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Abstract. Existing interactive segmentation algorithms typically fail
when segmenting objects with elongated thin structures (e.g., bicycle
spokes). Though some recent efforts attempt to address this challenge
by introducing a new synthetic dataset and a three-stream network de-
sign, they suffer two limitations: 1) large performance gap when tested
on real image domain; 2) still requiring extensive amounts of user inter-
actions (clicks) if the thin structures are not well segmented. To solve
them, we develop Slim Scissors, which enables quick extraction of elon-
gated thin parts by simply brushing some coarse scribbles. Our core idea
is to segment thin parts by learning to compare the original image to a
synthesized background without thin structures. Our method is model-
agnostic and seamlessly applicable to existing state-of-the-art interac-
tive segmentation models. To further reduce the annotation burden, we
devise a similarity detection module, which enables the model to auto-
matically synthesize background for other similar thin structures from
only one or two scribbles. Extensive experiments on COIFT, HRSOD
and ThinObject-5K clearly demonstrate the superiority of Slim Scissors
for thin object segmentation: it outperforms TOS-Net by 5.9% IoUthin
and 3.5% F score on the real dataset HRSOD.

Keywords: Interactive image segmentation; thin object segmentation

1 Introduction

Interactive image segmentation denotes the task of extracting the object-of-
interest given some user-hints, such as clicks [442423|[48], scribbles [BITTI2IT2],
polygons [4[127] or bounding boxes [35/43/42]. This task has received much
attention over the past few years due to its wide application domains ranging
from image editing, medical image analysis [4I] to dataset annotation [4]. The
segmentation process usually iterates between: (i) user providing feedback based
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(a) I0G inputs (b) Mask (main body) (c) Scribble (d) Inpainting output  (e) Mask (thin parts) (f) Final mask

Fig.1: Overall idea. Our Slim Scissors first takes the inside-outside guidance
(IOG) Y] (a) to produce a coarse segmentation outlining the main body (b).
Given some coarse scribbles around the thin structures (c), we construct a syn-
thetic background image without the presence of thin parts (e.g., bug legs and
antennas) via image inpainting algorithm (d) and feed such (image, background)
pair to a network for segmentation of thin parts (e). Finally, both features are
fused to produce the final segmentation output (f).

on the errors of current segmentation, and (ii) the segmentation model updating
its prediction accordingly; and terminates when the user is satisfied with the
final segmentation result.

Existing deep learning-based interactive segmentation algorithms have shown
exceptional performance in this task by typically requiring only a few clicks to
obtain a high-quality segmentation mask [44J43|[130/4826]. For example, the cur-
rent state-of-the-art Inside-Outside Guidance (I0OG) [48] only needs three clicks
to attain >90% IoU accuracy. However, despite the overall good performance,
these state-of-the-art methods can hardly be deployed to segment objects with
elongated thin parts (e.g. bug legs and bicycle spokes), which is the main focus
of this work. As a result, excessive user interactions for correcting those missing
or wrongly segmented thin parts becomes unavoidable.

Recently, Liew et al. [22] found out that the failure in segmenting thin objects
can be mainly attributed to two factors: (i) coarsely annotated dataset used for
training interactive segmentation models (e.g., PASCAL [10] and COCO [25])
and (ii) imbalanced distribution between thin and non-thin pixels, which cause
difficulty in learning using standard pixel-wise cross-entropy loss. To tackle these
challenges, they collected a large-scale synthetic dataset specifically tailored for
segmentation of elongated thin objects, called ThinObject-5K. Based on this,
they proposed a three-stream network named TOS-Net and demonstrated sig-
nificant performance improvement over the baselines.

Despite the outstanding performance of TOS-Net [22] in segmenting thin
structures, it still exhibits the following drawbacks: (i) severe performance degra-
dation when testing on real images due to the large domain gap between the syn-
thetic training samples and real testing images (e.g. ~10% and ~20% IoUpi, [22]
on COIFT [31] and HRSOD [47] dataset, respectively); (ii) since TOS-Net fol-
lows the extreme clicking paradigm of DEXTR [30], it typically requires extensive
user inputs (boundary clicks) for correction, especially when it comes to refining
elongated thin parts, offering an unsatisfactory user experience.
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To tackle this issue, we develop a new interactive segmentation paradigm,
called Slim Scissors that enables fast extraction of elongated thin parts by
simply drawing some coarse scribbles to cover them. Note that we employ thick/
coarse scribbles whose radius is much larger than that of the thin structures
(Fig. [I]and |§[) As a result, scribbling along thin structures is fast. Compared to
boundary clicking, coarse scribbling is not only much more convenient as users
can quickly brush over the thin parts instead of carefully clicking on them, it also
contains significantly richer information (e.g. shape prior) than sparse clicks.

