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Abstract. Traditional semantic segmentation requires a large labeled
image dataset and can only be predicted within predefined classes. Solv-
ing this problem of few-shot segmentation, which requires only a handful
of annotations for the new target class, is important. However, with few-
shot segmentation, the target class data distribution in the feature space
is sparse and has low coverage because of the slight variations in the
sample data. Setting the classification boundary that properly separates
the target class from other classes is an impossible task. In particular, it
is difficult to classify classes that are similar to the target class near the
boundary. This study proposes the Interclass Prototype Relation Net-
work (IPRNet), which improves the separation performance by reducing
the similarity between other classes. We conducted extensive experiments
with Pascal-5i and COCO-20i and showed that IPRNet provides the best
segmentation performance compared with previous research.

Keywords: Semantic Segmentation, Few-shot Segmentation, Few-shot
Learning, Metric Learning

1 Introduction

Recent advances in semantic segmentation have been brought about by advanced
convolutional neural networks (CNNs) [15] and large labeled image datasets [9],
[18], [6], [50]. However, semantic segmentation with fully supervised learning re-
quires a substantial number of annotations per pixel and can be time-consuming
to create. To solve this problem, few-shot segmentation that requires only a
handful of annotations for a new target class is important. Few-shot segmenta-
tion aims to obtain generalization ability from known classes and adapt them
to new target classes via a few shots, namely, support data. However, few-shot
segmentation is not under the condition in which features can be extracted from
a large amount of data with all variations (Fig.1(a)), and the target class data
distribution in the feature space is sparse and has low coverage (Fig.1(b)). There-
fore, there is an essential problem in that it is not possible to set the classification
boundary that separates the target class from other classes properly. In partic-
ular, it is difficult to classify classes that have features like those of the target
class near the boundary. To tackle this important problem without increasing the
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Fig. 1. Each shade is the area to which most of the samples in that class are mapped.
The black line is the classification boundary calculated from the samples. (a) shows the
area to be mapped from sufficient samples is given, not in the condition of few-shot.
(b) shows the area mapped in the few-shot problem with a few samples. If query data
is plotted near the boundary between the two classes you want to classify, we cannot
detect the class that originally belonged to the target class in the case of few-shot with
a narrow-mapped area.

number of shots for the target class, it is important to differentiate the features
between each class when learning generalization abilities from known classes.

Few-shot segmentation is an extension of the technology based on few-shot
learning [36], [32], [31], [39], [11], [28], and it tackles the more difficult task of
predicting the label for each pixel, instead of predicting a single label for the
entire image in few-shot learning. Few-shot learning has meta-learning [39], [11]
and metric learning [36], [32], [31] as the mainstream methods. Meta-learning
was introduced by Shaban et al. [29] and metric learning by Snell et al. [8]
for segmentation problems. In particular, the metric learning approach to the
problem of few-shot segmentation has been actively studied in recent years and
has been successful. Our research is related to few-shot segmentation using metric
learning. The method of few-shot segmentation using metric learning has been
pushed into a global descriptor called a prototype using supporting data [30]. The
support data are a few samples with a target class. The prototype is a vector
representation of the features for the target class and there are many studies
based on the method of inference by comparing the prototype with the features
of the query image. For better prototyping and proper comparison of support and
query, there are several earlier studies. For example, there are studies that have
introduced a mechanism to separate the foreground and background [38], [19],
[42], and studies that have introduced a multi-scale architecture [45], [34], [16]. In
these studies, the prototype extracted from the support data was appropriately
compared with the query data, and training was performed based on the loss
function between the query data and its ground truth.

However, in few-shot segmentation with only a few shot samples, as men-
tioned above, there are few variations of support data using the target class, and
prototype generation is performed from a sparse feature space. Therefore, it is
particularly difficult to obtain a prototype that can classify classes with features
similar to those of the target class. However, owing to the problem setting of the
few-shot, it is not possible to increase the amount of data for the target class
and make the feature space dense.
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Accordingly, we propose the Interclass Prototype Relation Network (IPRNet)
that improves separation performance by reducing the similarity between types
to highlight the differences between the prototypes of similar classes. IPRNet has
1) the Interclass Prototype Relation Module, which aims to improve the sepa-
ration performance between similar classes by reducing the similarity between
prototypes of each class, and 2) the Respective Classifier Module, which aims
to improve the separation performance by integrating respective estimations of
the target class and background. We hypothesized that these modules could im-
prove the separation performance of the target and other classes. In this study,
we verified this hypothesis using two experiments. First, we evaluated whether
the performance would improve compared to earlier research with the best per-
formance. Second, we conducted an ablation study to verify that the modules
proposed in IPRNet are effective in classifying similar classes. The contributions
of this study are as follows.

