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Abstract. Deep networks have been shown to suffer from catastrophic
forgetting. In this work, we try to alleviate this phenomenon in the field
of continual semantic segmentation (CSS). We observe that two main
problems lie in existing arts. First, attention is only paid to designing
constraints for encoder (i.e., the backbone of segmentation network) or
output probabilities. But we find that forgetting also happens in the
decoder head and harms the performance greatly. Second, old and new
knowledge are entangled in intermediate features when learning new cat-
egories, making existing practices hard to balance between plasticity and
stability. On these bases, we propose a framework driven by two novel
constraints to address the aforementioned problems. First, a structure
preserving loss is applied to the decoder’s output to maintain the discrim-
inative power of old classes from two different granularities in embedding
space. Second, a feature projection module is adopted to disentangle the
process of preserving old knowledge from learning new classes. Extensive
evaluations on VOC2012 and ADE20K datasets show the effectiveness
of our approach, which significantly outperforms existing state-of-the-art
CSS methods.
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1 Introduction

Semantic segmentation aims to assign every pixel a semantic category for a given
image, which is a fundamental but challenging computer vision task. In recent
years, the state-of-the-art methods [7,47,48] based on Fully Convolutional Net-
work (FCN) [30] have achieved great success on large-scale benchmarks [15,49,9].
These models are designed to be trained in a one-shot mode with all data pre-
pared in advance. When fitted in real-world applications, they will inevitably
encounter situations where new categories need to be gradually learned. A naive
way is to fine-tune the models on new data. But they often fail to preserve the
performance of learned classes when updating themselves, which is called catas-
trophic forgetting [16] and becomes a main obstacle in practical applications.
Incremental learning, which enables models to continuously learn new knowledge
like human beings, is considered to be a promising solution to this challenge.

Class incremental learning (CIL) has been widely studied in image classifi-
cation [29,39,26,22,14], but it only received attention very recently in semantic
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segmentation. Extending methods from classification, current CSS approaches
have managed to make some progress, but two problems still remain unsolved.
One of them is that existing practices add constraints on either output prob-
abilities [3] or encoder [13,37] to prevent forgetting. But they fail to consider
the decoder head, which is a component exclusively in segmentation model. We
argue that forgetting phenomenon also exists in decoder and has a significant im-
pact on performance (details in Section 5.5). On this demand, we aim to design
a constraint specially for decoder to mitigate the forgetting. Another problem
lies in the knowledge distillation (KD) [20] used by existing methods [14,13,12]
to prevent changes in intermediate features (i.e., the output of encoder). Fixing
the model activations is reasonable in classification since the ground truth of a
certain image is consistent across all learning steps, but it’s not the case in CSS.
The semantic information of a given image might gradually increase, which is
known as the background shift [3]. This requires the intermediate features to be
updated accordingly to integrate the knowledge of upcoming classes, making the
aforementioned practices fail in this situation. Simply mimicking the intermedi-
ate features of the old model would cause a conflict, where the model tries to be
persistent on the old activations while struggling to learn the new knowledge,
and ultimately results in degradation of performance.

In response to these problems, we propose a novel framework called SPPA,
standing for Structure Preserving and Projected feature Alignment. It consists
of two main components to tackle the forgetting of encoder and decoder, re-
spectively. For encoder, we adopt a feature projection module to extract from
intermediate features some low-dimensional representations of old knowledge,
on which alignment is performed. This practice disentangles the preservation of
old knowledge and the integration of new knowledge, which enables us to main-
tain the integrity of old knowledge without hindering the update process of new
knowledge. For decoder, inter-class and intra-class structures are first modeled
from its output, which reflect both coarse and fine-grained relations in embed-
ding space. The structures are then explicitly maintained during incremental
learning, which can effectively preserve the discriminability of old classes while
being more flexible for new classes. The extensive experiments on Pascal-VOC
2012 [15] and ADE20K [49] demonstrate the effectiveness of our method. The
contributions of this paper are summarized as

– We unveil the forgetting phenomena of decoder head in CSS, and propose to
mitigate this by maintaining the class-related structures in embedding space
at two different granularities.