The scribbles are then used to construct a synthetic background simulating
the absence of thin parts. The underlying motivation is that the contrastive in-
formation in such an (image, background) pair can help enhance the signals of
elongated thin parts, simplifying the learning process. For instance, segmenting
thin spokes from a bicycle wheel becomes easier if able to compare the original
image of bicycle wheel with a background image without the thin spokes. Based
on this, we train a network that learns to segment thin objects based on such (im-
age, background) pair input. Such design can be easily augmented with a generic
interactive segmentation architecture to form an end-to-end trainable network.
As shown in the experimental section, this simple design works surprisingly well.

As compared to boundary clicks, drawing coarse scribbles doubtlessly reduces
the annotation burden by a significant margin. To further reduce the annotation
cost, we propose a similarity detection module that automatically finds others
similar thin structures guided by the current drawn scribbles. Taking Fig. [1] as
an example, one only needs to coarsely draw one or two scribbles on the bug’s
legs while our similarity detection module generates coarse scribbles covering the
remaining legs by computing per-pixel similarity with the user-provided ones.
Such module can significantly reduce human efforts in drawing scribbles when
many similar thin patterns appear in the same image.

Overall, the key contributions are as follows: 1) We develop Slim Scissors, a
simple and effective tool that enables users to efficiently and accurately acquire
elongated thin parts by simply drawing some coarse scribbles around them. The
success of Slim Scissors can be attributed to the novel idea of segmenting from
synthetic background. 2) We propose a similarity detection module to augment
the Slim Scissors. This module significantly reduces the annotation burden when
many similar thin patterns independently appear within the same image. 3) We
perform extensive experiments on three publicly available benchmarks and show
significant performance improvement upon the state-of-the-art on the two real
datasets, COIFT [31I] and HRSOD [47].

2 Related Works

Interactive Object Segmentation. Recently proposed interactive image
segmentation algorithms are primarily driven by deep learning-based meth-
ods where significant improvements upon the traditional approaches have been
demonstrated. Among them, Xu et al. [44] was the first to apply deep learning
to this task. They proposed to apply Euclidean distance transformation to the
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Fig.2: Slim Scissors. Our segmentation network is composed of two paral-
lel networks: (top) a Generic Object Segmentation (GOS) network that takes
Inside-Outside Guidance (IOG) [48] as input to extract a coarse mask delineat-
ing the object main body; (bottom) a Thin Parts Refinement (TPR) network
that first synthesizes a background without thin parts based on coarsely drawn
scribbles. By comparing the (image, background) pair, our TPR networks pro-
duces a coarse prediction of thin parts, which is subsequently refined with a
refiner to produce a mask of elongated thin structures only. Finally, features
from both networks are fused to obtain the final segmentation mask. Note that
we did not visualize the coarse mask prediction by IOG here for simplicity.

user clicks and train a FCN based on such (image, clicks) pair. Since then, var-
ious forms of inputs representation [4129], interaction types [SOI200T27I8] have
been explored. Some works [24I5267/T3] seek to better exploit useful cues from
user-provided inputs while others [21]23] tackles the ambiguity in interactive seg-
mentation given limited user hints. More recent works such as [T6/37/T9] focus on
inference-time optimization to improve segmentation quality. Despite their over-
all good performance in segmenting general objects, these approaches typically
fail when deployed to segment objects with elongated thin parts.