– We propose a novel few-shot segmentation method called IPRNet, which
improves the separation performance between the target class and other
classes that are especially similar to the target.

– We evaluate Pascal-5i [29] and COCO-20i [18] and show that the proposed
method improves the mean intersection over union (mIoU) over the existing
best-performing method.

– Through an ablation study, we verified whether the proposed method is
effective for classifying similar classes.

Our code is at:
https://sb-biz.primedrive.jp/v2/access?key=PGru7XxrXU-tQe1ZzB2EpQ

2 Related Work

Few-shot segmentation mostly consists of few-shot learning-based technology
that improves model generalization ability and semantic segmentation technol-
ogy that solves pixel-level classification problems. We describe the existing re-
search related to these constituent requirements and issues.

Semantic Segmentation In semantic segmentation, deep neural networks
based on convolutional neural networks (CNNs) [15] have been successful. Start-
ing from fully convolutional networks [22], especially encoder-decoder structure
proposed by Segnet [1] has become the basic network structure in recent se-
mantic segmentation. Recently, a faster method Enet [27], and encoder-decoder
structures that ensemble multi-scale features to express all frequency informa-
tion have been proposed [43], [3], [4], [5], [48], [47]. The latest research also
proposed a convolution-free and resolution deterioration-free method [49] based
on the transformer [35], which is a model that uses only the attention mechanism
instead of CNNs [15].
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Few-shot Learning Few-shot learning focuses on the generalization ability of
the model and enables learning for new class predictions using a few annotated
samples. The mainstream existing methods are metric learning [36], [32], [31]
and meta-learning [39], [11], [28]. The core idea of metric learning is the dis-
tance measurement, which is formulated as an optimization of the distance or
similarity between the images and regions. Meta-learning focuses on achieving a
high-speed learning ability by defining specific optimization functions and loss
functions. Among these methods, the concept of a prototypical network [31] is
widely adopted for few-shot segmentation, and it is possible to reduce the cal-
culation cost significantly while maintaining high performance. Many methods
focus on image classification, but recently few-shot segmentation has attracted
attention.

Few-shot Segmentation Few-shot segmentation is an extension of few-shot
learning that addresses the more difficult task of predicting a label for each
pixel rather than predicting a single label for the entire image. Few-shot meta-
learning was introduced into the segmentation problem by Shaban et al. [29], and
there is a lot of research on its enlargement [33], [14], [2], [23]. Few-shot metric
learning was successfully introduced by Snell et al. [8]. Many of the methods
so far drop the problem into a 1-way classification problem in order to apply it
to episodic learning [36] to acquire generalization ability. In previous research,
they pushed the support data into a global descriptor to obtain a prototype
that is the features of the class in the first step [30]. In the next step, the target
object and background are separated by comparing the prototype with the query
image [26], [46], [38], [45], [21], [41], [34], [16], [42]. In addition to these, research
to absorb the difference in size, position, and orientation of the target object on
the support image and the query image, and to compare them correctly have
been conducted [20], [10], [44], [37], [40]. There is also a method to infer from the
correlation between all positions of query data and support data [25]. However,
most of them are solved by general 1-way classification problems, so only the
relationship between the target class and the background can be considered.
ASR [19] is a method that uses multiple latent class vectors, but the feature
map channel is divided and assigned to each class. Therefore, if many classes are
included, the number of channels assigned to one class will decrease and it will
not work effectively. Existing methods do not fully consider the relationships
between different classes, making proper classification difficult. In particular,
it is the most difficult to separate from similar classes near the discriminant
boundary, and to the best of our knowledge, no research has been conducted on
this problem. This research proposes a novel IPRNet that focus on improvement
between similar classes, which are particularly difficult to classify.

