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A Selecting loss hyperparameters

The proposed loss (Eq. (5)) requires selecting certain hypeparameters, namely: the
number of feature scales, the choice of cross-scale pairs, the per scale and overall weights
of contrastive losses. Our results are obtained with minimal model or dataset-specific
tuning of those parameters. Specifically, for all models and datasets we set both
weights of Eq.(5) to 0.1 and use 2 scale-pairs (s4-s32, s4-s16) based on the results of the
ablation in Tables 1(a) and 1(c) of the main paper. We further tested two different per-
scale weight and cross-scale pair choices using a single model (HRNet) on Cityscapes
(Table 1.b) and adopt per-scale weights as a decreasing function of the output stride.
Finally, we tested two different alternatives regarding the position of the loss when using
the UPerNet architecture, where the loss can be applied either on the FPN outputs
or the directly over the backbones features. For Cityscapes the optimal choice is the
latter while on ADE20K it is the former (Table 1(a)) and we adopt these choices for all
other experiements on each dataset when using UPerNet. Thus, with minimal tuning
our approach is effective while potentially further model- or dataset-specific tuning can
boost performance even more.

Table 1: Ablation on (a) the position of application of the multi-scale and cross-
scale losses for models using the UPerNet architecture and (b) on values of
weights ws of the multi-scale loss of Eq. (4).

(a)

Network Loss position Dataset mIoU(ss)

UPerNet R101 Backbone CTS 79.1
UPerNet R101 FPN CTS 78.4

UPerNet Swin-S Backbone CTS 81.7
UPerNet Swin-S FPN CTS 80.9

UPerNet Swin-S Backbone ADE20K 47.9
UPerNet Swin-S FPN ADE20K 49.0

(b)

ws mIoU (ss)

1.0 1.0 1.0 1.0 81.8
1.0 0.7 0.4 0.1 82.2

B Additional ablations

We report additional ablations regarding the effect of using longer training schedules
and the importance of using the sampling process described in Section 3.3. As can be
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seen our method benefits by a longer training schedule and a bigger batch size while
staying ahead of the baseline in all cases (Table 2(b)). Further, as shown in Table
2(a), our use of anchor sampling is necessary to allow an extension of contrastive losses
to multiple scales as memory consumption exceeds our utilized hardware’s capacity
(4 × 24GB-GPUs). Further we find that even with a single contrastive loss term (Lc)
our choice to perform anchor sampling results in better performance than using all
available anchors in the batch which is equivalent to obtaining a number of anchors
per class (denoted by K) according to the class distribution pdata, which is imbalanced.

Table 2: (a) Comparison with alternative sampling options (40K steps, with a
batch size of 8 and using 4). We denote the number of samples per class by K.
(b) Ablation of training schedules/batch sizes. All results are on Cityscapes
val using single scale evaluation.

(a)

Model Scales Scale Pairs Loss Sampling K mIoU Mem/GPU (GB)

HRNet 1 - Lc ∼ pdata 79.4 14.2
HRNet 1 - Lc ✓ Sec. 3.3 80.2 7.4

HRNet 4 2 Lcms + Lccs ∼ pdata - OOM
HRNet 4 2 Lcms + Lccs ✓ Sec. 3.3 81.5 9.7

(b)

Network Settings mIoU

Model Loss Batch 40K 80K 120K

HRNet CE 8 79.1 79.7 80.5
HRNet +ours 8 81.5 81.7 81.6

HRNet CE 12 - - 81.0
HRNet +ours 12 - - 82.2
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Fig. 1: TSNE [2] visualisation of the feature spaces of UPerNet with ResNet-101
backbone, on Cityscapes, trained without (top) and with (bottom) our proposed
contrastive loss. Color indicates each sample’s class.

C Additional comparisons on ADE20K

We provide more comparisons between our results using UPerNet with Swin backbones
and other state-of-the-art transformer models, on ADE20K. Notably, our result using
Swin-B outperforms other competitive models despite having close to a third of the
parameters in comparison to Segmenter [3] and SETR [5].

Table 3: Additional results and comparisons with SOTA on ADE20K val.

Network Loss mIoU

Model Backbone #Params (M) Source ss/ms Improvement
UPerNet Swin-B† 121 [1] CE 50.1/51.6
UPerNet Swin-B† 121 - ours 51.3/52.2 (+1.2/+ 0.6)

UPerNet Swin-L† 234 [1] CE 52.0/53.5
UPerNet Swin-L† 234 - ours 52.9/53.3 (+0.9/− 0.2)

SegFormer MiT-B5 84 [4] CE 51.1/51.8
Segmenter ViT-L/16† 307 [3] CE 50.7/52.2
SETR T-Large† 310 [5] CE 48.6/50.3
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D Qualitative results

We provide qualitative results of models trained with our proposed loss on ADE20K
(Fig. 2), Cityscapes (Fig. 3) and CaDIS (Fig. 4). We also compare the feature spaces
of UPerNet with ResNet-101 backbone, without and with our contrastive loss (Fig. 1).

