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Abstract. Weakly supervised semantic segmentation (WSSS) has em-
ployed Class Activation Maps (CAMs) to localize the objects. However,
the CAMs typically do not fit along the object boundaries and high-
light only the most-discriminative regions. To resolve the problems, we
propose a Gated Pyramid Pooling (GPP) layer which is a substitute
for a Global Average Pooling (GAP) layer, and an Adversarial Erasing
Framework via Triplet (AEFT). In the GPP layer, a feature pyramid is
obtained by pooling the CAMs at multiple spatial resolutions, and then
be aggregated into an attention for class prediction by gated convolu-
tion. With the process, CAMs are trained not only to capture the global
context but also to preserve fine-details from the image. Meanwhile, the
AEFT targets an over-expansion, a chronic problem of Adversarial Eras-
ing (AE). Although AE methods expand CAMs by erasing the discrim-
inative regions, they usually suffer from the over-expansion due to an
absence of guidelines on when to stop erasing. We experimentally verify
that the over-expansion is due to rigid classification, and metric learning
can be a flexible remedy for it. AEFT is devised to learn the concept of
erasing with the triplet loss between the input image, erased image, and
negatively sampled image. With the GPP and AEFT, we achieve new
state-of-the-art both on the PASCAL VOC 2012 val/test and MS-COCO
2014 wval set by 70.9%/71.7% and 44.8% in mloU, respectively.

Keywords: Weakly supervised semantic segmentation

1 Introduction

Recently, semantic segmentation based on Deep Learning (DL) has been widely
used in various applications such as autonomous driving and medical imag-
ing. However, since the semantic segmentation model requires pixel-level la-
bels, a considerable amount of cost and time is consumed to generate labels.
To reduce this burden and make DIL-based semantic segmentation more prac-
tically applicable in general tasks, many Weakly Supervised Semantic Segmen-
tation (WSSS) studies that utilize only weak supervision such as image-level
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labels [2I5056/THITI7TIB0275835], scribble [36l48], bounding boxes [I32440J3T],
and points [4] have been proposed. In this work, we focus on WSSS with image-
level labels, an especially challenging task among weakly-supervised ones.

To learn semantic segmentation with image-level labels only, most existing
WSSS approaches follow the steps: (1) localize the objects through Class Ac-
tivation Maps(CAMs) [61], (2) refine the CAMs and generate pseudo-labels in
a pixel-level, and (3) train the semantic segmentation model with the pseudo-
labels. Although the CAMs can localize the objects to some extent, they are
not precise at an object boundary and only highlight the most discriminative
pattern.

As far as we know, most CNN-based classifiers in WSSS employ a Global
Average Pooling (GAP) layer to aggregate the feature map and predict the
existing classes in the image. However, since the GAP layer averages all the
features, even including ones from object-irrelevant regions, CAMs usually ignore
small segments and do not fit with the object boundary (i.e. impreciseness).
To overcome this innate limitation of the GAP layer, BES [50] and Araslanov
et al. [3] utilize softmaxed-CAMs as a pooling weight while making the class
prediction. Instead, in this paper, we propose a Gated Pyramid Pooling (GPP)
layer that not only captures the global context but also localizes fine-details.
In the proposed GPP layer, CAMs are average-pooled with various bin sizes
(e.g. 8x8 or 16x16) and form a spatial pyramid. Then, this pyramid of the
pooled features is aggregated sequentially through a gating mechanism [47] in a
coarse-to-fine manner for better localization. The final output of the aggregation
is used as a pixel-level weight that decides to either encourage or discourage the
contribution of CAMs for predicting the image-level class. Here, by building the
pyramid features with different spatial resolutions and using them as weights
to generate the class prediction, CAMs are trained to capture not only global
context (from low-scale bins) but also localize fine-details (from high-scale bins).