3 Problem Definition

The major difference between few-shot segmentation and general semantic seg-
mentation is that the training and test set categories do not intersect. Particu-
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larly, at the inference stage, the test set had classes that were not found during
the training. Specifically, given the train set Strain = {(IS/Q,MS/Q)} and the
test set Stest = {(IS/Q,MS/Q)}, the categories of the two sets do not intersect
(Strain ∩ Stest = ϕ). Here, I ∈ RH×W×3 shows an RGB image and M ∈ RH×W

shows a segmentation mask. The subscripts S and Q represent support and
query, respectively. We mimicked the first one-shot segmentation study [29] and
applied training and testing to an episodic learning framework. In each episode,
the input to the model consists of the query image IQ and k samples (ISi ,M

S
i ),

i ∈ {1, 2, . . . , k} from the support set. All support image and query image have
the same class c. Training selects (IQ,MQ, ISi ,M

S
i ) of batch size b set from

the train set Strain = {(IS/Q,MS/Q)} and estimates the query mask M̃Q to
approximate ground truth mask MQ.

4 Proposed Method

4.1 Design guideline of network structure

As mentioned in the introduction, the target class, which has a few shots in few-
shot segmentation, is difficult to classify similar classes because the data plotted
in the feature space is sparse and has low coverage. To address this problem, we
propose the Interclass Prototype Relation Network (IPRNet). IPRNet has two
modules: the Interclass Prototype Relation Module (IPRM) and the Respective
Classifier Module (RCM). These modules aim to improve the identification per-
formance of similar classes by reducing the similarity between prototypes and
extracting the differences between classes. An overview of the network is shown
in Figure 2.

4.2 Interclass Prototype Relation Network

This section describes the overall flow of IPRNet. First, the support and query
images were fed into pretrained shared CNNs (pretrained by ImageNet [7]) to
extract features. Next, we passed the support features with the support masks
through the IPRM. Through IRPM, we obtain prototypes that represent feature
vectors for each class, and the value Lr that indicates the similarity between each
prototype. Then, for more accurate pixel-by-pixel matching, the matching be-
tween prototypes and the query feature is performed by calculating the cosine
similarity in map process. The two similarity maps can be obtained by matching
with the query feature for the target class prototype and the background proto-
type, respectively. This process was inspired by earlier research on MLC [42]. The
input to the multi-scale network is the concatenation of the support features, the
query feature, and two similarity maps. The output is a relation feature valid for
classification and Lm which is a multi-scale loss introduced in PFENet [34]. The
multi-scale network sets up the top-down structure of FPN-like [17] by using
the feature enrichment module introduced in PFENet [34] to obtain multi-scale
information. This structure enables fast multi-scale aggregation, by transferring
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Fig. 2. The Overall architecture of the proposed method, Interclass Prototype Relation
Network (IPRNet).

features from finer to coarser and by easing feature interaction. Each scale yielded
segmentation results for calculating the loss. The average loss value for each scale
was Lm. Finally, the relation feature, a multi-scale information-intensive feature
map, is generated by fusing all the different scales into a concatenated feature
map by convolution.

The relation feature is the input to the RCM. The RCM performs a dis-
criminative process to classify the foreground and background more and obtains
the final inference result M̃Q. Then, the loss Lp between the inference result
and ground-truth mask MQ is calculated. The loss function, which is the cost
function of training, is given by equation (1).

Loss = w1Lr + w2Lm + w3Lp (1)

w1, w2, and w3 are the weight coefficients, which were trained with w1 = 0.4,
w2 = 0.2, and w3 = 0.4, respectively. Here, we describe the details of the pro-
posed IPRM and RCM.

4.3 Interclass Prototype Relation Module

The Interclass Prototype Relation Module (IPRM) was proposed to reduce the
similarity between classes. The IPRM has a prototype generation process and
relation loss calculation process. The prototype generation process calculates
the prototypes of all classes present in the batch and the support images. This
process obtains a prototype, which is a global descriptor of a particular class in
an image by taking as input the feature map extracted from the support image
and the segmentation mask paired with it. We employed the masked average
pooling strategy [30] to compute the prototype for each class. The prototype P c

i
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of the c th class in the i th support image is computed using equation (2).