Interactive Thin Object Segmentation. Vicente et al. [39] tackled the
shrinking bias problem in graph cut when segmenting elongated thin objects by
proposing a connectivity prior. Jegalka and Bilmes [I7] developed cooperative
cuts that favors homogeneous boundaries by penalizing the number of types
of label discontinuities. Mansilla et al. [31] introduced connectivity constraint
on Oriented Image Foresting Transform (OIFT) and demonstrated considerable
improvement on segmentation of thin objects. Dong et al. [9] proposed a sub-
Markov random walk (subRW) algorithm and showed that segmentation of thin
objects can be handled by adding label prior to subRW. More recently, Liew
et al. [22] made the first attempt to extend the deep learning-based interac-
tive segmentation methods to handle elongated thin objects. Nevertheless, this
approach performs poorly on real image domain due to the large domain gap
with the synthetic training data. Furthermore, the boundary clicking paradigm
offers a poor user experience, making their methods less useful for practical ap-
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plication. In this work, we advocate the use of coarse scribble in replacement
of boundary clicking to enable faster interaction and a novel idea of segmenting
from synthetic background for more effective segmentation of thin structures.

3 Motivation

At the core of our approach is the novel idea of learning to segment thin parts
from synthetic background where these backgrounds are synthesized based on
the coarsely drawn scribbles highlighting the elongated thin structures. We begin
by explaining the motivation before proceeding to explaining our approach.

Why choose scribbles for interaction? Boundary clicking adopted by [22],
in general, serve as an efficient means for interaction when conducting interactive
segmentation of general objects. However, we consider that boundary clicking
may not be an optimal choice for selecting thin objects as precise clicking on the
thin parts can be extremely time-consuming. For example, as shown in Fig. (a),
when segmenting the beetle’s antennas, users need to be extremely careful when
clicking such that the clicks are correctly located on the boundaries of the anten-
nas, offering an overall poor user experience. Differently, taking coarsely drawn
scribbles to cover elongated thin parts is arguably faster and much more con-
venient, as users only need to roughly brush over them. As shown in Fig.
and [6] the scribble size is much larger than that of the thin structure, easing
the annotation process. This motivates us to employ coarse scribbles for select-
ing the interested thin parts for segmentation. It is also worth mentioning that
there exist a large body of works which employ scribbles for interactive segmen-
tation [BIITI2IT25]. However, our approach completely differs from prior works
in terms of both motivation and fashion. Specifically, previous works typically
draw scribbles within the object to indicate the target-of-interest whereas we
take coarsely drawn scribbles to cover elongated thin parts. An alternative to
coarse scribbling is patch annotation over image grid [§]. However, we argue that
patch annotation over fix-sized grid is less flexible.

Why do we need synthetic background? There are two reasons why syn-
thetic background will be beneficial for thin object segmentation. First, the chal-
lenge of thin object segmentation task mainly lies in that many thin parts are a
few pixels wide, making their features be easily overlaid by around background
after several downsampling operations, which are common settings in popular
CNN backbones. Intuitively, if we are able to acquire the background under
the thin parts, the contrastive information will help lift the signals of the in-
consistent regions between foreground and background and relieve the negative
effect caused by the downsampling operations. Second, thin parts are often with
rich contextual background, making the background of thin parts be easily and
accurately synthesized even with very simple inpainting algorithms.



6 K. Han et al.

Fig.3: Examples of generated synthetic background images using
cv2.inpaint. We challenge the reader to identify the missing thin structures
by simply comparing the (image, background) pair El

4 Slim Scissors

We propose Slim Scissors, a novel, generic, and effective solution for interactive
thin object segmentation. As shown in Fig. |2l the overall network consists of
two parallel subnetworks, i.e., (i) a Generic Object Segmentation (GOS) net-
work for obtaining a coarse segmentation mask delineating the object’s main
body; (ii) a Thin Parts Refinement (TPR) network for extracting the elongated
thin structures based on the user-provided scribbles. To obtain the final segmen-
tation output, we simply element-wise sum the features prior to the last layer
of both subnetworks and pass to a 1x1 conv with sigmoid activation. Explic-
itly disentangling the processing of thin parts from the main body in this way
not only encourages each subnetwork to better focus on different aspect of the
object (main body wvs. elongated thin structures), but also helps to alleviate the
imbalanced thin and non-thin regions issue [22].