In addition to the GPP layer that effectively resolves the impreciseness prob-
lem in CAMs, we utilize the concept of Adversarial Erasing (AE) method to
further guide CAMs to be activated even on the less-discriminative regions. AE
methods [BIEITIIB3I27], one of the most actively studied strategy in WSSS,
extend CAMs to whole object regions by erasing the most-discriminative re-
gions of an image or intermediate feature. However, since there is no explicit
guidance regarding when to stop the erasing, CAMs generated from the AE ap-
proach usually suffer from an over-expansion [27]. To benefit from AE methods
while preventing the over-expansion problem, we propose an Adversarial Eras-
ing Framework via Triplet (AEFT) that reformulates the AE methods as triplet
learning with the GPP feature. Here, we experimentally verify that imposing
relatively rigid supervision (e.g. classification loss) on the AE framework leads
the resulting CAMs to suffer from the over-expansion problem. Since we allow
the framework to adjust its features according to the distance between them, this
approach can be regarded as a more softened version compared to prior studies
using rigid supervision [GIJ5933J27]. For triplet learning, as shown in Fig [I} we
define the original image as an anchor image. After masking the high-confidence
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Fig. 1. Brief illustration of the proposed Adversarial Erasing Framework via Triplet
(AEFT). An anchor image and a positive image denote the original image and the
masked image according to CAMs, respectively. A negative image is sampled to do
not have overlapping classes with the anchor image. In the feature space, we train
the model to locate the positive image close to the anchor image while increasing the
distance between the anchor image and the negative image.

regions of the CAMs from the anchor image, the remained image is regarded
as a positive image. Finally, the other image, which has no overlapping classes
with the anchor image, is used as a negative image. In AEFT, we minimize the
distance between the anchor and positive in the GPP feature space (i.e. Attract)
while maximizing the distance between the anchor and negative feature (i.e. Re-
pel). While Attract guides the CAMs to explore less-discriminative region, Repel
prevents the over-expansion problem. Since the distance between the anchor and
negative is often already far enough, we intentionally exclude the high-confidence
region from the anchor to impose a harder but helpful constraint for AEFT.

In summary, we propose (1) the Gated Pyramid Pooling (GPP) layer to
resolve the architectural limitation of classifier (or GAP) and (2) the Adversarial
Erasing Framework via Triplet (AEFT) to effectively prevent the over-expansion
via triplet, while preserving the benefits of AE (expanding the CAMs to less-
discriminative regions). With the proposed GPP and AEFT, we achieve state-
of-the-art WSSS performance by a large gap on both the PASCAL VOC 2012
and MS-COCO 2014 sets, using the image-level labels only.

2 Related Works

Earlier works in WSSS WSSS with image-level labels generally utilizes CAMs
to localize target objects on the images. However, as CAMs tend to only focus
on the most discriminative parts and do not fit along the object boundary,
subsequent works in WSSS have tried to generate high-quality pseudo-labels
from the CAMs for training semantic segmentation. Many studies proposed to
refine the CAMs using pixel-level affinity [2IT6/43] or region growing [20125].
Much research targeted to enhance the quality of localization of CAMs by using
stochastic feature selection [29], attention map accumulation [22], and scale-
invariance [50]. Also, lots of methods employ additional constrains such as sub-
categorical classification [7], co-attention constraints [45I34], and complementary
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patch loss [58]. Several studies [45/T5I34I55I54I32] employ saliency map to indi-
cate dominant foreground objects distinguished from the background. Despite
the efficacy, neither saliency module nor an external dataset was adopted in the
proposed method, in line with the objective of WSSS learning from only image-
level labels. Like the proposed method, BES [10] and Araslanov et al. [3] utilize
CAMs as weights for pooling when making class predictions. However, while
both methods used softmaxed-CAMs as weights for pooling, the improvement
of BES is marginal (within 1%), and Araslanov et al. [3] requires to define back-
ground constant. Unlike the previous methods, the proposed method not only
preserves global context but also captures fine-details through sign-preserving
gated convolution and pyramid pooling.

Adversarial erasing Adversarial Erasing (AE) [BIEIT93327] is widely used
strategy in WSSS. By erasing the most discriminative region from the image, the
AE method promotes the network to expand its CAMs to the less discriminative
object region. The first AE method is proposed by Wei et al. [51], which is a re-
cursive find-and-erase scheme. Zhang et al. [59] proposes an end-to-end feature-
level erasing framework with complementary branches. However, if the initial
classifier succeeded in completely erasing the object, the complementary classi-
fier would suffer from the over-erasing. SeeNet [19] suggested using the ternary
thresholding method for mask generation process to relieve the over-erasing, but
it requires a pre-trained saliency detection module. In recent, GAIN [33] and
OC-CSE [27] proposed soft erasing approaches that generate learnable masks.
In these methods, the CAMs generation network is jointly trained by a classi-
fication loss and auxiliary loss regarding the adversarial erasing process. GAIN
propose an attention mining loss to assure that the erased image does not con-
tain any objects. However, this self-guidance makes the framework difficult to
self-correct the over-expansion. In OC-CSE, the CAM of only one class is se-
lected for erasing, and then the guidance from the pre-trained ordinary classifier
is used to prevent the erasing network from erasing the objects of the not se-
lected classes. But the usage of the pre-trained classifier limits the performance
of this method. All of the aforementioned AE methods are based on imposing
a classification loss on the erased image. In our view, forcing the network to
make the prediction from the erased image according to the binary classification
label (exist or not) is the main reason for over-expansion. Instead of this “rigid”
constrain, we aim to let the network understand the concept of erasing in the
form of triplet learning. This is a more softened approach compared to prior
AE-based studies while not harming the benefit of AE methods.