E Training and testing settings

In Tables 5, 4, 6 and 7 we provide the settings used for our experiments. We closely
follow each baseline’s implementation details found in its official code publication.
Regarding testing, when multi-scale (flipping and scaling) inference is used, the scaling
factors used are 0.5, 0.75, 1.25, 1.5, 1.75 on ADE20K and 0.5, 0.75, 1.25, 1.5, 1.75, 2.0
on Cityscapes-test and Pascal-Context.

Table 4: Training settings on Cityscapes.

Network Settings

Model Backbone crop lr decay wd Batch/steps optim

HRNet HR48v2 512× 1024 10−2 poly 5× 10−5 12/120K SGD
OCRNet HR48v2 512× 1024 10−2 poly 5× 10−5 12/120K SGD

DeepLabv3 R101 512× 1024 10−2 poly 5× 10−5 12/120K SGD
UPerNet R101 512× 1024 10−2 poly 5× 10−5 12/120K SGD
UPerNet Swin-T 512× 1024 6× 10−5 linear 10−2 8/120K ADAMW
UPerNet Swin-S 512× 1024 6× 10−5 linear 10−2 8/120K ADAMW
UPerNet Swin-B 512× 1024 6× 10−5 linear 10−2 8/120K ADAMW

Table 5: Training settings on ADE20K.

Network Settings

Model Backbone crop lr decay wd Batch/steps optim

OCRNet HR48v2 512× 512 10−2 poly 10−4 16/160K SGD
DeepLabv3 R101 512× 512 10−2 poly 10−4 16/160K SGD
UPerNet R101 512× 512 10−2 poly 10−4 16/160K SGD
UPerNet Swin-T 512× 512 6× 10−5 linear 10−2 16/160K ADAMW
UPerNet Swin-S 512× 512 6× 10−5 linear 10−2 16/160K ADAMW
UPerNet Swin-B 512× 512 6× 10−5 linear 10−2 16/160K ADAMW
UPerNet Swin-L 640× 640 6× 10−5 linear 10−2 16/160K ADAMW
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Fig. 2: Qualitative comparisons on ADE20K val: we compare UPerNet-
Swin-S trained with only CE to the same model trained with also our multi-
and cross-scale losses. White bounding boxes indicate some examples where our
model performs better in cases where the foreground class is difficult to distin-
guish from the background (2nd, 5th row) or when it recognizes and segments
smaller/thinner objects missed by the baseline (1st, 3rd, 6th, 7th)
.
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Fig. 3: Qualitative results on Cityscapes validation set: we present more
qualitative results, comparing HRNet trained with CE to HRNet it trained with
our multi- and cross-scale losses. White bounding boxes, outline some of the
differences between the two models. Notably, the 2nd and 3rd rows depict cases
where the baseline, misclassifies local segments of an object instance, namely a
bus is partially recognized as ”truck” and a bike rider is partially recognized as
a simple pedestrian (i.e ”person” in the dataset classes). Our model does not
produce these inconsistencies in those cases, showcasing better ability to consider
local-global interactions in recognizing and delineating an object instance. Other
rows demonstrate examples where the model trained with our loss performs
better than the baseline, at delineating small objects with fine details such as
traffic signs or poles.
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Fig. 4: Qualitative results on CaDIS validation set for task 3: We present
a visual comparison of the baseline and the result of combining it with our
multi- and cross-scale losses. Rows 1-3 demonstrate falsely recognized instru-
ment classes by the baseline whereas our result accurately segments and clas-
sifies the tools. Notably, all 3 cases, correspond to tools that have very similar
appearance but should be discriminated in task 3, that requires fine grained seg-
mentation and classification. Further, rows 4-6 demonstrate, a barely humanly
visible translucent tool and two blurry and specular images with tools, respec-
tively. In all three cases our model achieves clearly more accurate delineation of
the tools than the baseline, under challenging conditions.
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Table 6: Training settings on Pascal-Context.

Network Settings

Model Backbone crop lr decay wd Batch/steps optim

OCRNet HR48v2 512× 512 10−3 poly 10−4 16/160K SGD
HRNet HR48v2 512× 512 10−3 poly 10−4 16/160K SGD

Table 7: Training settings on CaDIS.

Network Settings

Model Backbone crop lr decay wd Batch/steps optim

OCRNet R50 540× 960 10−4 exp - 8/20K ADAM
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