4.1 Generic Object Segmentation (GOS) Network

As our Slim Scissors is model-agnostic to GOS, it can be easily integrated with
any generic interactive segmentation network to formulate an end-to-end train-
able segmentation framework. In this work, we show an example instantiation
based on Inside-Outside Guidance (IOG) [48], the current best performing in-
teractive segmentation algorithm. In summary, IOG takes an inside (object’s
center) and two outside points (two symmetrical corners of bounding box en-
closing the object) as input, outputting an object-centric crop based on the
relaxed box. Concatenated with the foreground and background localization
heatmaps derived from the inside and outside guidance, the cropped input is
resized to 512x512 before passing to a coarse-to-fine network for segmentation.
As a coarse-grained prediction usually suffices for segmenting the object’s main
body, we replace the ResNet-101 [14] backbone in IOG with a much lighter
ResNet-18 [14] to reduce computational cost.

4.2 Thin Parts Refinement (TPR) Network

TPR provides a novel solution to segment thin parts by taking advantages of
synthetic background, which consists of the following two stages during training.

® Beetle’s legs and antennas, heron’s neck and legs and morpho’s antennas.



Slim Scissors 7

Scribbles generation. We ask the users to roughly draw some scribbles to
identify the thin parts for segmentation. However, in practice, different users tend
to have different scribbling behaviors, it is therefore almost infeasible to collect
many interaction samples from real users for training. To simulate scribbles
annotated by human annotators, we first extract the elongated thin structures
for each object instance following [23]. During training, depending on the target
object size, these thin regions are randomly dilated by [0.5r, 1.5r] pixels to
simulate coarse scribbling behavior (definition of r can be found in Eqn. .
The effects of dilations (coarseness of scribbles) will be studied in Sec.

Background synthesis. We propose to construct a synthetic background im-
age based on the user-provided scribbles to simulate the absence of thin parts.
In particular, we employ an image inpainting algorithm to inpaint the regions
indicated by the scribbles. Since scribbles used to mark thin structures typi-
cally cover relatively small areas and are often with rich background context, a
realistic-looking completed image can be easily obtained given existing inpaint-
ing algorithms. In this work, we opt for simplicity and use cv2.inpaint E| from
OpenCV [33]. Note that our proposed synthetic background idea is a universal
one and more advanced inpainting methods such as [28/46] can be employed
but it is out of the scope of this work. We will leave this to our future work.
Fig. [3| depicts some examples of generated synthetic background images where
elongated thin structures are successfully removed.

Based on this, we concatenate the input image, its corresponding synthetic
background and the scribbles mask as input for training the TPR network. Con-
sidering an RGB image I, the corresponding synthetic background B and scrib-
bles mask S, the task of segmenting thin structures can be mathematically for-
mulated as learning a mapping function f(; fshin) that is parameterized by Oipin:

Mthin = f([7B7S;6thin> (1>

where My, denotes the mask of thin parts.

Network architecture. Similarly, our TPR is realized with a coarse-to-fine
network structure. More specifically, taking the cropped input from GOS sub-
network as input, the first stage adopts a ResNet-18 [14]-based encoder-decoder
structure, which appends an Atrous Spatial Pyramid Pooling (ASPP) module [6]
at the end of the encoder to incorporate global context, followed by a decoder
that sequentially upsamples and concatenates with low-level feature for subse-
quent convolution, producing a coarse mask and features of 32 channels.
Taking the concatenation of the original image, synthesized background,
scribbles input, coarse mask prediction and features from the previous stage as
input, the second stage first downsamples the concatenated inputs to 0.5x res-
olution to enlarge the receptive field for refinement, followed by two lightweight
convolution layers. The output features is then bilinearly upsampled back to
original resolution, concatenated with the (image, background, scribble) input

5 https://docs.opencv.org/master/d7/d8b/group__photo__inpaint.html
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before passing to another two convolution layers, followed by a sigmoid activation
to produce Minin. Please refer to our supplement for more details.

Training of Slim Scissors. We employ the same training strategy adopted in
IOG [4§] for training our GOS network, i.e. training with binary cross-entropy
loss and applying side losses at each level of CoarseNet as deep supervision.
Similarly, our TPR network (both decoder and refiner) is trained with standard
binary cross-entropy loss, with thin structures extracted from [22] being the
ground truth masks. In order to encourage the TPR network to mainly focus on
refining the coarse predictions along elongated thin parts, we only consider those
background pixels around the thin parts during training. In our experiments, the
ratio of foreground and background pixels is set as 1:2.