Deep Metric Learning Deep metric learning has widely been used for resolv-
ing various computer vision tasks [SSTIITSIT2I39I21]. Generally, it aims to learn
a metric that measures the semantic distance between instances. As a metric
function, the embedding function is trained to map an instance to be close to
the similar inputs than the dissimilar inputs. Contrastive loss [17] directly opti-
mizes this goal by decreasing the distance between semantically close instances
while increasing the distance between dissimilar instances. On the other hand,
triplet loss [42] takes three inputs at once: anchor instance, positive instance,
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and negative instance. Then, the loss minimizes the distance between the an-
chor instance and the positive object while it maximizes the distance between
the anchor instance and the negative instance. For semantic segmentation, deep
metric learning is used to improve performance in supervised learning [49] or to
overcome the lack of data in challenging cases such as weak supervision [23] and
open-world scenario [6]. Though we borrow the concept of the triplet loss, as far
as we know, our method is the first AE-based method that incorporates metric
learning in WSSS.

3 Proposed method

3.1 Overview

In this paper, we propose a Gated Pyramid Pooling (GPP) layer, which is a
simple but effective replacement of the Global Average Pooling (GAP) layer
widely used in WSSS. To fully utilize the outperforming localization ability of
the GPP layer, we also devise a novel Adversarial Erasing Framework via Triplet
(AEFT). The proposed framework mainly focuses on training the network to find
less-discriminative regions while relieving the over-expansion problem. Note that
our method only utilizes image-level labels.

3.2 CAMs Generation

Before discussing our main approaches, we briefly introduce the general process
of generating CAMs. Let f € RE*"X® denote a feature map of the last convolu-
tion layer of the classifier, where K is the number of classes and h,w represent
the spatial dimensions of the feature map, respectively. Then, an image-level
class prediction p can be acquired by applying Global Average Pooling (GAP)

on the feature map as p = o (ﬁ Z” f(i,j)), where f(i,j) denotes the feature

vector at a location (7,7) and o is a sigmoid function. By taking the Rectified
Linear Unit (ReLU) to the feature map and normalizing it between 0 and 1 for
each class, an activation map of k" class (A*) is generated as follows:

ReLU(f%)
e max(ReLU(f*))

(1)

Here, we also apply bilinear upsampling on the CAMs to fit the spatial dimension
of them with the input image.

Considering the formulation for the class prediction p, the GAP makes the
feature contribute equally irrelevant to their location. As claimed by several
works [3/I0], the GAP increases a dependency on the context and misleads
the classifier to learn erroneous correlations between image pixels and image-
level class labels. Therefore, the resulting CAMs tend to be activated on highly-
correlated background regions (e.g. railroad of train class, water of boat class)
while ignoring the small objects. Since generating fine pixel-level pseudo-labels
is crucial for WSSS, this is a critical disadvantage.
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Fig. 2. Overview of the proposed Gated Pyramid Pooling (GPP). By applying pooling
with different bin sizes to feature map f, we generate feature pyramid (P, Pa, Ps, Pis).
Each component of the feature pyramid is interpolated to feature map size to apply
gated convolution. Along with the feature pyramid, Gated features (Py, Py, Pig) are
visualized. Red and green color represent positive and negative activation, respectively.
For simplicity only train class is visualized.

