prediction,
they adopt convolution and subsampling as fundamental elements in order to
learn multi-scale features that can leverage an appropriately large context. Fur-
thermore, attention has already proven to be an effective architecture for learning
strong models for natural language processing (NLP) [27, 10]. There have been
several works that adapt attention mechanisms to computer vision tasks and get
competitive results, such as image classification [11], object detection [2], and
panoptic segmentation [44]. This is likely because attention can capture long-
range associations, which further lead to the trends that combine CNNs with
transformers [2, 28]. Notice the advantages of combining the two, we propose
to leverage a transformer-based dynamic filtering module to generate adaptive
kernels and get more effective features.

3 Method

In this section, we present a new paradigm for RGB-D saliency detection with
multi-view augmentation. Figure 2 overviews the pipeline of our method. Given
an input image I and its corresponding depth map D, we first render the RGB
image from multiple novel views. Saliency detection is then independently per-
formed under each of the newly rendered views as well as the original input
view. Finally, we aggregate all the predicted saliency maps from different views
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to produce the output saliency prediction. We implement the above multi-view
saliency detection and aggregation procedures through a multi-view saliency de-
tection network (MVSalNet). In the following, we first elaborate on multi-view
image synthesis in Section 3.1, and then describe the architecture of our proposed
MVSalNet in Section 3.2.

Fig. 2. (a) The details of the encoder-decoder branch in MVSalNet. (b) The overall
architecture of MVSalNet. The network has three parallel encoder-decoder branches,
and are fed multi-view RGB images, respectively. A multi-view fusion module is added
at the end of the network to fuse the multi-view saliency results.

3.1 Multi-View Rendering

As opposed to prior RGB-D SODmethods that mainly use depth as an additional
input feature, we propose to explore the 3D geometry information encoded in
the depth maps for novel view synthesis, allowing single image RGB-D SOD
to be conducted in a multi-view setting. To this end, we develop a multi-view
rendering module to efficiently perform multi-view augmentation for the input
image. Our basic principle is to reconstruct the 3D point cloud based on the
input scene depth, which is then projected to a specific target novel view to
render the RGB image.

Technically, given the depth value d of a pixel and its 2D coordinate p in
the input image, its 3D point coordinate P can be computed. Given the relative
motion between the input and a novel target view, we can further transform the
3D point P to the target view, and then project it onto the target image plane
to obtain its corresponding pixel coordinate p̄ in the target image.

The above process establishes a position mapping from each pixel in the input
view to its corresponding pixel in the novel target view, based on which we can



6 J.Zhou, L.Wang et al.

Fig. 3. Implementation of multi-view data augmentation.

synthesize the target view image using the input image, or inversely, warp the
predicted saliency map of the target view to the input view. For missing regions
in the rendered images or saliency maps caused by occlusion, out-of-view, etc.,
we fill the missing values with 0.

Considering both efficiency and effectiveness, we augment the input image
with two additional novel views. Although augmentation with more novel views
may lead to better performance, it will also increase computational overhead.
Our preliminary experiment further shows that using fixed relative motions for
novel views performs more superior than random generated ones. Therefore,
we restrict the rotation of the two novel views on the xy (horizontal) plane in
the camera coordinate system. The rotation angles are empirically set to ±30◦

around the z (vertical) axis, respectively. See Figure 3 for an illustration. Since
the position of the two novel views are symmetric w.r.t. the original view, the
rendered images are complementary in the sense that missing regions in one view
will be rendered in the other view (See Figure 4). As a result, the two symmetric
views can partially alleviate the impact of occluded or out-of-view regions during
novel view rendering.

3.2 Multi-View Saliency Detection Network

We design a multi-view saliency detection network (MVSalNet) with multi-view
augmented images as input. As shown in Figure 2 (b), the MVSalNet can be
divided into two parts, including the single-view saliency prediction module and
multi-view fusion module. Since we augment the input image with two addi-
tional views, the single-view saliency prediction module contains three encoder-
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Fig. 4. The complementary property of two symmetric views. Missing regions in one
view may be rendered from the other view. The combination of the saliency maps
predicted for individual maps can therefore effectively improve detection accuracy.

decoder networks, each of them operating in a specific input view. To further
strengthen single-view saliency detection, the encoder and decoder features are
skip-connected via the transformer-based dynamic filtering (TDF) module. The
predicted saliency maps under different views are further aggregated by the
multi-view fusion module to produce the final output.