– We manage to solve the potential conflict of feature KD in CSS by disentan-
gle the preservation of old knowledge and the integration of new knowledge.
Consequently provides a better trade-off between stability and plasticity.

– We integrate both modules into a unified framework, which is evaluated on
two popular datasets with diverse experimental settings. The results reveal
that our method outperforms previous state-of-the-art methods.
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2 Related Works

Continual Learning. Deep neural networks have achieved great success in
many fields, such as image classification [19], semantic segmentation [7] and
object detection [40]. However, they often suffer from catastrophic forgetting
[16] when situated in real scenarios where continuous streams of new data are
involved. Continual learning that aims at tackling this obstacle has become an
active field recently.

Continual learning for image classification has been extensively studied these
years. Current techniques can be mainly divided into rehearsal methods, archi-
tectural methods and regularization methods. Rehearsal methods store a limited
amount of raw images [39,2,22] and interleave them with new data to relieve for-
getting. Some methods store intermediate features [25,18,10] instead, as they
require less storage and contain richer information. Generation-based methods
are derived from them that resort to generative networks to obtain images [42,8]
or features [43] of old classes. Architectural methods either use a sub-network
[33,32] to solve each independent task at a cost of limited scalability, or dynam-
ically expand the network [44,28,45] for learning new tasks with growing com-
plexity. Most of these methods require additional task labels and are restricted
to multi-head [34] setup. Regularization methods design extra loss functions to
maintain the previous knowledge, which can be divided into parameter regular-
ization [46,26] and distillation-based methods. Parameter regularization prevents
updates on the most important parameters for old tasks based on various metrics
like fisher information matrix [26] or gradient magnitude [46]. Distillation-based
methods are the most common currently. It was first introduced by LwF [29] to
penalize the changes in output logits. LwM [12] additionally performs distillation
on attention maps. [22] introduces a stronger constraint by punishing changes
in feature vectors. Distillation on intermediate features is used in [14] to further
reduce forgetting.

Continual Semantic Segmentation. Modern deep neural networks for se-
mantic segmentation are mostly based on the fully convolutional network (FCN)
[30]. Recent developments mainly try to exploit spatial information to improve
accuracy. For example, encoder-decoder architecture [41,1] is used to prevent
spatial information loss. Atrous convolution [35] enlarges the field of view to
incorporate more spatial context information. Multi-scale information is further
considered in ASPP [5] and PSPNet [47]. More recently, attention mechanisms
have been used to model spatial dependences [48,17,24].

Despite their great success, segmentation networks inevitably suffer from
catastrophic forgetting when used in online scenarios. [36] is the first one target-
ing for CSS. But it requires the labels of both old and current classes be provided,
which greatly limits its capability in real scenarios. [3] formalized background
shift, which is a new obstacle specially for CSS. To overcome this, they modified
traditional distillation loss and cross-entropy loss to an unbiased version consid-
ering the semantic inconsistency of background. More recently, some methods
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Fig. 1. Overview of the proposed framework. Alignment is performed on the repre-
sentations generated by the feature projector to solve the potential conflict in feature
distillation for encoder. The structure preserving loss is used to maintain discriminative
structures for old classes, while the contrastive loss is used to optimize the structures of
new classes. Finally, pseudo label is used to provide missing annotations for old classes.

proposed to tackle forgetting in encoder. [37] designed a framework combining
prototype distillation, feature sparcification and contrastive learning. However,
a plasticity issue might arise when trying to punish any changes in prototypes.
[13] proposed a multi-scale pooling distillation to preserve long and short range
statistics in intermediate features. But it cannot solve the conflict of old and new
knowledge stated before. What’s more, all of the existing works never considered
the forgetting of decoder. Our work is the first attempt to tackle forgetting in
both encoder and decoder in a single framework, with two novel distillation ap-
proaches to achieve a better plasticity-stability trade-off than existing methods.