5 Fast Slim Scissors

As explained in Sec. [3] coarse scribbling provides a more user-friendly way to
advance the interactive thin parts segmentation process. Nevertheless, drawing
scribbles for each and every thin part can still be time-consuming and redundant
since most thin structures share similar appearance or texture (e.g., bug legs).
This observation motivates us to answer the following question: in the scenario
where many thin parts are with similar patterns, do users really need to brush
them one by one? The answer is no.

Similar detection module. To reduce the annotation burden in scribbling
similar thin parts over and over again, we propose a similar detection module
(SDM) to augment our Slim Scissors. SDM accepts one or two scribbles from the
user and automatically mines other similar thin structures. The newly mined thin
structures are often coarse yet sufficient to serve as new scribbles for guiding the
subsequent background synthesis in Slim Scissors. In particular, given some user-
marked scribbles, we first extract an initial segmentation of thin parts covered by
those scribbles using our Slim Scissors, which help separate the scribbled regions
into a set of foreground and background pixels. We next compute two distance
maps by matching each pixel within the same image to both the foreground F
and background sets B in the embedding feature space. Mathematically, for each
pixel i, we define its matching as:

Gr(i) = %{}D(i’j) (2)
Gp(i) = g,rggD(i,j) (3)

where D(i, j) refers to the distance between pixel ¢ and j in term of their corre-
sponding embedding vector e; and e;, which is defined as [40/45]:

1 e -
D(i,j) = L~ ooy HI7€F (4)
’ 1-— 1 ifjeB
Trexp(les—e; 1P +05) " 7

where b and bp denote the learnable foreground and background bias.
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Fig. 4: Scribble generation process using our SDM.

Given the computed foreground and background matching maps, we con-
catenate them with the pixel-level embedding feature and pass to a lightweight
decoder module for outputting a binary mask predicting other similar thin struc-
tures to the one(s) highlighted by current scribble(s). As a result, our Fast Slim
Scissors only requires one or two scribbles from the user while attaining results
similar to that of drawing scribbles on all the elongated thin structures.

In Fig. 4] we show how to apply our SDM to automatically generate more
scribbles covering other similar thin parts. Specifically, in round one, the user
first draws a coarse scribble (green scribble) on one of the beetle’s leg (the most
frequent thin parts). Our SDM then identifies the remaining legs and automat-
ically generates coarse scribbles for them (orange scribbles). Similarly, in round
two, the user draws another scribble on one of the missing parts, i.e., beetle’s
antennas, and uses SDM to locate another missing antennas within the image.
In practice, such an iterative process will continue until all thin parts are covered
by scribbles (either user drawn or generated by our SDM).

Overall process. The overall interactive segmentation process of Fast Slim
Scissors is summarized as follows: 1) The user first provides an inside (object’s
center) and two outside clicks (two symmetrical corners of a bounding box) [48]
to indicate the object-to-segment; 2) Draw a coarse scribble on any of the thin
parts; 3) SDM mines other similar thin structures by computing a global match-
ing with the user-provided scribble(s) (Sec. [f]); 4) Along with the previously
drawn ones, these newly mined scribbles are passed to our Slim Scissors, pro-
ducing an initial object segmentation mask including elongated thin structures
(Sec. E[); 5) The user could either introduce more scribbles on the missing thin
parts or remove the mislabeled thin regions; 6) Step 3 to 5 (step 3 is skipped if
the user chose to erase the wrongly segmented thin parts) are repeated until the
user is satisfied with the final segmentation output.

