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1 Additional Discussions

By replacing the GAP layer with the proposed Gated Pyramid Pooling (GPP)
layer, the performance is increased to 54.2% (+5.8%). By incorporating the
proposed Adversarial Erasing Framework via Triplet (AEFT) with the GPP
layer, the mIoU performance is further increased to 56.0% (+7.6%). Though
the proposed method achieves state-of-the-art in segmentation level, ours show
comparable or even inferior performance in seed level than other methods (Refer
Table 4). Although the performance of seed itself is important, the quality of
pseudo-labels is much more important in WSSS. Since the seed with high mIoU
does not ensure the good quality of pseudo-labels (Refer Table 4), it is also im-
portant to generate CAMs that can benefit from the post-processing techniques
(CRF/RW/IRN), which are commonly used in WSSS. In this section, we provide
additional experimental results (ablation) on PASCAL VOC 2012.

1.1 GPP: Compatibility with other state-of-the-art

To verify whether the proposed GPP layer can be applied to other state-of-
the-art methods or not, we incorporate the GPP layer with SEAM [50]. The
reported performance of CAMs of SEAM is 55.4% with a classifier based on
the GAP layer. By replacing the GAP layer with the proposed GPP layer, the
performance of resulting CAMs is increased to 57.5% (+2.1%) in mIoU. Since
the GPP layer does not require the specific architecture or learning framework,
we expect that it can be employed in subsequent WSSS studies as the baseline.

1.2 GPP: Eq.4 and Eq.5

Activation functions of which ranges are positive (e.g. ReLU, Sigmoid) usually
have been applied to focus on positive activation when generating CAMs. Pre-
vious WSSS works for spatially varying pooling method [3,10] also regarded the
positive values of CAMs only by using softmax function on CAMs. However,
in the perspective of generating precise CAMs, it is important to consider the
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regions with negative activation (e.g. background or regions of the other classes)
as well as the positively activated regions. To effectively incorporate the nega-
tively activated regions in the learning process, we devise the proposed method
based on the GPP layer to amplify the activation of CAMs in both positive and
negative directions (refer Eq. 5 in the main paper). In the cases of using only
positive (ReLU(P̂16)⊙ReLU(f)) or negative (ReLU(−P̂16)⊙ReLU(−f)) when
training the classifier, the performance was lower than the baseline (48.4%) in
both cases. Furthermore, when β in Eq.4 in the main paper is set to 1 (without
gating negative activation), the mIoU performance is 53.6% which is 0.6% lower
than the best model (54.2%). This ablation study for the GPP layer supports
that simultaneously utilizing the positive and negative activation can be helpful
for the network to generate precise CAMs.

1.3 AEFT: Without GPP

When we train the network with the AEFT only (without GPP), we can also
achieve meaningful performance gain (↑ 4.1%, 52.5% mIoU) compared to the
baseline. However, as shown in the third row of Table 2 (Direct), directly max-
imizing or minimizing the distance of embedding obtained from CAMs degrade
the mIoU. Thus, we can not fully decouple the GPP layer from the AEFT.

1.4 AEFT: Grid Search for Hyperparameters

To verify whether our framework is sensitive to the threshold, we evaluate the
proposed method from GT as shown in Table A1 and find our framework is quite
robust to threshold. We set tL to not much remain the object, while tH is set to
perfectly erase high-confident regions. Since the role of tH is to erase the high
confidence region, we observe that the performance is not degraded unless tH is
too low (e.g. >0.50). We observed too large tL makes it easy for the model to
increase the distance between the anchor (eAL) and negative (eN ) embeddings
(since the object has overly remained). However, when tL is lower than 0.2, the
deviation of mIoU is within 1% range. For the main paper, we select the best
setting (tH = 0.60 and tL = 0.20).

Table A1. Ablation regarding threshold (tH , tL) in AEFT. The column-index repre-
sents tH and the row-index represents tL. The performance (mIoU, %) is evaluated
with the PASCAL VOC 2012 train set.

tL

tH
0.50 0.55 0.60 0.65 0.70

0.10 55.0 55.0 55.1 55.0 55.0

0.15 55.1 55.2 55.3 55.4 55.5

0.20 55.3 55.5 56.0 55.5 55.5

0.25 54.2 54.2 54.5 54.5 54.3
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1.5 Comparison with softmaxed-CAMs

We implemented the softmaxed-CAMs as in [3] (background threshold = 0.2)
and achieves 49.4%, which is 4.8% lower than the GPP. Since the class prediction
in [3] is invariant to the size of CAMs, it suffers from inferior recall than using
GAP. Qualitative comparison results of CAMs is shown in Fig. A1. As shown
in figure, though the softmaxed-CAMs are sharper than CAMs (w/ GPP) but
only localize the partial region.