3.3 Gated Pyramid Pooling (GPP) Layer

To dispel the aforementioned problems of the GAP, we propose a Gated Pyra-
mid Pooling (GPP) layer, which is a spatial-aware pooling method specialized for
generating precise CAMs. Inspired by BES [10] and Araslanov et al. [3], we set a
different pooling weight for each feature. Our main idea is that the weighting fac-
tor should be acquired multi-scale, which is crucial to handle the impreciseness
problem of CAMs. Unlike the prior studies applying simple single-scale opera-
tions like softmax [3I0] on the CAMs, we pool the CAMs at multi-scale and
build a feature pyramid. Then, as shown in Fig. 2| we employ a gating mecha-
nism to aggregate the feature pyramid into a single multi-scale-aware prediction.
From the low to the high scale, we sequentially refine the pooled feature map
with multiple gated convolutional layers while preserving its sign, inspired by
Takikawa et al. [47]. We experimentally verify that the proposed gated coarse-
to-fine strategy outperforms naive averaging or scale-agnostic fusion.

In addition, we define sign-preserving attention operation G to deal with the
nature of multi-label classification. Compared to the positive prediction which
means “the existence of the class”, the negative prediction is equally important
for a model to decide the “non-existence of the class”. Therefore, we devise
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GPP to amplify the feature in both positive and negative directions. It can be
formulated by taking ReLU and concatenating two different features with 3 x 3
convolution layer Convsys. The process can be defined as follows:

G(x,y) = o(Convsx3(ReLU (x)||[ReLU(y))). (2)

Let P, denote the averaged result of feature map f with v X v pooling. By
applying pooling with different sizes (y € {2,4,8,16}) to f, we generate a fea-
ture pyramid (P, Py, Ps, Pig) as in PSPNet [60]. Each component of the feature
pyramid is upsampled to feature map f resolution. Then we obtain attention for
positive (a) and negative () (where «, 3 € R2*"*%) maps as follows:

Qp = ga(IADQ"vPQ“*l): ﬁn :gﬂ(*l%"a*PQ”*l)v (3)

where o is a sigmoid function and n € {1,2,3}. And the gated feature P2n+1 can
be obtained as follows:

Pyosr = (ReLU(Pgn) ® Gn1 + ReLU (Pynin) ® aw) /2
R (4)
- (ReLU(—PQn) ® Bt + ReLU(—Pynir) ® ﬁn,g) /2,

where © indicates element-wise product between tensors. Here, o, 1 and ay, o
are first and second channel of «,,, respectively. And Pon equals Pa» only when
n = 1. The final output of the Gated Pyramid Pooling (GPP) is Pjg € RE*/xw,
Here, K denotes the total number of classes.

p=0(r= S {ReLU(Pig) © ReLU(f)}
—{ReLU(~Pis) ® ReLU(~ f)}),

By decoupling the feature f with the feature pyramid and aggregating it
with the proposed Gated Pyramid Pooling (GPP), regions that are not related
to objects are penalized while regions that are highly related are encouraged.
Since GPP aggregates features from coarse level (i.e. small bin size pooling) to
fine level (i.e. large bin size pooling) thoroughly, the generated CAMs not only
fit along the object boundary but also localize the whole object region. A more
detailed ablation study regarding GPP will be discussed in Section [4]

()

3.4 Adversarial Erasing Framework via Triplet (AEFT) for WSSS

The proposed GPP layer enables the model to generate CAMs with a higher lo-
calization quality than the GAP layer. However, this architectural improvement
is still insufficient to acquire dense pseudo-labels for semantic segmentation. Ad-
ditional guidance is required to make the CAMs cover the less-discriminative
regions, which are difficult to be activated by a mere classification task.

In the field of WSSS, an Adversarial Erasing (AE) is one of the most widely
used approaches to mitigate this problem. For AE, the most-discriminative re-
gions of the CAMs are intentionally erased from the image. Then, the model
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is trained again to classify the erased image according to the original image-
level classification labels. Continuously iterating this process make the model
focus more on the less-discriminative regions, which were originally ignored, and
thereby the resulting CAMs are also expanded. Because of its clear and intu-
itive strategy, plenty of WSSS studies [59T9I51I33I27] has been conducted based
on the AE method. However, due to the lack of supervision for when to stop
expanding, CAMs generated from the AE approach usually suffer from an over-
expansion problem. To relieve such an over-expansion problem, a method using
guidance from a pre-trained model [27] has been proposed recently. However,
updating the guidance makes the training process unstable, and therefore the
method has a limited performance due to the fixed classifier. As aforesaid, there
are two main obstacles for the AE method to gently expand its CAMs while
rejecting the undesired derailment. First, though the image-level classification
labels are valuable supervision in WSSS, such supervision is often too rigid to fol-
low and usually leads to the over-expansion problem when classifying the masked
image/feature. Second, direct guidance from the AE branch to the CAMs makes
the model be unstable in terms of the quality of the generated CAMs.