P c
i =

∑
x,y F

x,y
i 1[Mx,y

i = c]∑
x,y 1[M

x,y
i = c]

(2)

Fi is the feature map extracted via the backbone network with the support
image ISi as the input. The subscripts x and y indicate the horizontal and vertical
spatial positions of the feature map, respectively.Mx,y

i is the segmentation mask.
By applying this, we can eliminate the regions of the feature map other than
the specified class. Equation (2) was calculated for all the support images in
the batch. The maximum number of prototypes n obtained is the number of all
classes in which Strain has c ∈ {0, 1, 2, . . . , n}.

Next, the relation loss calculation process was performed using the obtained
prototypes. This process calculates the average value Lr of the cosine similarity
between different classes. The relation loss Lr is calculated using equation (3,4).

Lr =

∑n
cs

∑n
ct
Sim(P cs , P ct)1[cs ̸= ct]∑n
cs

∑n
ct
1[cs ̸= ct]

(3)

Sim(P cs , P ct) =
P cs · P ct

∥P cs∥ · ∥P ct∥
(4)

The cs and ct refer to class numbers and the difference between the prototypes
of two different classes is measured by the cosine similarity expressed in the
equation (4). The similarity between the prototypes of two different classes cs,ct
computed in equation (4) is calculated for all combinations switching between
pairs of prototypes to be measured using the equation (3). The average of these
prototype similarity values are the relation loss Lr. The relation loss Lr is de-
signed to improve the separation performance between each class by training the
network such that the similarity between each class is low.

Further, among the prototypes calculated by the equation (2), the prototype
of the target class and the prototype extracted from the background region
is selected. The prototypes were compared with the query feature and their
respective similarity maps were computed. These similarity maps were used as
input to the multi-scale network.

4.4 Respective Classifier Module

An overview of the Respective Classifier Module (RCM) is shown in Figure 3.
The RCM takes as input the relation feature, which is the output of the multi-
scale network shown in Figure 2. It was designed to improve the separation
performance between the target class of objects and the background by estimat-
ing each of them independently, reintegrating the results. The relation feature
Fr is branched for foreground target class prediction and background predic-
tion. Then, it is transformed into a probability distribution representation V1



8 A. Okazawa

Relation 
feature

conv1
conv3

conv2
conv4

relu
relu

softm
ax

softm
ax

conv5

conv6

relu

softm
ax

Ignore label area 

Available label area

C
oncatenate

L1

L0

Lf
Target 

prediction
V1

Background 
prediction
V0

Final 
prediction
Vf

Fig. 3. Configuration diagram of the Respective Classifier Module (RCM).

and V0 through two convolutional layers, the activation layer, and the softmax
layer respectively. V1 indicates the probability distribution of a single object in
the target class, and V0 indicates the probability distribution of the background
region only. The loss calculation between the probability distribution represen-
tation V and the ground-truth mask MQ can be expressed by equation (5).

Lc =
−
∑

x,y Dc(M
Q)log(V x,y

c )∑
x,y Dc(MQ)

(5)

Dc(M
Q) =

{
c if MQ = c,

255 if MQ ̸= c.
(6)

The loss is calculated by cross-entropy error. V1, the calculated loss value L1

is the loss function of a single object of the target class, and given probability
distribution V0, the calculated loss value L0 is the loss function of the background
region only. Equation (6) is a function that, according to the given class ID c,
returns 255 pixel positions other than those corresponding to the class ID in
the ground-truth mask MQ. Two hundred and fifty-five means ignore the label,
an area that is not used when calculating loss, thus eliminating the relationship
between the background and foreground. This mechanism allows the RCM to
acquire a discriminator through training that can make inferences about its
pixels based on information about the object itself only.

The final estimation result Vf can be obtained by fusing the information
from the concatenation of the foreground probability distribution V1, background
probability distribution V0, and relation feature Fr with the two convolution
layers, the activation layer, and the softmax layer. The cross-entropy error Lf

was also obtained between the prediction result Vf and the ground-truth mask
MQ.

The final loss value Lp output by the RCM is obtained by the weighted
addition of the loss value L1 to the prediction result of the foreground object
alone, the loss value L0 to the prediction result of the background region only,
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and the loss value Lf to the final prediction result. This can be defined by the
following equation (7).

Lp = αL1 + βL0 + γLf (7)

α, β, and γ are the weight coefficients, which were trained by setting α = 0.15,
β = 0.15, and γ = 0.7, respectively.