3 Problem Definition

In semantic segmentation, let X ∈ RH×W×3 be the input space, and Y ∈ CH×W

be the label space where C is a given category set. Given a dataset T = {(xn,yn)}
where (xn,yn) ⊂ X × Y. The goal is to produce a segmentation map ŷ ⊂
Y ∈ CH×W by assigning each pixel xi ∈ x a class in C. This is usually done
using a deep neural network M : X 7→ RH×W×C and the segmentation result is
calculated as ŷ = argmaxc M(X )[h,w, c]. Nowadays M is usually an encoder-
decoder architecture made by a feature extractor E and a segmentation head
D (i.e., M = E ◦D). In our work, we treat the final classifier as an individual
module G , which makes M = E ◦D◦G. We use F to represent the intermediate
feature output by encoder E(x), and E to represent the embedding output by
decoder D(F) before final classifier.

In conventional training pipeline, the complete training set T is available
and the model is trained only once to learn all classes C. While in continual
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learning, the training procedure is composed of multiple learning steps. At each
step, a subset of the training set is provided together with a set of novel classes
to be learned. More specifically, at the initial learning step t = 0, a standard
supervised training is performed on a subset of training data T 0 with labels
of C0. Next moving to a more general step t, a set of novel classes Ct ∈ C is
introduced, expanding the learned label set to C0:t = C0:t−1 ∪ Ct. A training set
T t with all C0:t−1 labeled as background and only Ct been labeled is provided to
update the previous model Mt−1 : X 7→ RH×W×C0:t−1

to Mt : X 7→ RH×W×C0:t

.
As in standard class incremental learning, we assume that the classes introduced
in different steps are disjoint (Ci ∩ Cj = ∅) except for the background class b.

4 Method

In this section, we will introduce the proposed modules one by one, following
the structure depicted in Fig. 1 from left to right to make it easier to follow.

4.1 Projected Feature Alignment for Encoder

We first go through the feature distillation in existing works. [14,12,22] have
attempted to perform distillation on intermediate features, which consists of a
distance metric to minimize the differences between feature maps from old and
new models. Due to the rich information contained in intermediate features, this
approach often yields better performance than logits distillation. An Euclidean
distance is usually applied, and the distillation loss can be formulated as

L = ∥Et(x)− Et−1(x)∥2, (1)

where Et(x), Et−1(x) indicate the feature of image x extracted by the encoder
of step t and step t− 1, respectively.

It’s reasonable to keep the activations invariant in classification since the
semantic information of an image will not change across all incremental learning
steps. In CSS however, the semantic information might increase (e.g., we want
to learn a new class which was ignored and labeled as background before). This
is known as the background shift phenomenon[3] exclusively in CSS. Ideally, the
intermediate features should be updated to integrate new knowledge. It means
that even if the current model does not forget the old knowledge, its intermediate
features could still be quite different from the ones extracted by the old model. If
we make the current model directly mimic the old one, a conflict arises between
being unchanged in the activations and adapting to new classes at the same
time.

Therefore, we try to disentangle the processes of retaining old knowledge and
learning new classes for intermediate features. It is known that an auto-encoder
can generate compact representations that contain sufficient information to re-
construct the original feature maps [21]. We leverage this property to extract
low-dimensional representations of old knowledge from intermediate features.
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These representations are then used for alignment. It’s worth noting that we do
not reduce the spatial resolution like traditional auto-encoder since the segmenta-
tion task requires high spatial precision. We define the auto-encoder architecture
as a projector P and a reconstructor R to avoid being confused with the encoder
and the decoder in segmentation model. Before starting learning step t, we use
the intermediate features of T t extracted by Et−1 to train a projection module
Pt−1 from scratch using the reconstruction loss Lrecon.

Lrecon = ∥Et−1(x)−Rt−1(Pt−1(Et−1(x)))∥2 (2)

After it converges, the reconstructor Rt−1 is discarded, the old model Mt−1 and
the trained Pt−1 is used to initialize the current model (i.e., Mt and Pt). During
the training of current step t, Mt−1 and Pt−1 are fixed, while Pt and Mt are
updated. L1 distance is minimized between the output of Pt−1 and Pt.