6 Experiment

6.1 Datasets and Settings

Implementation details. We train our Slim Scissors on ThinObject-5K train
split [22] with 4,743 images for 30 epochs. All networks are initialized from
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ResNet-18 [I4] pre-trained on ImageNet [36]. We train our model using Adam
optimizer [I8] with batch size of 25 and weight decay of 10~%. The base learning
rate of the pre-trained and newly initialized weights are set to 10~ and 1073,
respectively. We employ a linear decay learning rate scheduler with 5 epochs
of linear warmup. We randomly resize and rotate images with a scale factor
from 0.75 to 1.25 and rotation angle from -20° to 20°. We also apply random
horizontal flipping during training. For similar detection experiments, we created
a subset from ThinObject-5K train split, where each image fulfills the following
criteria: 1) each image must contain at least two separated thin regions; 2) the
thin regions should belong to the same semantic category (e.g., bug’s legs and
antennas are considered two different categories). The resulting subset contains
2,128 images. We train our SDM on this subset for 45 epochs with batch size of
16 using a constant learning rate. All other hyperparameters remain the same.

Datasets. We evaluate on the following three benchmarks: 1) ThinObject-
5K, a large-scale synthetic dataset from [22] that is composed of different objects
with elongated thin structures (e.g., ants, racket, harps etc.). We use 500 testing
images from this dataset for testing; 2) COIFT containing 280 natural images
of birds and bugs from [3132]; 3) HRSOD. We follow [22] by using a subset of
280 images (305 instances) from HRSOD [47] for evaluation.

Evaluation metrics. We employ the same evaluation metrics as in [22] for eval-
uation, including standard Intersection-over-Union (IoU), IoUyyi, for measuring
IoU only on regions surrounding the thin structures, and boundary measure F
from [34] for evaluating the quality of segmented edges.

6.2 Comparison with the State-of-the-Art Methods

We first compare our Slim Scissors with prior methods on ThinObject-5K test
split, COIFT [31] and HRSOD [47] dataset. For our Slim Scissors, we simulate
user-drawn scribbles by performing morphological dilation on the thin parts
extracted from [22], where kernel radius r is adaptively determined based on the
image resolution. The underlying idea is that thin parts in a higher resolution
image appear to be thicker, requiring sufficiently coarse scribbles for annotation.
Specifically, let the range of kernel radius be [rmin, "max), the maximum target
object size in the three benchmarks be Ny .y, given a test object with pixel
number N, the kernel radius is set to

r= \‘Tmin_‘_ermaxJa (5)
max
where rpi;n = 3 and rpax = 240. The results are summarized in Tab.

We first notice a significant performance gap between the synthetic and real
image datasets for the state-of-the-art TOS-Net [22], suggesting that TOS-Net
has possbily overfitted on the artefacts present in synthetic image. On the other
hand, the performance gap of Slim Scissors is much smaller. More importantly,

when tested on real image benchmarks, our Slim Scissors outperforms TOS-Net
by a significant margin (4.4% IoUnin and 1.7% F score on COIFT and 5.9%
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, N ThinObject-5K [22]| COIFT [3I] | HRSOD [47]
Method Training Set |y 1 Uim  F  |ToU IoUpm F |ToU ToUpin F
DEXTR [22] PASCAL-10K |61.8 43.5 49.0 |70.6 36.8 74.469.5 354 66.1
DEXTR [22] ThinObject-5K[88.8 74.0  89.3 [88.2 68.3 93.4/82.5 57.7 84.8
£-BRS [38] ThinObject-5K[90.9 80.6  89.4 [87.8 63.6 89.1|78.1 49.7 74.1
£BRS' [38] ThinObject-5K[92.5 84.0  92.6 [89.9 67.1 94.6/86.4 63.8 87.7
TOS-Net [22] ThinObject-5K[94.3 86.5 94.8 [92.0 76.4 95.3/86.4 65.1 87.9

Slim Scissors (ours)|ThinObject-5K[91.1 80.5  93.5 [93.2 80.8 97.0[87.7 71.0 91.4
Table 1: Quantitative results on ThinObject-5K test set, COIFT and
HRSOD dataset. T take scribble and synthetic background as input.

Image Ground Truth

Fig.5: Qualitative comparison between IOG [48], TOS-Net [22] and our SS.

IoUghin and 3.5% F on HRSOD dataset), demonstrating the better generaliza-
tion capabilities of our Slim Scissors for practical application. Some qualitative
comparison can be found in Fig.