5 Experiments

5.1 Datasets and Evaluation Metric

To analyze the performance of IPRNet, we selected two datasets that are widely
used for few-shot segmentation, Pascal-5i [29] and COCO-20i [18]. Pascal-5i [29]
contains images from PASCAL VOC 2012 [9] and additional annotations from
SBD [12]. For training, a total of twenty class categories were evenly divided into
four splits, and model training was performed using a cross-validation method.
Specifically, three splits were selected as the training data during the train-
ing process, and the remaining splits were used for testing. During testing,
one thousand support-query pairs were randomly sampled and evaluated [29].
COCO-20i [18], unlike Pascal-5i [29], is an incredibly challenging dataset. This
is because it is a large dataset having 82,081 images, and many objects are
included in the images of realistic scenes. Following the FWB [26], the eighty
classes of COCO-20i [18] were evenly divided into four splits, and the same
cross-validation scheme was used. To obtain more stable results, we randomly
sampled 20,000 pairs of during the testing [34]. As an evaluation metric, we used
the mean Intersection-over-Union (mIoU), which is commonly used in semantic
segmentation.

An ablation study was conducted to verify the influence of the proposed
IPRM and RCM. To verify the separation performance between similar classes,
we compared the per-class IoU results of IPRNet and the baseline without our
IPRM and RCM.

5.2 Implementation details

ResNet [13] is employed as the backbone network, and block2 and block3 are
concatenated to generate the feature map [46]. The input support and query
images were cropped to an image size of 400×400 pixels and fed into the back-
bone network. The initial learning rate was set to 0.05, momentum and weight
decay to 0.9 and 0.0001, respectively, and the optimizer was trained with a
batch size of thirty-two using the SGD optimizer. We also adapted the poly
method [3], where the decay of the learning rate is achieved by multiplying by
(1 − current iter)power, and the power is set to 0.9. The pretrained backbone
network is frozen so that it does not learn class-specific representations of the
training data. We implemented it using Pytorch experimented with an NVIDIA
A10G GPU.
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In the ablation study, for the IPRM deletion, we also modified a mechanism
that uses only the conventional masked average pooling strategy [30] to acquire
the target class prototype and background class prototype. The RCM is com-
pletely removed and replaced with a mechanism that calculates the loss between
the output of the multi-scale network and the ground truth.

5.3 Experimental results

The effectiveness of our method was evaluated on two benchmark datasets
Pascal-5i [29] and COCO-20i [18]. We extensively experimented with the 1-
shot and 5-shot on 1-way problems in various few-shot split settings using the
widely used encoder networks ResNet-50 and ResNet-101. Here, an n-way k-shot
implies that k samples are given for each class among the n classes. Extensive
experiments show that the mIoU is improved over the conventional method in
all the cases. The ablation study confirmed that removing the IPRM and RCM
reduced the mIoU.

Pascal-5i First, we describe the results for Pascal-5i in Table 1. Our method
has an improved mIoU in all conditions compared with HSNet [25], which has
the highest mIoU among the conventional methods. In order of performance
improvement, we first see a 1.7% mIoU improvement for ResNet-50 and 1.3%
mIoU improvement for ResNet-101 in the 1-shot setting. These are followed
by 0.7% mIoU improvement for ResNet-50 and 0.5% mIoU improvement for
ResNet-101 in the 5-shot setting.

COCO-20i Next, we describe the results for COCO-20i in Table 2. Our method
has improved mIoU in all conditions compared with HSNet [25], which has the
highest mIoU among the conventional methods. In order of performance im-
provement, we first see a 6.1% mIoU improvement for ResNet-50 and 5.7% mIoU
improvement for ResNet-101 in the 1-shot setting. This is followed by a 4.2%
mIoU improvement for ResNet-50 and 3.8% mIoU improvement for ResNet-101
in the 5-shot setting.

Ablation study We conducted an ablation study to investigate the influence of
the IPRM and RCM, which are the main components of our model. All ablation
study experiments were the result of a 5-shot setup performed on the COCO-20i

dataset using the ResNet50 backbone. The results are presented in Table 3. The
largest decrease in mIoU is seen in the case where both IPRM and RCM are
removed by 4.4%, followed by the case where only IPRM is removed by 2.5%,
and finally, the case where only RCM is removed 1.8%. The mIoU decreased by
more than 0.7% when the IPRM was removed then when the RCM was removed.
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Table 1. Performance on Pascal-5i in IoU with per-splits results. Some results are
from [16,21,25,34,38,42].