Lali = ∥Pt−1(Et−1(x))− Pt(Et(x))∥1 (3)

The design intuition is as follows: The output representations of Pt−1 contain
sufficient information to restore the old features Et−1(x) which stand for the old
knowledge. If we can extract the same representations from the new feature
maps Et(x) by Pt, it indicates that the new feature maps still hold the same
old knowledge as that of the old. With this design, we make it possible to add
constraints on the old knowledge without the potential impediment on learning
new knowledge.

4.2 Class Structure Preserving for Decoder

Existing approaches utilizing pre-classifier embeddings commonly fall into adding
constraints for feature vectors [22] or class prototypes [37,4]. However, when ap-
plied in CSS to prevent forgetting in decoder head, we find that these meth-
ods yield overly strong constraints on the output, which penalizes any possible
changes with respect to its previous position in the embedding space. On the one
hand, it might impede the model from finding a globally optimal position that
benefits both old and new classes, thus hindering the learning of new classes.
On the other hand, the model tries to be persistent in the absolute positions
of old classes while integrating new classes. This might cause an optimization
conflict, which results in uncontrollable small drifts of old classes in embedding
space and ultimately leads to a chaotic distribution, as shown in Fig. 6.

Since it is undesirable to directly fix the embeddings of old classes, we turn
to seeking a practice that can preserve the performance of old classes without
sacrificing the freedom to learn new classes. It is known that the embeddings
from a well-trained model form a space, in which the instances of the same class
are close to each other and far from those of different class. This geometry in
embedding space is the key to making each class linearly separable. Inspired
by this, we propose to model the structures in embedding space and explicitly
maintain them during incremental learning steps. In this work, we consider two
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structures of different granularity: the structure between different classes (inter-
class structure) and the structure within a single class (intra-class structure).

Class prototypes (i.e., mean of feature vectors of a class) are needed when
modeling these two structures. Generally, they can be computed in a global, in-
batch or in-image manner, which represents the class information from coarse-
grained (global-level) to fine-grained (instance-level). In segmentation, the em-
beddings of the same class vary across images and, in our observation, form
image-level mini-clusters. Adopting in-image prototypes to obtain a fine-grained
relation in our case helps to reflect these differences at an instance level and
slightly boosts the performance. Similar practices are also observed in other de-
signs for segmentation, like [23] uses in-image prototypes for contrastive learning.
The in-image prototype pc of class c for an input image is defined as

pc =
1

|y∗ = c|
∑
ei∈E
i=c

ei. (4)

Since E has lower spatial resolution than input due to the network architecture,
y should be resized to match the spatial dimension of E and is denoted as y∗.
i = c means the position i is labeled as class c in y∗. Because we don’t have
labels for old classes, the pseudo label ŷ∗ output by the old model is used to
obtain old class prototypes.

The inter-class structure is formulated as a distance matrix A between each
in-image prototype of old classes obtained in the current batch, where Aij is the
cosine distance between prototypes i and j. The consistency constraint is then
applied between At from Mt and At−1 from Mt−1. p̄i is l2-normalized version
of pi and ⟨p̄i, p̄j⟩ calculates the cosine similarity between pi and pj .

Aij = 1− ⟨p̄i, p̄j⟩, i, j ∈ C0:t−1 (5)

Linter = ∥At −At−1∥F (6)

As for the intra-class structure, the embedding vectors of the same class are
clustered closely with each other, so we leverage Euclidean distance to better
reflect the small changes in the structure. Intuitively, the intra-class structure
can be maintained by keeping the distance between embedding vectors and their
prototypes. We further integrate the direction information to prevent the em-
bedding vectors from rotating (See Fig. 2 right), making the constraints as fixing
the relative position of embedding vectors with regard to their prototypes. The
loss function for a class c is defined as

Lintra(c) =
1

|ŷ∗ = c|
∑
ei∈E
i=c

∥(et−1
i − pt−1

c )− (eti − pt
c)∥2, (7)

in which et−1
i , pt−1

c is obtained from Mt−1. e
t
i, p

t
c is obtained from Mt. ν is used

to balance between inter-class term and intra-class term.
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Fig. 2. Illustration of the structure preserving loss, which maintains inter-class struc-
ture and intra-class structure respectively.