Single-View Encoder-Decoder. The three encoder-decoder networks under
different views share the same architecture with untied network parameters. For
the encoder, we adopt the ResNet-50 [20] backbone architecture, which produces
a multi-scale feature pyramid denoted as {Fi

e|i = 1, 2, . . . , 5} with i indicating
the resolution index. The feature resolution becomes smaller as the layer goes
deeper. The decoder then takes the coarsest-level feature Fi

e as input and pro-
gressively upsamples the intermediate feature maps {Fi

d|i = 5, 4, . . . , 1} to the
original input resolution. Short-cut connections are also added between encoder
and decoder features of the same resolutions. Different from existing methods [40]
that either use addition or concatenation to combine the corresponding features
in the short-cut connections, we design a TDF module (as detailed below) which
takes the encoder features F3

e-F
5
e and produce three position-specific dynamic

filters. The generated filters are then applied to the corresponding decoder fea-
tures F3

d-F
5
d, respectively. Each decoder then independently predicts a saliency

map for its input view.

Transformer-Based Dynamic Filtering Module. Figure 5 (a) overviews
the network architecture of the proposed transformer-based dynamic filtering
(TDF) module. For an input feature from the single-view saliency encoder, the
TDF module aims to generate a position-specific dynamic filter which can then
be applied to the corresponding features in the decoder. Due to its remarkable
capabilities in modeling global correlation, we adopt transformer networks for
the dynamic filter generation. To this end, we first partition the input encoder
feature Fi

e into 1× 1 patches, which are then fed into a linear layer to produce
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Fig. 5. (a) The structure of TDF. (b) The detail structure of W-MSA and SW-MSA.

a set of 1D feature embeddings corresponding to each location. The embeddings
are further processed by a window based multi-head self attention (W-MSA)
block [29] followed by three shifted window based MSA (SW-MSA) blocks [29]
(cf. Figure 5 (b)), producing three convolutional kernels for each spatial posi-
tion on the input feature map. The generated convolutional kernels are then
applied to the corresponding feature Fi

d in the decoder through adaptive convo-
lutions [23] with dilation rates of 1, 3, and 5, respectively. The final output Fi

t

of the TDF module can be computed as:

Fi
t = M(< H(Fi

d),Ha(F
i
d;K

i
1,K

i
2,K

i
3) >), (1)

whereH denotes the standard 3×3 convolution;Ha denotes adaptive convolution
layer using the three generated position specific kernels Ki

1-K
i
3; < ·, · > indicates

channel-wise concatenation; and M is a linear transformation layer. As a result,
the obtained features are more effective for the decoding of saliency map.

Multi-View Fusion. Figure 2 (b) demonstrates the pipeline of our multi-view
fusion module. The single-view encoder-decoders predict the saliency map S0

for the input image and Ŝ1, Ŝ2 for the two augmented views. We first warp
the saliency predictions for two augmented views to the input view to obtain
the saliency maps S1 and S2, respectively. Considering their complimentary
property, we add the warped augmented view together as S1,2 = S1+S2 to tackle
occluded or out-of-view regions with missing values. To achieve more effective
multi-view fusion, we adopt both element-wise multiplication and addition to
combine the current and augmented view saliency maps:

Sm = S0 ⊙ σ(S1,2),

Sa = S0 + S1,2,
(2)

where σ(·) denotes sigmoid function. Intuitively, Sm is able to suppress false-
positive background noises while Sa allows to identify false-negative foreground
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regions. We then concatenate both Sm and Sa along the channel dimension and
send their concatenation to an additional convolution layer to generate the final
saliency map S of the input image.