In this paper, we aim to train the model to understand the concept of erasing
in a more flexible manner. To achieve this goal, we propose a novel Adversarial
Erasing framework via Triplet (AEFT), the modified AE framework using a
triplet loss between the images. In our framework, we make the representation
of the masked image Ip embedded by the model to be close to that of the original
input image I4. To prevent the over-expansion, we maximize the feature-level
distance between the I4 and the negative image Iy, an image that does not
share any class with 4. In other words, for the original image 4, the masked
image Ip and the negative image I are regarded as a positive sample and a
negative sample, respectively. To avoid direct guidance to the CAMs, we utilize
the feature space of the GPP layer as embedding space. Compared to using the
rigid classification based on the binary label for the masked image in conventional
works, the proposed metric-based approach helps the model flexibly adjust the
distance between the features and the decision boundary.

Acquiring Masked Image To erase the highly activated regions from input
image I 4 and obtain corresponding masked image Ip, we generate a foreground
map Af9 from the CAMs of I as follows:

AT9(i,j) = max{A*(i,j) : k=1,..., K}, (6)

where A* is an activation map of k" class and (4, j) denotes the pixel position.
Then, according to the foreground map, we acquire the masked image Ip as
follows:

(7)

I ( ) 0, if Afg(i,j)ZtH
/L, = . . . . .
i AF9(i,§)14(3,7), otherwise.

Note that we combine the hard-masking [5159/19] and soft-masking [33l27] ac-
cording to the threshold (which is denoted as tx in Eq. . Since the regions
with already higher activation are not the main target of learning in the pro-
posed framework, we empirically find that this strategy is valid.
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Fig. 3. Overview of the proposed Adversarial Erasing Framework via Triplet (AEFT).
The weight of the networks is shared. In AEFT, we merged anchor image 4, masked
image Ip, and negative image In as a triplet set. We extract embedding from each
member of the triplet set and impose loss relations based on their traits.

Adversarial Erasing via Metric Learning As depicted in Fig. [3] each im-
age should be represented as a feature vector in the embedding space for met-
ric learning. We map the anchor (input) image I4 and the negative image
Iy to the anchor embedding e4 = ﬁ me’ 1, and the negative embedding
en = ﬁ > lf’167 I, respectively. Likewise, embedding for the masked image ep
is obtained in the same manner. By minimizing the distance between the an-
chor embedding and positive embedding, the model focuses more on the less-
discriminative regions. However, though we soften the loss as a form of metric
learning, it is still true that minimizing the distance between two embeddings
pushes the model to keep exploring the regions even after the complete erasing.
Therefore, in AEFT, we devise another constraint to inhibit the over-expansion
using negative image I . In specific, we intentionally aggregate the features on
low confidence regions according to CAMs to acquire ‘the embedding for low
confidence region of the anchor image’ (ez,). Then, we maximize the distance
between e4; and negative embedding ey. Once the CAMs are over-expanded,
the embedding from the low confidence region would include less information re-
garding the objects in the image. Then it would be difficult for the networks to
separate such less-information embedding with the negative embedding. There-
fore, intuitively, the expansion of CAMs is suppressed while maximizing the
distance between ea; and the negative embedding. The embedding for the low
confidence region of the anchor image (e4z,) can be acquired as follows:

1 . 5 . .
ek, = WZ 1(A%(i,7) < t1) - Pie.1,(i,5), where N* = Z 1(A*(i, 5) < t1).
(4,9) (4,9) @®
8

Here, k and (i,7) denote the class order and the pixel index, respectively. 1
is an indicator function that returns 1 if the statement is true, otherwise 0.
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The AEFT is composed of two metric losses: (1) L attract that minimizes the
distance between anchor embedding and positive embedding and (2) £geper that
maximizes the distance between the embedding for low confidence region of the
anchor image and negative embedding. Each loss can be formulated as follows:

»CAttract - HeA - eP||27 (9)

Lpepet = [—|lear — el + €|+, (10)
where || - ||* denotes mean squared error and e denotes a fixed margin that
constrains the maximum distance between embeddings. For the Lreper, we only
consider positive distance ([]+) to prevent unbounded embedding space. Each
embedding is normalized before calculating the distance between them.