Lstr = Linter + ν
∑

c∈C0:t−1

Lintra(c). (8)

Compared to previous approaches, the structure preserving loss allows the
model to freely re-arrange the feature vectors in the embedding space as long as
the discriminative structures are intact during this procedure. By maintaining
both coarse and fine-grained structures, it effectively mitigates the forgetting
of old classes while at the same time avoiding the optimization dilemma, thus
providing a better stability-plasticity trade-off.

The proposed structure preserving loss mainly focuses on old classes. We
want to obtain good initial structures in the embedding space when learning new
classes. Then the good structures can be explicitly maintained in future steps by
the structure preserving loss. We adopt contrastive learning to achieve this. The
losses are extended from [37,22], and we confirm that a modern contrastive loss
with similar effects can also be used. Lcomp encourages the embedding vectors
to be close to their prototypes, while Lmar is to ensure enough distance between
different classes. By doing this, a structure with compact distributions within
classes and wide boundaries between classes can be obtained, which is less prone
to catastrophic forgetting. The loss functions are formulated as follows, with µ
a hyper-parameter and ∆ a pre-defined distance.

Lcomp(c) =
1

|y∗ = c|
∑
ei∈E
i=c

∥eti − pt
c∥2, (9)

Lmar =
∑
i

∑
j

max{0,∆− ⟨p̄i, p̄j⟩}, i, j ∈ Ct, (10)

Lcont = Lmar + µ
∑
c∈Ct

Lcomp(c). (11)

4.3 Pseudo Label for Old Classes

Training the model directly on given labels using cross-entropy loss will aggravate
catastrophic forgetting because previous classes are labeled as background. A
common practice is to adopt the pseudo label [27] technique to provide missing
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annotations for old classes. At step t, we use the prediction ofMt−1 on the current
training set T t to label the background regions. The pseudo labels are then
refined by only accepting pixels with certainty above a threshold. Considering
that the model cannot learn each class equally well. If the same threshold is
applied to all classes, the poorly-learned classes might be overly rejected and
unnecessarily sacrifice the integrity of pseudo label. It’s better to let each class
has its own threshold. We use entropy (denoted as u) as certainty measurement.
An entropy threshold tc is selected for each class to keep a fixed percentage of
the raw pseudo label whose prediction entropy is below tc.

ypseudoi =


yi if yi ∈ Ct,

argmaxc∈C0:t−1 Mt−1(x) elif u < tc,

0 otherwise.

(12)

4.4 Loss Function

Combining the losses introduced above, the overall loss is formulated as follows,
with α, β, γ being hyper-parameters:

L = Lce + αLali + βLstr + γLcont. (13)

5 Experiments

We compare the performance of our method against four strong CSS methods,
including ILT[36], MiB[3], SDR[37], and PLOP[13]. All methods in comparison
(including ours) do not use the replay strategy [39], where a small amount of
previous data is stored and rehearsed. The theoretical performance is obtained
by training the model in an offline manner with all data and labels (given as
Upper Bound).

5.1 Experiments Setup

Datasets and Metrics. We evaluated our framework on Pascal-VOC 2012
[15] with 20 foreground classes and a background class, and ADE20K [49] with
150 foreground classes. We use mean Intersection over Union (mIoU) as the
performance metric. After the whole training process, the performance on initial
classes C0 is denoted as old. On classes learned in incremental steps C1:T , it is
denoted as new. And on all classes C0:T , it is denoted as all.