Loss Function. For the loss function, we directly use the binary cross entropy
(BCE) loss with the hybrid enhanced loss (HEL) in [35].

BCE loss is the common loss in SOD task, the main form is as follows:

Lb = −
∑

[G log(S) + (1−G) log(1− S)], (3)

where S and G respectively represent the prediction and the corresponding
ground truth. the loss of each supervised saliency map is expressed as follows:

L = Lb + Lh, (4)

where L is the loss of each supervised saliency map, Lh is HEL.
So the total loss of the network can be calculated by the following formula:

Lt = L(S) + α·L(S0) + β·L(S1,2), (5)

where Lt is the total loss of the network, α and β are the weight coefficients, we
set α = β = 0.25 in this paper.

4 Experiments

In this section, we conduct extensive experiments to verify the effectiveness of
our method. First, we compare our model with other methods. Then we perform
a series of ablation studies to evaluate each component of our framework.

4.1 Datasets and Evaluation Metrics

Datasets. We perform our experiments on six widely used RGB-D datasets for
fair comparisons. LFSD [25] contains 100 image pairs. NJUD [24] contains 1985
image pairs. NLPR [36] contains 1000 image pairs. RGBD135 [6] contains 135
image pairs. STEREO [34] contains 1000 stereoscopic image pairs. DUTRGBD
[38] 1200 image pairs. To guarantee fair comparisons, we follow the setting of
[38]. On the DUTRGBD dataset, we choose the same 800 samples for training
and 400 images for testing. For the other datasets, we follow the data partition
of [3] to use 1485 samples from NJUD and 700 samples from NLPR to train and
the remaining samples are used to test.

Evaluation metrics. To comprehensively and fairly evaluate various meth-
ods, we employ five widely used metrics for evaluating, including F-measure
[1], weighted F-measure [33], MAE [37], S-measure [12], and E-measure [13]. F-
measure [1] reflects the performance of the binary predictions under different
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Metric TANet[4] A2dele[39] HDFNet[35] JL-DCF[17] UCNet[47] DANet[52] BTSNet[49] Ours

D
U
T
R
G
B
D

[3
8
]

Fmax 0.862 0.906 0.930 0.924 0.882 0.918 0.929 0.935

Fada 0.815 0.891 0.885 0.883 0.856 0.888 0.906 0.914

Fω
β 0.764 0.865 0.864 0.863 0.822 0.860 0.872 0.893

MAE 0.067 0.042 0.041 0.043 0.056 0.043 0.039 0.034

Sm 0.853 0.884 0.907 0.905 0.863 0.899 0.903 0.915

Em 0.901 0.929 0.938 0.938 0.906 0.937 0.942 0.951

Table 1. Quantitative RGB-D SOD results on DUTRGBD dataset. The best results
are highlighted in red.

thresholds. Weighted F-measure is proposed to improved the existing metric F-
measure, it defines a weighted precision and a weighted recall. MAE measures the
average of the per-pixel absolute difference between the saliency maps and the
ground truth. S-measure can evaluate the structural similarities. E-measure can
jointly utilize image-level statistics and local pixel-level statistics for evaluating
the binary saliency map.

4.2 Implementation Details

Parameter setting. Three encoders of the proposed model are based on ResNet-
50 [20], and only the convolutional layers in the corresponding classification net-
works are retained. During the training phase, we use the weight parameters
pretrained on the ImageNet [9] to initialize the encoders.

Training setting. During the training stage, we apply random horizontal flip-
ping, random rotating as data augmentation for RGB images and depth images
to improve generalization and avoid overfitting. And we employ random color
jittering for RGB images. We use the momentum SGD optimizer with a weight
decay of 5e-4, an initial learning rate of 5e-3, and a momentum of 0.9. Besides,
we apply the CosineAnnealing strategy [32] with the minimum learning rate of
0. The input images are resized to 320× 320. We train the model for 40 epochs
on a NVIDIA GTX 1080 Ti GPU with a batch size of 4.

Testing details. During the testing stage, we resize RGB and depth images to
320× 320. The final prediction is rescaled to the original size for evaluation.