6.3 Ablation Study

We perform ablation experiments to quantitatively justify the effectiveness of
each proposed component. The results are summarized in Table

Synthetic background and scribble input. To study the effectiveness of
synthetic background for segmentation of thin structures, we construct two base-
lines that take only image or image with synthetic background as input for TPR.
As shown in Tab. [2] (top), the performance is significantly boosted when using
synthetic background, and can be further improved when using coarse scribbles.
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Dual path architecture. As shown

TPR inout | COIFT BI | HRSOD 7]
in Tab. [2| (bottom), removing TPR PU 10U ToUsn F [ToU ToUpyy F
(3rd row) reduces to IOG [48] except ~ +BG +scribble[93.2 80.8 97.0[87.7 71.0 91.4
for using lighter ResNet-18 and be- ) +BG1 3?'3 ;2'(1) gi'ggg'g gg'g gg'g
. . . . image only . . . . . .
ing trained on ThinObject-5K dataset,

h th £ Iv d Dual BG + |ThinObject-5K [22]| COIFT [31]
where the periormance severely de-  pi..q Seribble|ToU IoUsnn  F  |IoU IoUmmin F
grades. However, as the large perfor- v 7 1911 S05 935 1932 808 970
mance gap is partly due to different v 910 787 935 935 77.9 984

89.0 757 88.9 913 T73.1 94.4

network input, we also train a base-
line that additionally accepts synthetic
background and scribbles input (2nd
row) for fair comparison. Dual path
design performs the best, suggesting explicitly separating the processing of thin
parts from the object’s main body is generally beneficial for this task.

Table 2: Ablation study. TPR input
and dual path structure.

Robustness to scribble size. Lastly, we study the robustness of our Slim
Scissors to different scribble size. Thicker scribbles enable faster scribbling but
may lead to poorer inpainting result which subsequently affect the segmentation
quality; thinner scribbles encode stronger spatial prior but at the cost of being
slower. As shown in Fig. [6] as expected, the segmentation performance gradually
degrades when using larger r. Nevertheless, we can see that our approach is fairly
robust on overall. Even with 1.5xr scheme, our Slim Scissors still consistently
outperforms TOS-Net on both benchmarks, well demonstrating its practicality
with various scribble size. We also visualize some examples in Fig. [6] where we
can see 1xr is sufficient to enable users for fast scribbling over thin parts.

6.4 Automated Scribble Recommendation

To validate the effectiveness of the similar detection module (SDM) in boosting
the annotation process, we perform additional experiments to evaluate our fast
Slim Scissors. The goal of SDM is to automatically acquire similar thin parts with
the given scribbles. We perform evaluation on a subset of COIFT, and choose
the objects (e.g. birds and bugs) that are with at least two or more similar
thin parts, resulting in 268 images and 2063 independent thin parts in total.

COIFT [31] | HRSOD [47]
IOU IOUthin ]: IOU IOUthin ]:

0.5%x(93.2 81.4 96.9[87.6 71.7 91.3
1x 193.2 80.8 97.0{87.7 71.0 91.4
1.5x%|93.0 80.1 96.9|87.4 69.8 91.0

(a) 0.5r d)r (c) 1L.5r

Fig.6: Robustness against different scribble coarseness. r denotes the ra-
dius of morphological kernel used to dilate the scribbles for evaluation (Eqn. .
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At the beginning, for each image, we ran-
domly select a thin part and draw a scrib-
ble to cover it. SDM is then used to detect 2 98793
the remaining ones. In the following rounds, 2
we progressively conduct additional inter- /
actions (e.g., adding new scribbles to the / R =

2063

missing parts or removing the false regions e
detected by SDM) until all the thin parts
are well covered by scribbles. As shown in RLR2 ORI R4 RS Re K7 RS FULL

Fig. [7] our fast Slim Scissors reduces hu-
man efforts by more than a half (~1000 . £
scribbles) and achieves competitive perfor- corresponding annotation burden
mance to that of a fully annotated counter- of Fast Slim Scissors on a subset
part (79.9%+ vs. 81.7%). of COIFT.

Fig. 7: The trend of IoUyy;, and the

6.5 User Study

Impact of synthetic scribbles. We conducted a user study to examine the
impact of synthetic scribbles. Specifically, we recruited 9 participants and split
them into 3 groups where each group is asked to annotate the entire COIFT
dataset (280 images) with their best efficiency. In other words, each image is
annotated 3 times and annotators can choose their preferred scribble sizes. As
shown in Fig. [8] the performance on human-drawn scribbles are close to the
synthetic ones, demonstrating the robustness of our approach to user variance.