Incremental Protocols. Two different settings of CSS are described in [3] con-
cerning different split methods for training set. Disjoint setting: at step t, the
given images contain pixels only belonging to either old classes or current classes
C0:t−1∪Ct.Overlapped setting: at step t, images that contain at least one pixel
belonging to the current classes Ct are provided. In both settings, Only labels
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for Ct is provided, and C0:t−1 are labeled as background. The main difference is
that, the background in disjoint setting contains only seen classes C0:t−1. While
in overlapped setting, it might contain old and future classes C0:t−1∪Ct+1:T . This
is a more realistic setting for CSS because it is hard to guarantee that there will
not be a demand to learn new concepts that were ignored previously. It is also
more challenging due to severer semantic shifts.

Training Procedure. For fair comparison, we follow most of the settings in
previous works [3,13]. We adopt the Deeplabv3 [6] with an output stride of 16.
ResNet-101 [19] serves as the backbone and is pretrained on ImageNet [11]. The
model is optimized using SGD with momentum, with a learning rate of 7e−3 for
the initial step and 7e− 4 for the following steps. The learning rate is decreased
according to the polynomial decay rule of power 0.9. The model is trained with
a batch size of 16 for 30 epochs on VOC2012 and 60 epochs on ADE20K. The
input image is cropped to 512× 512 for both training and validation. The data
augmentation for training consists of a random scaling with a factor from 0.5 to
2.0 and a random left-right flip.

5.2 Evaluation on Pascal VOC2012

We present the results on Pascal-VOC 2012 in this section. Following [3,37,13],
we use three experiment setups: adding one class for a step (19-1), adding five
classes for a step (15-5), and adding one class sequentially for five steps (15-1).
The results of disjoint and overlapped are reported in Table 1 and Table 2. The
results of ours are averaged over three runs to increase statistical significance.

Single step addition of one class (19-1). In this setup, the model first
learns 19 classes and then the last class is added. Directly fine-tuning the model
always leads to the worst performance. ILT, which is the first method target-
ing CSS, struggles to learn the new class but still suffers from forgetting. The
methods from MiB start to explicitly consider the background shift in CSS and
all of them have steady improvements. Our method achieves the best overall
performance in both disjoint and overlapped settings. We notice that despite of
only a single class being added, this setting is actually difficult since the training
set is rather small and monotonous.

Table 1. Results of different methods on overlapped Pascal-VOC 2012. Best in bold.

19-1 (2 tasks) 15-5 (2 tasks) 15-1 (6 tasks)

Method old new all old new all old new all

Finetune 34.7 14.9 33.8 12.5 36.9 18.3 4.9 3.2 4.5

ILT[36] 67.1 12.3 64.4 66.3 40.6 59.9 4.9 7.8 5.7

MiB[3] 70.2 22.1 67.8 75.5 49.4 69.0 46.2 12.9 37.9

SDR[37] 69.1 32.6 67.4 75.4 52.6 69.9 44.7 21.8 39.2

PLOP[13] 75.3 37.3 73.5 75.7 51.7 70.0 65.1 21.1 54.6

Ours 76.5 36.2 74.6 78.1 52.9 72.1 66.2 23.3 56.0

Upper Bound 77.6 76.7 77.5 79.0 72.8 77.5 79.0 72.8 77.5
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Table 2. Results of different methods on disjoint Pascal-VOC 2012. Best in bold.

19-1 (2 tasks) 15-5 (2 tasks) 15-1 (6 tasks)