Backbone Method
1shot 5shot

s-0 s-1 s-2 s-3 mean s-0 s-1 s-2 s-3 mean

ResNet-50

PANet [38] 44.0 57.5 50.8 44.0 49.1 55.3 67.2 61.3 53.2 59.3
PPNet [21] 48.6 60.6 55.7 46.5 52.8 58.9 68.3 66.8 58.0 63.0
PFENet [34] 61.7 69.5 55.4 56.3 60.8 63.1 70.7 55.8 57.9 61.9
ASGNet [16] 58.8 67.9 56.8 53.7 59.3 63.7 70.6 64.2 57.4 63.9
MLC [42] 59.2 71.2 65.6 52.5 62.1 63.5 71.6 71.2 58.1 66.1
HSNet [25] 64.3 70.7 60.3 60.5 64.0 70.3 73.2 67.4 67.1 69.5
Ours 65.2 72.9 63.3 61.3 65.7 70.2 75.6 68.9 66.2 70.2

ResNet-100

FWB [26] 51.3 64.5 56.7 52.2 56.2 54.8 67.4 62.2 55.3 59.9
PPNet [21] 52.7 62.8 57.4 47.7 55.2 60.3 70.0 69.4 60.7 65.1
PFENet [34] 60.5 69.4 54.4 55.9 60.1 62.8 70.4 54.9 57.6 61.4
ASGNet [16] 59.8 67.4 55.6 54.4 59.3 64.6 71.3 64.2 57.3 64.4
MLC [42] 60.8 71.3 61.5 56.9 62.6 65.8 74.9 71.4 63.1 68.8
HSNet [25] 67.3 72.3 62.0 63.1 66.2 71.8 74.4 67.0 68.3 70.4
Ours 67.8 74.6 65.7 62.2 67.5 70.0 75.9 71.8 65.8 70.9

Table 2. Performance on COCO-20i in IoU with per-splits results. Some results are
from [21,25,34,42].

Backbone Method
1shot 5shot

s-0 s-1 s-2 s-3 mean s-0 s-1 s-2 s-3 mean

ResNet-50

PPNet [21] 28.1 30.8 29.5 27.7 29.0 39.0 40.8 37.1 37.3 38.5
PFENet [34] 36.5 38.6 34.5 33.8 35.8 36.5 43.3 37.8 38.4 39.0
MLC [42] 48.0 36.6 27.4 28.2 35.1 54.9 42.1 34.9 33.6 41.4
HSNet [25] 36.3 43.1 38.7 39.2 39.2 43.3 51.3 48.2 45.0 46.9
Ours 42.2 48.9 45.5 44.6 45.3 48.0 55.7 50.7 50.1 51.1

ResNet-100

FWB [26] 17.0 18.0 21.0 28.9 21.2 19.1 21.5 23.9 30.1 23.7
PFENet [34] 34.3 33.0 32.3 30.1 32.4 38.5 38.6 38.2 34.3 27.4
MLC [42] 51.1 38.7 28.5 31.6 37.5 57.8 47.1 37.8 37.6 45.1
HSNet [25] 37.2 44.1 42.4 41.3 41.2 45.9 53.0 51.8 47.1 49.5
Ours 42.9 50.6 46.8 47.4 46.9 50.7 58.3 52.8 51.3 53.3

IOU of each class To verify whether our proposed method is effective for
objects with similar features that are difficult to classify, we evaluated it using
COCO-20i is an incredibly challenging dataset that has many objects in the
images of realistic scenes. The evaluation is perfomed by comparing IoUs per
class with the baseline, which eliminates the IPRM and RCM, and our proposed
IRPNet. The results are presented in Table 4. Significant improvements in IoU
were as follows 1 person 20.7%, 61 dining table 20.2%, 73 fridge 15.4%, 66 remote
13.4%, 67 keyboard 12.3%, 27 handbag 11.6%, 29 suitcase 11.5%, 25 backpack
11.3%, 74 book 11.3%, 44 knife 10.3%; and an increase of more than 10% in
IoU. The classes with a lower IoU were 34 kite -8.9%, 65 mouse -8.2%, 48 apple
-4.6%, 59 potted plant -3.8%, 13 park meter -3.5%, 4 motorcycle -2.8%, 10 traffic
light -1.8%, 26 umbrella -1.5%, 69 microwave -1.5%, 80 toothbrush -1.0%; and
a decrease of over 1% in IoU. The following is a discussion.
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Table 3. Influence of the IPRM and RCM on COCO-20i in IoU with 5-shot ResNet-50
backbone condition.