Compatibility with real user input. We also conducted another user study to
examine the effectiveness of the proposed approach with real human user input.
We collected 20 images from COIFT dataset[3T] and manually chose two sets
of scribble thickness for each test image, simulating thin and thick scribbles.
Among these 20 images, there are 7 birds, 7 butterflies and 6 others (mainly
insects). Some hardest and easiest samples are shown in Fig. |8 We recruited
5 participants where each participant is asked to draw scribbles along the thin
parts under 4 different settings: (1) use only the pre-defined thin scribble; (2) use
only the pre-defined thick scribble; (3) use thin scribbles with the help of SDM

Synthetic Human-drawn

SS TOS-Net

COIFT
Groupl Group2 Group3| Average

IoU |93.2 92.0 92.5 92.5 92.5 192.5 &+ 0.00
IoUnin [80.8  76.4 78.8 78.8 79.1 |78.9 £ 0.14
F|97.0  96.2 96.2 96.3 96.4 (96.3 £ 0.08

Fig. 8: User study. Left: Top 3 easiest (top) and hardest (bottom) samples with
their annotation time. Right: user study performance on COIFT dataset.
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Annotation rul Userl User2 User3 User4 Userd Average
otation ruie TIoUgnin Time|IoU¢hin Time|IoUghin Time|{IoUgnin Time|IloU¢nin Time|loUgnin Time

Thin scribbles 73.3 178 | 739 219 | 757 218 | 75.5 251 | 75.7 210 | 748 215

Thick scribbles 724 112 | 725 143 | 741 108 | 74.0 149 | 73.8 86.3| 73.4 120

Thin scribbles + SDM | 73.8 65.2| 745 76.2| 75.6 90.5| 75.5 73.6| 76.0 59.2| 75.1 729
Thick scribbles + SDM| 72.9 55.7| 73.8 51.4| 727 44.8| 740 53.4| 746 33.2| 73.6 47.7

Table 3: User study. Total time (s) spent on scribbling all the thin regions and
IoUipin in 20 images using different annotation rules.

and lastly (4) use thick scribbles with SDM. The total time (seconds) spent on
scribbling all the thin regions and IoUyy;y, are reported in Tab. [3] We also include
the performance using synthetic scribbles (dilation rate of 1xr) as reference.
We first notice that, compared to thin scribbles, employing thick scribbles
reduces the annotation time by nearly half with only slight performance degra-
dation. With the help of SDM, the annotation time is further reduced while
maintaining similar accuracy. In practice, when SDM is employed, much fewer
scribbles are needed, we can therefore afford to use thinner scribbles for better
accuracy. Lastly, the small performance gap between synthetic and real human-
drawn scribbles demonstrates the robustness of our method to user variance.

7 Conclusion

This work addresses the task of interactively segmenting objects with elongated
thin structures, such as bicycles with thin spokes. The underlying core idea is to
synthesize a background image without thin parts such that the network could
learn to compare the (image, background) pair for extraction of thin structures.
Inspired by this, we devise an effective interactive thin object segmentation tech-
nique called Slim Scissors that only requires coarsely-drawn scribbles covering
thin parts, which is arguably easier than precise clicking used in previous lit-
erature. We also show that it can be seamlessly combined with existing state-
of-the-art interactive segmentation networks to form an end-to-end trainable
segmentation framework. To reduce the annotation burden, we also propose a
fast Slim Scissors variant, which augments Slim Scissors with a similar detection
module for mining additional scribbles covering other similar thin structures
in the same image. We demonstrate the effectiveness of our approach on three
publicly available benchmarks and achieve the new state-of-the-art.

Limitations. Our proposed SDM occasionally falsely detects irrelevant thin
parts (e.g., another bird’s legs) in the presence of multiple objects. How to
reduce the false positives will be investigated in our future work.
Acknowledgments. This work was supported in part by the National Key R&D
Program of China (N0.2021ZD0112100), the National NSF of China (No.U1936212,
No0.62120106009, No0.61972405), the Fundamental Research Funds for the Cen-
tral Universities (No. K22RC00010).
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