Method old new all old new all old new all

Finetune 35.2 13.2 34.2 8.4 33.5 14.4 5.8 4.9 5.6

ILT[36] 69.1 16.4 66.4 63.2 39.5 57.3 3.7 5.7 4.2

MiB[3] 69.6 25.6 67.4 71.8 43.3 64.7 35.1 13.5 29.7

SDR[37] 69.9 37.3 68.4 73.5 47.3 67.2 59.2 12.9 48.1

PLOP[13] 75.3 38.8 73.6 71.0 42.8 64.2 57.8 13.6 46.4

Ours 75.5 38.0 73.7 75.3 48.7 69.0 59.6 15.6 49.1

Upper Bound 77.6 76.7 77.5 79.0 72.8 77.5 79.0 72.8 77.5

Single step addition of five classes (15-5). In this setup, the remaining
5 classes are added in a single step after learning the first 15 classes. It has the
most severe semantic shift due to the most classes being added in one go. Such
a setup requires the model to have enough plasticity to learn 5 classes in one go
while being stable on old knowledge. In this scenario, our method outperforms all
previous works by a large margin in both disjoint and overlapped settings. In the
disjoint setting, our method improves by about 2% compared to SDR and about
5% compared to PLOP. In the overlapped setting, our method has another gain
of about 2% compared to the second place. What’s more, our method boosts
the performance of old classes to only 1% lower than the upper bound, together
with a notable gain in new class performance.

Multi-step addition of five classes (15-1). This is similar to 15-5 except
that the last 5 classes are added one by one, making it the most challenging
because of multiple learning phases. As presented in Table 1 and Table 2, all
methods suffer a great performance drop. ILT almost forgets all the knowledge.
Even the second place, PLOP, has a significant drop compared to 15-5. Our
method again achieves state-of-the-art performance on both the disjoint and
overlapped setups, proving its ability under longer learning sequences.

Visual results. We visualize the results of all methods on different setups to
unveil more details. As shown in Fig. 3, our method consistently produces better
segmentation results than all competitors. For example, in 19-1 our method
successfully distinguishes all three classes while the competitors fail to recognize
at least one class. The same situation can be observed in 15-5 and 15-1, in which
our method generates a segmentation map closer to the ground truth and less
confusion between classes is observed. We further provide a visualization of each
step in 15-1 setup to present the knowledge shift across each step. As shown
in Fig. 4, all the competitors suffer more or less from catastrophic forgetting.
The change is especially great in step 5, in which most of the old classes are
misclassified into the new class train learned in this step. But our method shows
good robustness against forgetting, which presents constant segmentation results
across each step.

5.3 Evaluation on ADE20K

In this section, we evaluate our method on the ADE20K dataset. Following [13,3],
we adopt three setups on the overlapped protocol: adding the last 50 classes in
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Fig. 3. Visual results of competing meth-
ods on different setups of overlapped
VOC2012. Best viewed in color.

Fig. 4. Visual results of competing meth-
ods on each step of 15-1 overlapped
VOC2012. Best viewed in color.

a single step (100-50), adding 50 classes each step (50-50), and adding 10 classes
each step for the last 50 classes (100-10). ADE20K is much more complex than
VOC2012, as we can only get 37.9% mIoU under the offline training. We compare
the same methods as in Section 5.2 except for SDR since it does not provide their
results on ADE20K.

The full results are presented in Table 3. ILT suffers from critical forgetting,
while PLOP and MiB achieve much better results. Our method outperforms all
previous methods in both 100-50 and 50-50 setups with an improvement of more
than 2% compared to PLOP. When diving into longer learning sequences, our
method shows higher performance on old classes, and achieves comparable over-
all performance compared to PLOP. These experiments show the effectiveness
of our method on a large-scale dataset.

Table 3. Results of different methods on overlapped ADE20K in mIoU, best in bold

100-50 (2 tasks) 50-50 (3 tasks) 100-10 (6 tasks).

Method old new all old new all old new all

ILT[36] 18.2 14.4 17.0 3.5 12.8 9.7 0.1 3.0 1.0

MiB[3] 40.5 17.1 32.7 45.5 21.0 29.3 38.2 11.1 29.2

PLOP[13] 41.8 14.8 32.9 48.8 20.9 30.4 40.4 13.6 31.5

Ours 42.9 19.9 35.2 49.8 23.9 32.5 41.0 12.5 31.5

Upper Bound 43.5 26.7 37.9 50.3 31.7 37.9 43.5 26.7 37.9

5.4 Ablation Study

We investigate the effects of key components in our framework using an abla-
tion study on 15-1 overlapped VOC2012. Starting from the basic fine-tuning, we
gradually add the proposed components upon it. The full results are shown in
Table 4. It can be seen that the performance is boosted steadily as more compo-
nents are added. Each module in our framework can bring benefits to both old
and new classes. We conducted another experiment by removing a single com-
ponent from the framework to better show their individual contribution to per-
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formance. Among all the components, the structure preserving loss contributes
the most to performance (-4.7% if removed), and the second is the projected
feature alignment (-2.1% if removed). This well demonstrates the effectiveness
of the two proposed techniques.