4.3 Comparisons

To demonstrate the effectiveness of the proposed method, we compare it with
14 state-of-the-art (SOTA) methods, including TANet [4], D3Net [14], A2dele
[39], AFNet [45], CoNet [22], CPFP [51], JL-DCF [17], PCF [3], UCNet [47],
HDFNet [35], DCF [21], BBSNet [15], DANet[52], BTSNet [49]. Quantitative
results on the DUTRGBD dataset are shown in Table 1, while those on the rest
five datasets are shown in Table 2. Our methods consistently outperforms all the
other SOTAs across all the datasets in terms of different metrics.
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Metric TANet D3Net A2dele AFNet CoNet CPFP JL-DCF PCF UCNet HDFNet DCF BBSNet BTSNet Ours

[4] [14] [39] [45] [22] [51] [17] [3] [47] [35] [21] [15] [49]

L
F
S
D

[2
5
]

Fmax 0.827 0.849 - 0.780 0.874 0.850 0.872 - 0.871 0.872 0.861 0.879 0.849 0.880

Fada 0.794 0.801 - 0.742 0.835 0.813 0.830 - 0.844 0.833 0.815 0.850 0.823 0.856

Fω
β 0.719 0.756 - 0.671 0.802 0.775 0.792 - 0.813 0.789 0.776 0.815 0.770 0.819

MAE 0.111 0.099 - 0.133 0.077 0.088 0.082 - 0.072 0.088 0.087 0.073 0.098 0.072

Sm 0.801 0.832 - 0.738 0.856 0.828 0.847 - 0.851 0.841 0.828 0.860 0.829 0.856

Em 0.851 0.860 - 0.810 0.892 0.867 0.885 - 0.896 0.885 0.865 0.902 0.874 0.906

N
J
U
D

[2
4
]

Fmax 0.888 0.903 0.888 0.804 0.900 0.890 0.914 0.887 0.906 0.921 0.920 0.922 0.927 0.922

Fada 0.844 0.840 0.873 0.768 0.780 0.837 0.881 0.844 0.885 0.887 0.898 0.894 0.901 0.902

Fω
β 0.805 0.833 0.844 0.696 0.848 0.828 0.866 0.803 0.867 0.877 0.886 0.879 0.884 0.886

MAE 0.061 0.051 0.051 0.100 0.047 0.053 0.042 0.059 0.043 0.037 0.036 0.038 0.035 0.035

Sm 0.878 0.895 0.868 0.772 0.895 0.878 0.902 0.877 0.894 0.909 0.908 0.915 0.918 0.910

Em 0.909 0.901 0.916 0.847 0.924 0.900 0.935 0.909 0.932 0.930 0.936 0.933 0.942 0.939

N
L
P
R
[3

6
]

Fmax 0.876 0.904 0.895 0.816 0.895 0.883 0.924 0.864 0.911 0.926 0.914 0.921 0.912 0.929

Fada 0.796 0.834 0.878 0.747 0.844 0.818 0.868 0.795 0.885 0.887 0.887 0.882 0.874 0.901

Fω
β 0.780 0.826 0.859 0.693 0.838 0.807 0.873 0.762 0.872 0.881 0.881 0.875 0.869 0.895

MAE 0.041 0.034 0.028 0.058 0.031 0.038 0.023 0.044 0.026 0.024 0.022 0.024 0.027 0.021

Sm 0.886 0.906 0.895 0.799 0.904 0.884 0.921 0.873 0.912 0.924 0.920 0.924 0.920 0.927

Em 0.916 0.934 0.945 0.884 0.933 0.920 0.953 0.916 0.952 0.955 0.958 0.952 0.949 0.959

R
G

B
D

1
3
5

[6
] Fmax 0.853 0.917 0.893 0.775 0.908 0.882 0.931 - 0.931 0.932 0.903 0.934 0.929 0.934

Fada 0.795 0.876 0.868 0.730 0.866 0.829 0.899 - 0.916 0.908 0.870 0.901 0.899 0.908