Our total loss function for training the AEFT is formulated as follows:

»CAE'FT = ['cls + >\1£Attract + )\2['Repela (11)

where £ denotes the binary cross-entropy loss between the class prediction (p)
and image-level labels.

In AEFT, we utilize features from the GPP layer to construct the embedding
space for metric learning. The metric learning on the GPP feature can be inter-
preted as implicit learning of the pooling weight, which is an effective way to
handle the CAMs while not interrupting the backbone features of the classifier
themselves. We experimentally verify that using the GPP feature is beneficial
than using the CAMs or the intermediate features of the classifier. Also, com-
pared with methods directly using GT classification labels for training the AE
branch, the proposed AEFT shows superior performance in both qualitative and
quantitative manners. In specific, thanks to the metric-based approach of AEFT,
learning a semantic distance between the images enables CAMs to explore the
less-discriminative regions while preventing the over-expansion problem.

4 Experimental Results

4.1 Dataset and Evaluation Metric

Evaluation of the proposed method is conducted on the PASCAL VOC 2012
dataset [I4] and MS-COCO 2014 dataset [37]. COCO dataset is is more chal-
lenging in WSSS since it contains more classes (81) with small objects than
PASCAL VOC 2012 (21). For VOC dataset, the proposed framework is trained
with the augmented train set (10,582), and evaluated using both wval (1,449)
and test sets (1,456). For COCO dataset, the proposed method is trained with
train set (80k) and evaluated on wval set (40k). We use the mean Intersection
over Union (mloU) for evaluating our methods as similar to many other WSSS
studies. As pointed out in Lee et al. [32], we utilize GT segmentation labels from
COCO-Stuff dataset [5] for evaluation since the ground truth segmentation labels
of the MS-COCO 2014 dataset have some overlaps between objects.
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Table 1. Ablation study of the Gated Pyramid Pooling, evaluated on the PASCAL
VOC train set. Pooled feature maps of bin sizes {2 x 2, 4 x 4, 8 x 8, 16 x 16} are
listed and used as an weighting factor of Eq. [5] Aggregation methods are noted as: A
(averaged), G (gated convolution, from coarse to fine), and G; (gated convolution, from
fine to coarse). The performance is evaluated with the PASCAL VOC 2012 ¢rain set.

2x2 4x4 8x8 16x16 Aggregation mloU (%)

v - 49.9
v - 51.6

v - 52.9

v - 53.1

v v v A 53.3
v v v Gr 51.3
v v v v g 54.2

4.2 Implementation Details

The proposed network is implemented with PyTorch. We employ ResNet38 [53]
as a backbone and the network is initialized with ImageNet [41] parameters. The
data is augmented using horizontal flipping, color jittering [26], and cropping.
The model is trained on 4 RTX 3090 GPUs with batch size 32. We use a poly
learning rate [9] with the initial learning rate of 0.01 and the power of 0.9. For
the semantic segmentation network, we use Deeplab [§] with ResNet38 backbone
as in [227465835] for fair comparison. Margin (¢) between anchor and negative
feature is set to 0.5. Weights of loss terms, A\; and Ag, are set to 0.15 and 0.15,
respectively. Our code is available at https://github.com/KAIST-vilab/AEFT.

4.3 Ablation Studies

To evaluate the proposed GPP layer, we conduct experiments with several dif-
ferent pooling bin sizes and feature aggregation methods. We set our baseline
as a mere classifier with the GAP layer (achieves 48.4% in mloU). As shown
in Table [1} the larger the bin size for pooling, the higher performance (mIoU)
of CAMs can be achieved. Furthermore, when averaging A of different feature
pyramid is used as a weighting factor of Eq. [f] the performance is higher than
using one of pooled feature pyramid. The results also show that the direction of
aggregation is important, since using gated convolution in fine-to-coarse direc-
tion (Gr) shows lower performance than naive averaging (A), while the proposed
coarse-to-fine (G) outperforms both. It supports our design intention: the global
context and fine details are well preserved in both small and large bin sizes, and
the coarse-to-fine aggregation can effectively exploit both information.

To clarify the source of improvements in AEFT, we conduct an ablation study
as in Table [2| With the attraction loss (£ attract), the proposed AEFT achieves
55.0% in mlIoU, while the repelling loss (Lgeper) achieves 54.8%. Actually, we
did not expect that the AEFT could increase the performance of the generated
CAMs with the repelling loss only, which is designed to aid the attraction loss.
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Table 2. Ablation study of the proposed AEFT. Direct: global average pooled result of
CAMs is used as embedding for metric, Indirect: global average pooled result of GPP
is used. The performance (mloU,%) is evaluated with the VOC 2012 ¢rain set.