IPRM RCM s-0 s-1 s-2 s-3 Mean

42.0 52.1 46.4 46.4 46.7

" 46.8 53.6 47.9 49.0 49.3

" 44.9 53.2 47.4 48.9 48.6

" " 48.0 55.7 50.7 50.1 51.1

Table 4. COCO-20i performance in all classes of IoU experimented with 5shot ResNet-
50. Baseline means the result of eliminating the IPRM and RCM.

s-0 Baseline Ours s-1 Baseline Ours s-2 Baseline Ours s-3 Baseline Ours

1 Person 30.3 51.0 2 Bicycle 52.9 55.8 3 Car 35.7 38.5 4 Motorcycle 56.0 53.2
5 Airplane 73.0 76.0 6 Bus 69.0 72.2 7 Train 72.1 72.8 8 Truck 35.1 34.7
9 Boat 40.9 50.5 10 T.light 40.8 39.0 11 Fire H. 77.4 82.7 12 Stop sign 76.5 81.4
13 Park meter 60.1 56.6 14 Bench 35.7 38.3 15 Bird 64.5 69.0 16 Cat 77.4 82.0
17 Dog 65.0 73.6 18 Horse 70.6 74.7 19 Sheep 75.2 76.8 20 Cow 73.0 78.7
21 Elephant 79.7 83.0 22 Bear 83.6 85.6 23 Zebra 75.9 76.2 24 Giraffe 72.6 75.6
25 Backpack 18.5 29.8 26 Umbrella 60.0 58.5 27 Handbag 21.2 32.8 28 Tie 17.8 18.6
29 Suitcase 42.7 54.2 30 Frisbee 69.6 75.9 31 Skis 31.3 38.7 32 Snowboard 37.4 46.3
33 Sports ball 41.3 48.4 34 Kite 51.3 42.4 35 B. bat 31.0 35.1 36 B. glove 48.3 50.4
37 Skateboard 42.4 42.4 38 Surfboard 64.7 68.8 39 T.racket 58.4 65.3 40 Bottle 28.4 32.6
41 W. glass 34.0 37.6 42 Cup 49.8 56.6 43 Fork 19.7 22.7 44 Knife 34.8 45.1
45 Spoon 14.2 16.8 46 Bowl 31.1 31.9 47 Banana 41.6 45.5 48 Apple 39.4 34.8
49 Sandwich 50.5 52.8 50 Orange 47.5 49.5 51 Broccoli 33.1 36.8 52 Carrot 23.1 27.3
53 Hot dog 61.7 67.5 54 Pizza 84.7 87.5 55 Donut 67.6 70.8 56 Cake 44.1 51.9
57 Chair 7.2 14.2 58 Couch 34.5 37.0 59 P. plant 11.9 8.1 60 Bed 53.7 56.8
61 D.table 27.5 47.7 62 Toilet 57.2 63.6 63 TV 44.5 52.2 64 Laptop 50.9 55.4
65 Mouse 50.1 41.9 66 Remote 45.4 58.8 67 Keyboard 21.0 33.3 68 Cellphone 56.2 65.8
69 Microwave 34.9 33.4 70 Oven 23.6 29.7 71 Toaster 42.4 41.8 72 Sink 30.8 33.0
73 Fridge 23.9 39.3 74 Book 10.2 21.5 75 Clock 59.6 64.6 76 Vase 41.7 46.1
77 Scissors 43.4 43.8 78 Teddy 60.6 64.2 79 Hairdrier 47.9 49.4 80 Toothbrush 34.3 33.3

5.4 Discussion

Comparison with State-of-the-Arts We discuss the mIoU of our IPRNet
and the latest and best performing HSNet [25]. By comparing the results of
Pascal-5i and COCO-20i described in Table 1 and 2, we can see that the perfor-
mance of the COCO-20i condition is better than that of the Pascal-5i condition,
regardless of the backbone network and number of shots. We discuss that our
mechanism of training to avoid similarity between prototypes is effective for this
difficult problem; COCO-20i, contains many more difficult objects to classify.
Comparing the experimental results of 1-shot and 5-shot, the mIoU of 1-shot is
higher regardless of the backbone network and dataset. This is because, as men-
tioned in the introduction, when the number of shots is smaller, the feature space
covered by the support data is sparser and the classification performance was
worse for classes near the classification boundary. Therefore, we can conclude
that the proposed method is more effective.