Fω
β 0.740 0.831 0.838 0.641 0.845 0.787 0.892 - 0.901 0.897 0.844 0.879 0.873 0.903

MAE 0.046 0.030 0.029 0.068 0.030 0.038 0.021 - 0.019 0.020 0.026 0.023 0.023 0.019

Sm 0.858 0.904 0.883 0.770 0.906 0.872 0.929 - 0.927 0.929 0.897 0.926 0.917 0.931

Em 0.919 0.956 0.919 0.874 0.944 0.927 0.967 - 0.974 0.969 0.947 0.961 0.961 0.971

S
T
E
R
E
O

[3
4
]

Fmax 0.878 0.897 - 0.848 0.908 0.889 0.915 - 0.903 0.908 0.909 0.907 0.905 0.920

Fada 0.835 0.833 - 0.807 0.879 0.830 0.858 - 0.875 0.862 0.875 0.874 0.870 0.898

Fω
β 0.787 0.815 - 0.752 0.864 0.817 0.850 - 0.857 0.846 0.863 0.847 0.848 0.879

MAE 0.060 0.054 - 0.075 0.038 0.051 0.041 - 0.041 0.044 0.040 0.043 0.044 0.035

Sm 0.871 0.891 - 0.825 0.902 0.879 0.901 - 0.895 0.896 0.897 0.901 0.899 0.911

Em 0.916 0.911 - 0.887 0.939 0.907 0.932 - 0.939 0.928 0.937 0.933 0.932 0.946

Table 2. Results (↑:Fmax, Fada, Fω
β , Sm, and Em; ↓:MAE) of different RGB-D SOD

methods across five datasets. The best results are highlighted in red.

Figure 6 shows sampled visualization results under challenging scenarios,
including cluttered background (Row 3, 4, 10), complex objects (Row 2, 7, 8,
9), low-quality depth map (Row 1, 6), and small objects with misleading depth
map (Row 5).

4.4 Ablation Study

In this section, we perform a series of ablation studies on the NLPR dataset [36]
to further investigate the relative importance and specific contribution of each
component in the proposed framework using as test dataset.

multi-view augmentation. To validate the effectiveness of our multi-view
augmentation, we conduct several experiments. Results are shown in Table 3.
”ED” means that we only use one encoder-decoder branch with RGB input.
”EDaug” means that we use one encoder-decoder branch and add the RGB
images from novel views to the training set to get extra training data. ”3ED”
means that we use three encoder-decoder branches with the same RGB input.
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Fig. 6. Visual comparisons with SOTA RGB-D SOD models.

”Ours-1view” means that we only generate one novel view, the two images pass
through two parallel encoder-decoders. ”Ours-depth” means that we use our
proposed network and change the input of the original encoder-decoder branch
to the concatenation of the original RGB image and depth map. It shows that
the multi-view augmentation can effectively improve performance when used as
extra input or just as extra data. Notice that ”Ours-depth” uses more data and
gets lower performance compared to ”Ours”, suggesting that our method can
make full use of depth information, while a vanilla single-view encoder-decoder
may fail to address the modal gap between RGB and depth. ”Ours-15◦”, ”Ours-
45◦”, and ”Ours-60◦” mean that the rotation angles are set to ±15◦, ±45◦, and
±60◦, respectively. Our preliminary experiments show that rotation angles larger
than 60◦ will lead to degraded results. ”Ours-random” means that we randomly
choose the rotation angle between 0◦ and 60◦ in each side. ”Ours-4views” means
that we add two more views at ±60◦ and they share weight with ±30◦ branches,
respectively. Compared with ”Ours-1view” and ”Ours-4views”, we can see that
”Ours” reach a good balance between efficiency and effectiveness.