2 Details Regarding MS-COCO Experiments

To show the superiority of the proposed method, we conducted an experiment
on MS-COCO 2014 dataset. However, due to the page limit of the main paper,
we provide additional experimental results regarding MS-COCO 2014 dataset in
this supplementary material. For the experiment, the optimal tH and tL is set
to 0.70 and 0.10, respectively. Since there exist more classes in MS-COCO 2014
dataset (80) than PASCAL VOC 2012 dataset (20), we let AEFT have more
relaxed criteria for triplet loss with a smaller margin (ϵ=0.1). The other settings
(e.g. batch size and learning rate) are the same as the PASCAL VOC 2012 exper-
iments. With the proposed Gated Pyramid Pooling (GPP) layer and Adversarial
Erasing Framework via Triplet (AEFT), the mIoU quality of the generated seeds
(CAMs) is increased to 38.5% (+7.2%) compared with the baseline (31.3%).

For the fair comparison with other state-of-the-art methods, we also apply
IRN for refinement. The generated pseudo labels achieve 46.7% mIoU on MS-
COCO 80k train set. With the help of the GPP layer that effectively captures
information from the global context to fine-details and AEFT that expands the
CAMs while preventing over-erasing, we also achieved state-of-the-art (44.8%)
on MS-COCO 2014 dataset.

3 Additional Results

Table A2 shows the class-wise IoU of the semantic segmentation model on PAS-
CAL VOC 2012 val set. In addition, we provide additional qualitative results
for both PASCAL VOC 2012 and MS-COCO 2014 datasets. Since the results of
CAMs generated by our proposed method were not provided in the main paper,
we provide the qualitative comparison of our CAMs with the baseline CAMs
in Fig. A2. Qualitative comparison results of the semantic segmentation is also
shown in Fig A3. With the proposed GPP and AEFT, the generated CAMs are
precise as well as activate the entire object regions. This is more evident in the
MS-COCO 2014 dataset that contains more small and diverse objects, as shown
in Fig A4. Here, Fig. A5 shows the segmentation results with single class while
Fig. A6 shows the results with multiple classes in MS-COCO 2014. Since the
segmentation model is trained with high-quality pseudo labels generated by the
proposed framework, the model is not only good at localize the entire object but
also can capture fine-details (even very small objects: refer second row in Fig A5
and fourth row in Fig A6).
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Table A2. Class-wise IoU comparison on PASCAL VOC 2012 val set with only image-
level supervision.

Method bg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mIoU

AffinityNet [1] 88.2 68.2 30.6 81.1 49.6 61.0 77.8 66.1 75.1 29.0 66.0 40.2 80.4 62.0 70.4 73.7 42.5 70.7 42.6 68.1 51.6 61.7

SEAM [50] 88.8 68.5 33.3 85.7 40.4 67.3 78.9 76.3 81.9 29.1 75.5 48.1 79.9 73.8 71.4 75.2 48.9 79.8 40.9 58.2 53.0 64.5

BES [10] 88.9 74.1 29.8 81.3 53.3 69.9 89.4 79.8 84.2 27.9 76.9 46.6 78.8 75.9 72.2 70.4 50.8 79.4 39.9 65.3 44.8 65.7

OC-CSE [27] 90.2 82.9 35.1 86.8 59.4 70.6 82.5 78.1 87.4 30.1 79.4 45.9 83.1 83.4 75.7 73.4 48.1 89.3 42.7 60.4 52.3 68.4

Ours 91.9 77.6 37.8 88.9 64.5 73.8 87.8 81.2 87.1 34.6 83.9 52.9 85.3 82.0 77.0 79.7 38.9 88.5 44.4 74.4 56.0 70.9

Fig. A1. Qualitative comparison results of CAMs. From left to right: Images,
softmaxed-CAMs (similar to Araslanov et al. [3]), CAMs from Ours (only GPP),
Ground truth labels. The images are from PASCAL VOC 2012 train set.
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Fig.A2. Qualitative comparison results of CAMs between the baseline and the pro-
posed method. From left to right: Images, Baseline CAMs [1], CAMs from Ours, Ground
truth labels. The images are from PASCAL VOC 2012 train set.
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Fig.A3. Qualitative segmentation results of the proposed method on the PASCAL
VOC 2012 validation set. From top to bottom: Images, Ours, Ground truth labels.
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Fig.A4. Qualitative CAMs results of the proposed method. From (a) to (c): Images,
Ground truth labels, and CAMs from Ours. The images are from MS-COCO 2014 train
set.
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Fig.A5. Qualitative segmentation results of the proposed method on the MS-COCO
2014 val set. Each image contains only one class. From left to right: Images, Ours,
Ground truth labels.
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Fig.A6. Qualitative segmentation results of the proposed method on the MS-COCO
2014 val set. Each image contains multiple classes and the legend located at the top
represents each class. From left to right: Images, Ours, Ground truth labels.
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