Distance Lattract Lrepet CAMs CAMs w/ CRF

Indirect v 54.9 62.2
Indirect v 54.6 61.5

Direct v v 54.7 61.6
Indirect v v 56.0 63.5

Since the background regions around the foreground objects are sometimes ac-
tivated by the CAMs, we interpret this result as the repelling loss successively
penalizes such unwanted intrusion. It leads the framework to generate precise
CAMs fit along the object boundary. When both loss functions are used, the
proposed framework achieves 56.0% in mloU, and these results represent that
benefits from each loss function are synergistic. Furthermore, compare to using
CAMs itself as a embedding space for triplet learning ( Direct, 54.6%), using the
GPP feature (Indirect, 56.0%) shows better performance. This result indirectly
supports our hypothesis (the direct guidance from the AE branch to the CAMs
makes the model be unstable). Moreover, if we maximize the distance between
e and ey instead of e4r, and ey, the performance of AEFT decreases to 54.1%.
This result implies that the distance between the two images without sharing
class is already large enough, as we expected, and our strategy for using only the
low-confidence region from the anchor image is effective in terms of the quality
of the CAMs. Also, it is noteworthy that the gain of CRF is even larger in our
method (17.5%) than vanilla CAMs (15.9%). It implies that the benefit of our
method is not overlapped with that of CRF, which is advantageous in terms of
generating high-quality pseudo-labels.

In addition, we experimentally verify that using rigid classification labels trig-
gers an over-expansion problem in Adversarial Erasing (AE). To quantitatively
compare the degree of over-expansion, we use Precision and Recall scores of the
generated CAMs. Here, Precision means that the true activation over the whole
activation and Recall is the true activation over the GT. Although Precision and
Recall are not direct metrics for the over-expansion of CAMs, they could be rea-
sonable measure for quantitative comparison. As shown in Table [3| we compare
the Precision, Recall, and mloU performances from the various settings in our
proposed AEFT. Here, we quantitatively verify that forcing the network to make
the prediction from the erased image Ip according to the binary classification
label (exist or not) leads to over-expansion. When we use the classification label
for guiding the classifier to explore the less-discriminative regions as conventional
AE-based WSSS methods (Attract(Rigid) in Table[3), the performance becomes
lower than using the GPP layer alone (54.2%). Though using the rigid classi-
fication labels increases Recall by 0.5%, it causes over-expansion and thereby
harms Precision by -1.4%. Instead of using the rigid labels, by minimizing the
distance between the anchor embedding e4 and positive embedding ep in a soft
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Table 3. Comparison of the precision, recall, and mlIoU from the various settings in
the AEFT. Attract (Rigid): uses rigid classification labels for the masked image Ip,
Attract (Soft): minimizes the distance between the anchor es and positive ep in a
soft manner, Atrract (Soft)+Repel: uses repelling loss Lreper along with attraction
loss L attract (our setting). The performance is evaluated on the VOC 2012 train set.

‘Precision(%)‘ Recall(%) ‘ mlIoU(%)

GPP only 66.5 75.6 54.2
Attract (Rigid) 651 (-1.4) | 76.1 (+0.5) | 53.4 (:0.8)
Attract (Soft) 66.6 (+0.1) | 77.2 (+1.6) | 55.0 (+0.8)

Atrract (Soft)+Repel | 68.4 (+1.9) | 76.3 (+0.7) | 56.0 (+1.8)

Table 4. Evaluation (mIoU,%) of the CAMs, the CAMs with CRF, and the CAMs
with CRF and RW [2] on the PASCAL VOC 2012 train set.

Methods [ seed [w/ CRF [w/ CRF, RW
CONTA[G7] Newrips20|56.2| 65.4 66.1
EDAM[52] cvpr21 52.8 58.2 68.1
AdvCAM[30] cvpr21 |55.6| 62.1 68.0
ECS[46‘ 1C0CV21 56.6 58.6 -
OC-CSERT|1cover | 56.0|  62.8 66.9
CDA[4] rcovar 58.4 - 66.4
PMM|35] rcovar 58.2| 61.5 61.0
RIB[30] neurrps 56.5| 62.9 70.6
Ours 56.0| 63.5 71.0

manner (Attract(Soft)), the proposed method increases Recall by 1.6% while not
degrading the Precision. When we additionally employ repelling loss devised for
preventing over-expansion (denoted as Attract(Soft)+Repel), both Precision and
Recall are increased by 1.9% and 0.7%, respectively.