Performance of similar classes that are difficult to classify For IPRNet
and the baseline without the IPRM and RCM, we compare and discuss IoU for
each of the classes shown in Table 4. Two main cases of classes that are difficult
to classify are considered because of the existence of similar classes.
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The first is an object that is likely to be similar to many other classes with
a wide range of variations, specifically morphological changes, pictorial changes
through decoration, and combinations with complex backgrounds. Specifically,
there are 1 person with IoU increased by 20.7% and 61 dining table with IoU
increased by 20.2%. 1 Person has all types of shape changes due to a deformable
body and pictorial changes due to decoration (Fig.4(a),(b)). 61 Dining table is a
complex combination of objects, most of which are placed on top of each other;
therefore, the pixel boundaries of the objects are always shared with various
occlusions (Fig.4(c),(d)).

Second, the class is an object with a simple shape and few features. Specif-
ically, 73 fridge IoU increased by 15.4%, 66 remote by 13.4%, 67 keyboard by
12.3%, 27 handbag by 11.6%, 29 suitcase by 11.5%, 25 backpack by 11.3%, 74
book by 11.3%, and 44 knife by 10.3%. For example, 73 fridge is a symmetrical
rectangular object with a few prominent patterns or protrusions on its surface.
Hence, it was difficult to classify them based on similar rectangles and back-
grounds (Fig.4(e)). 66 Remote is also a small rectangular body (Fig.4(f)).

For all other classes with an improved IoU, there are many classes where the
IoU has increased because the RCM effect is considered to have improved the
separation performance from the background. However, compared to the classes
where these performances have increased by over 10%, the degree of conformity
between the two cases are considered to be low. Specifically, 45 spoon and 43
fork are considered not to have improved IoU by as much as 44 knife because
the shape of the tip is more non-graphical and distinctive compared to 44 knife.

Performance of characteristic objects Further, we consider the classes with
the lowered IoU as proper nouns that have a complex shape or structure unique
to that object that is unparalleled. Specifically, there are 80 toothbrush, 69
microwave, 26 umbrella, 10 traffic light, 4 motorcycle, 13 park meter, 59 potted
plant, 48 apple, 65 mouse and 34 kite. For example, 34 kite is a discriminative
proper nouns with no other similar concepts and limited use, so it is not often
combined with several backgrounds (Fig.4(g)). 9 Potted plants had complex
shapes that could not be represented by rectangles or spheres (Fig.4(h)). For
these objects, we consider that how to extract the unique features of the object
to be more important than acquiring the differences from other classes, and the
training to reduce the similarity of prototypes between different classes, which
is the aim of the IPRM, does not work effectively.

Qualitative Evaluation Fig.5 shows the difference between the baseline and
our IPRNet using t-SNE [24] for the prototype of the target class extracted
from the query image. At the baseline, prototypes between different classes are
adjacent or overlapping, and there is no clear classification. However, in IPRNet,
the distance between each prototype is increased, and it can be observed that
the prototypes are more separated.
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Fig. 4. Examples of the recognition result using our proposed method, baseline and
HSNet [25]. The red shade is the area of the target class. It is the ground truth in the
case of query, the recognition result in the cases of the baseline, HSNet [25] and Ours.
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Fig. 5. Visualization results by t-SNE [24] of prototype obtained from query image of
the baseline and IPRNet. They experiment with ResNet-50 5shot setting on COCO-20i.

6 Conclusion

This study proposes a novel IPRNet that introduces a mechanism to improve
separation performance by reducing the similarity between different classes. Ex-
periments show that mIoU is improved over the existing few-shot segmentation
methods [21] [34] [42] [25]. In addition, through an ablation study, we verified
the separation performance between similar classes that are difficult to classify.
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