Dynamic Filtering module. Ablations of the dynamic filtering module are
reported in Table 4. ”SK” means using normal skip connection without TDF.
”no dilation” means that we only use one SW-MSA head with dilation rate of
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Model Fmax Fada Fω
β MAE Sm Em

ED 0.919 0.860 0.855 0.029 0.910 0.939

EDaug 0.919 0.874 0.868 0.027 0.916 0.948

3ED 0.928 0.891 0.882 0.023 0.920 0.954

Ours-1view 0.922 0.882 0.876 0.024 0.917 0.951

Ours-depth 0.922 0.895 0.889 0.023 0.923 0.958

Ours-15◦ 0.929 0.894 0.889 0.021 0.924 0.957

Ours-45◦ 0.929 0.893 0.887 0.022 0.924 0.958

Ours-60◦ 0.929 0.889 0.884 0.022 0.923 0.955

Ours-random 0.928 0.894 0.890 0.021 0.925 0.958

Ours-4views 0.929 0.899 0.888 0.021 0.927 0.962

Ours 0.929 0.901 0.895 0.021 0.927 0.959

Table 3. Ablation on the multi-view augmentation. The best results are highlighted
in red.

Model Fmax Fada Fω
β MAE Sm Em

SK 0.922 0.886 0.878 0.025 0.918 0.952

no dilation 0.926 0.892 0.885 0.022 0.921 0.957

dilation embed 0.927 0.896 0.886 0.022 0.924 0.957

DDPM 0.929 0.896 0.889 0.022 0.922 0.956

Ours 0.929 0.901 0.895 0.021 0.927 0.959

Table 4. Ablation on dynamic filtering module. The best results are highlighted in
red.

Model Fmax Fada Fω
β MAE Sm Em

add 0.923 0.883 0.881 0.023 0.920 0.951

supervise two 0.927 0.896 0.890 0.022 0.923 0.958

Ours 0.929 0.901 0.895 0.021 0.927 0.959

Table 5. Ablation on multi-view fusion. The best results are highlighted in red.

Model Fmax Fada Fω
β MAE Sm Em

α = β = 0 0.925 0.893 0.883 0.024 0.920 0.955

α = β = 0.5 0.928 0.901 0.895 0.021 0.926 0.960

α = β = 1 0.928 0.894 0.886 0.022 0.923 0.957

Ours 0.929 0.901 0.895 0.021 0.927 0.959

Table 6. Ablation on loss function. The best results are highlighted in red.

1. ”dilation embed” means that we use one SW-MSA head but embed features
using dilated convolution with dilation rates of 1, 3, 5 in parallel and concatenate
the outputs. ”DDPM” means that we replace TDF module in our model with the
CNN dynamic filtering branch in [35]. It shows that our proposed TDF module
outperforms the counterparts. Besides, ”DDPM” has 389M parameters, ”Ours”
has 83M parameters, the number of parameters is reduced by 78.6%.

Multi-view Fusion. Ablations of multi-view fusion are reported in Table 5.
Among them, ”add” means directly adding the three saliency maps in original
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Fig. 7. Visual comparisons for showing the benefits of multi-view fusion. GT, S1,2,
and S0 denotes ground truth of saliency map, the added saliency map from augmented
views, and the saliency map from original view, respectively.

view. ”supervise two” denotes that the saliency maps of the two synthesized RGB
images are supervised in original view respectively. It shows that our light-weight
module can learn the complementary property between the saliency maps and
generate accurate final result. In Figure 7, we can see that S0 mainly focuses on
texture information, while S1,2 captures abundant spatial structure information.
The final result S is generated by fusing S0 and S1,2.

Loss Function. Ablations of the weight coefficients α and β in loss function
are reported in Table 6. Experiments show that our model is robust to the hyper
parameters α and β.

5 Conclusion

In this paper, we propose a new RGB-D salient object detection (SOD) frame-
work to take full advantages of 3D geometry information contained in depth
maps. Instead of using input depth maps as low-level cues, we render the input
image from multiple different views and formulate SOD from a single static im-
ages to a multi-view setting. We further design a multi-view salient detection
network (MVSalNet), which performs SOD independently for each individual
view and fuses the output from multiple views to obtain the final prediction.
The proposed method outperforms state-of-the-art RGB-D SOD approaches on
6 benchmark datasets with a considerable margin, which demonstrates the ef-
fectiveness of our contributions.
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