4.4 Comparison with State-of-the-arts

By applying a commonly used Random Walk (RW) approach [2] as in [50J7U30/58/46] ,
we acquire further improved pixel-level pseudo labels for training the semantic
segmentation model. As shown in Table [ though the performance of CAMs
of the proposed method is similar to the existing state-of-the-art, our method
greatly benefits from CRF (about 7.5%). According to Kweon et al. [27], we
can interpret this performance gain as a benefit from more precise CAMs that
match along object boundaries while activating the whole object. The result-
ing performance of pseudo labels achieves 71.0% mIoU on PASCAL VOC 2012
train set. For a fair comparison with the current state-of-the-art, we train the
Deeplab-LargeFOV [8] with the corresponding pseudo labels. The backbone of
the segmentation model is ResNet38d. As shown in Table[5] the proposed AEFT
achieves a state-of-the-art with 70.9% and 71.7% mIoU on PASCAL VOC 2012
val and test sets, respectively. Qualitative segmentation results of the proposed
method can be found in the Supplementary Material, which depicts that the
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Table 5. Performance (mloU, %) comparison with other state-of-the-art WSSS meth-
ods on the PASCAL VOC 2012 and MS-MOCO 2014. Since we use neither saliency
nor external dataset at all, we list the methods using image-level only in this table.
Bold numbers represent the best results.

Methods ‘ Backbone ‘ VOC wval VOC test ‘ COCO wal

AffinityNet ZJovprs | ResNet38 | 61.7 63.7 - & K5ir
ICD [5)cvpreo ResNet101 | 64.1 64.3 -

IRNet [TJcvprio ResNet50 63.5 64.8 32.6

SSDD [3)1ccvie ResNet38 64.9 65.5 - o

SEAM [B0lov przo ResNet38 |  64.5 65.7 31.9 - UM
Sub-category [T]cv pr2o | ResNet101 66.1 65.9 - z' BCPN 685
CONTA [B7n1ps20 ResNet38 |  66.1 66.7 33.4 2es AdvCAI =i "0C COR?
RRM [56] 44120 ResNet101 | 66.3 66.5 - H o
BES [[0]zccvao ResNet101 | 65.7 66.6 - REM BESSWw moDAwe
CDA []iccva ResNet38 | 66.1 66.8 - 6 T | i

ECS [46]rccvar ResNet38 66.6 67.6 - et ”',‘?55' SEAM

AdvCAM [B0)cv pr21 ResNet101 68.1 68.0 - = \cd

OC-CSERT]1covar ResNet38 68.4 68.2 36.4 641 AffinityNet

CPN [B8liceva ResNet38 67.8 68.5 -

RIB 28]Ncurrpsa1 ResNet101 68.3 68.6 43.8

PMM [B5)rccver ResNet38 | 685 69.0 36.7 B A
Ours ResNet38 70.9 1.7 44.8

segmentation model can capture fine details as well, owing to the high quality
pseudo labels used for training the model. We also evaluate our method in the
MS-COCO 2014 dataset to show the superiority and versatility of the proposed
framework. It achieves 44.8% on the MS-COCO wal set, which is a new state-
of-the-art, outperforming the other methods by a meaningful margin (1.0%).

5 Conclusions

To address the problems in weakly supervised semantic segmentation (WSSS),
we propose a Gated Pyramid Pooling (GPP) layer that replaces the GAP layer by
using a feature pyramid and a novel Adversarial Erasing framework via Triplet
(AEFT) that incorporates metric learning for suppressing the over-expansion
problem in AE. Extensive ablation studies support that the proposed GPP layer
outperforms the conventional GAP layer while effectively resolving the impre-
ciseness problem of CAMs with the help of the feature pyramid. In addition,
the proposed AEFT succeeds in relieving the over-expansion problem of AE by
exploiting the triplet loss as a softer criterion compared to classification loss
conventionally used. With the proposed GPP and AEFT, we achieve the state-
of-the-art performance both on the PASCAL VOC 2012 and MS-COCO 2014
val set with a great margin, only utilizing image-level supervision.
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