Table 4. Performance contribution of each component on 15-1 overlapped VOC2012

Lce pseudo Lali Lstr Lcont old new all

✓ 4.9 3.2 4.5

✓ ✓ 23.5 6.6 19.5

✓ ✓ ✓ 60.8 17.2 50.4

✓ ✓ ✓ ✓ 65.3 21.2 54.8

✓ ✓ ✓ ✓ ✓ 66.2 23.0 55.9

✓ ✓ ✓ ✓ 63.7 22.0 53.8

✓ ✓ ✓ ✓ 61.7 17.8 51.2

5.5 Further Analysis

Forgetting in Decoder Head. To give a straightforward view of the forgetting
phenomenon in decoder head, we utilize Canonical Correlation Analysis [38] to
measure the model output similarity between adjacent incremental steps. Results
are shown in Fig. 5. The X-axis indicates different layers of the network. The Y-
axis represents learning steps. Lower value on step 1 indicates more forgetting.
(a) only performs probability distillation and results in the most forgetting.
(b) adds constraints on intermediate features, which alleviates the forgetting of
encoder, but a clear gap can be observed in decoder output (0.943 −→ 0.765). (c)
further applies constraints on decoder as in our framework, which alleviates this
forgetting and improves the overall performance.

Effect of Structure Preserving Loss. To demonstrate the effects of the struc-
ture preserving loss against the widely used prototype alignment, we performed
an experiment by replacing structure preserving loss with the prototype align-
ment used in [37]. We select five old classes (plane, bicycle, bird, boat, bottle) and
use t-SNE [31] to visualize their distributions in embedding space after training
on new classes. To erase the randomness in initial learning phase, we use the
same checkpoint learned the first 15 classes to start from. Results are shown in
Fig. 6. Our structure preserving loss better maintains the discriminative power
(i.e., a clearer boundary) of old classes than prototype alignment.

Effect of Projected Feature Alignment. We conducted an experiment on
15-1 overlapped VOC by adding different feature space constraints on a simple
baseline, which is made of Lce + pseudo label. Results of all classes are shown
in Table 5. Pixel-wise aligns the feature map directly in a pixel-wise manner.
Pooled indicates the practice in [13]. Our proposed module successfully surpasses
its contenders by a clear margin of 2.3%.
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Fig. 5. Visualization of the forgetting phe-
nomena in segmentation network.

Fig. 6. Comparing the embedding space
distribution results by prototype align-
ment and structure preserving loss.

Table 5. Performance comparison of different feature space constraints

Baseline Pixel-wise Pooled[13] Ours

18.9 33.7 48.2 50.5

6 Limitation and Conclusion

Continual learning is often applied to situations where computational and space
overhead are important. Our method, which is exemplar-free, does not require
any extra storage. But we do admit that there’s some extra computational cost
of our method. It is mainly from two aspects: The first is from the training of
projector P , which takes roughly 10 minutes per incremental step. The second is
from all the proposed modules, which makes the training about 10% slower than
fine-tuning. We think this is within an acceptable range for most situations.

In this paper, we present a novel framework to deal with the forgetting in both
encoder and decoder of segmentation network. In detail, the projected feature
alignment module is designed to disentangle the preservation of old knowledge
from integrating new knowledge. The structure preserving loss exploits inter-
class and intra-class structures to maintain the discriminability of each class in
the embedding space. Their effects are demonstrated by extensive experiments.
Though our method managed to achieve a better stability-plasticity trade-off,
the cause of large performance gap to the upper bound for new classes still
remains to be explored in the future work.
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