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1 Proof

We would like to prove Eq. 4 in Sec. 3.2 of the main paper.

DKL(pT (c, z) || pS(c, z))
= EpT (c,z)[log pT (c, z)− log pS(c, z)]

= EpT (c,z)[log pT (c) + log pT (z|c)− log pS(c)− log pS(z|c)]
= EpT (c,z)[log pT (c)− log pS(c)]

+ EpT (c,z)[log pT (z|c)− log pS(z|c)]
= EpT (c)[log pT (c)− log pS(c)]

+ EpT (c)[EpT (z|c)[log pT (z|c)− log pS(z|c)]]
= DKL(pT (c) || pS(c)) + EpT (c)[DKL(pT (z|c) || pS(z|c))]

2 Implementation Details

We conducted all experiments on an 8-core CPU personal computer with an
NVIDIA RTX3090 GPU. The following section elaborates on the implementation
details of UDA warm-up, density-aware selection, dynamic scheduling policy, and
network fine-tuning. Note that the following symbols are identical to those in
Sec. 3 of the main paper. The whole pipeline is presented in Algorithm 1.

2.1 UDA warm-up

For the two tasks, GTA5→ Cityscapes and SYNTHIA→ Cityscapes, we utilized
a conventional UDA method [10] to train an initial model. For both DeepLabV2
and DeepLabV3+ network backbones, we apply the SGD optimizer with an
initial learning rate of 2.5e-4 and a decay rate of 0.9. Following [10], we warm
up the network with adversarial training for about 100k steps (about 8 hours).
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2.2 Density-aware selection

As mentioned in Sec. 3.2 of the main paper, we utilized a set of Gaussian Mix-
ture Models (GMMs) to model the conditional probability distributions of the
two domains. The domain density pS(z|c) and pT (z|c) are the likelihood of sam-
pling the region feature z from the source domain and target domain given the
predicted category c respectively.

The feature z is a vector of 256 dimensions. For the DeepLabV3+ network
backbone, the feature is extracted before the final linear classification layer. For
the DeepLabV2 network backbone, we slightly modify the network to make the
output of Atrous Spatial Pyramid Pooling (ASPP) as a 256-dimensional feature
vector and add the final classification layer after ASPP.

In our implementation, the number of mixtures in GMM is proportional to
the number of regions of the category and is clipped in the range of 1 to 10.
The process of constructing GMMs can be efficiently completed by offline and
parallel execution, which takes about 0.009 seconds per region with four parallel
processes. We believe the density estimator could be replaced by other methods
and is worth further investigation, which is beyond the scope of this paper.

2.3 Dynamic Scheduling Policy

As explained in Sec. 3.3 of the main paper, we use two hyper-parameters, α
and β, to dynamically schedule the labeling budgets of different active selection
methods. For the GTA → Cityscapes task, we set α = 1, β = 1. For the SYN-
THIA → Cityscapes task, we set α = 0.5, β = 1. The selection of (α, β) is not
difficult: (1) a larger α indicates a larger domain gap and (2) simply setting β
= 1 (half-decay scheduling) performs well on both tasks. The selection of α and
β (half-decay) are discussed in Sec. 4.2 and Sec. 4.3 respectively. The computa-
tional cost for this step, including the labeling budget decision and uncertainty
selection, consumes about 0.001 for each region.

2.4 Network Fine-tuning

After the active selection step, we acquire ground truth labels of the top-ranked
regions in DU

T and move them to DL
T . Then, fine-tune the model on DS ∪ DL

T

using cross-entropy loss in a supervised manner. For the fine-tuning step, we
utilized the SGD optimizer with an initial learning rate of 2.5e-4 and a decay
rate of 0.9. The fine-tuning step takes about 8 hours.

3 Baseline Active Learning Methods

We describe the implementation of 8 region-based active learning baselines used
in our experiments. In the following section, we let R denote a region with N
pixels within it, and θ denotes the fixed trained deep learning network.
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Algorithm 1: The pipeline of D2ADA

Input: data pool: (DS , DT = {DL
T , D

U
T }, where DL

T = ∅), hyper-parameters:
(α, β), max active iterations = N, labeling budget for each active
selection round: B

Output: the output model hθ

Warm-up: hθ ← (DS , D
U
T , DL

T ) according to [10]
for n← 0 to N do

// Construct source and target density estimators

ZS , CS ← hθ(DS)
ZT , CT ← hθ(DT )
GMMsrc ← ConstructGMMs(ZS , CS)
GMMtrg ← ConstructGMMs(ZT , CT )

// Calculate the region importance metric π
R∗ ← a new empty list
for each c in {1, 2, ..., C} do

Rc ← Obtain all regions predicted as category c in DU
T

for each region in Rc do
Obtain the domain density dS , dT by feeding the regional feature z
and the predicted category c to GMMsrc and GMMtrg

Calculate the importance score π according to Eq. 2
end
Rank all the regions in Rc in descending order based on the important
score; then, append it to R∗

Calculate the categorical KL-divergence DKL(pT (z|c) || pS(z|c))
according to Eq. 5

end

// Dynamic Scheduling Policy

Determine Bu
n, B

d
n given (α, β,B) according to Eq. 7

// Class-Balanced Selection

Determine Bd,c for each c given the categorical KL-divergence according
to Eq. 6

// Label Acquisition

Su
n ← UncertaintySelection(Bu

n, hθ, D
U
T ) according to [11]

Sd
n ← DensityAwareSelection(Bd

n, R
∗) // Pick top-ranked regions

based on the categorical budgets Bd,c

Xactive ← Su
n

⋃
Sd
n

Yactive ← Obtain ground-truth labels from the oracle given Xactive

DL
T ← DL

T

⋃
(Xactive, Yactive)

DU
T ← DU

T \Xactive

// Supervised fine-tuning

hθ ← Tune the model on DS

⋃
DL

T with cross-entropy loss
end
return hθ
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RAND Randomly select few regions of images in the unlabeled target domain
dataset DU

T for label acquisition.

MAR [11] Wang et al. [11] proposed using model softmax margin as the in-
dicator to select informative instances for labeling. Specifically, we produce the
score for a region (SMAR

R ) by averaging the difference between the two most
likely category labels for all pixels within the region, as shown in Eq. 1. After
that, we acquire the ground truth labels of few regions with the smallest score,
which means the smallest margin, in the unlabeled dataset for each category.

SMAR
R =

1

N

N∑
n=1

P (ŷ1n|R; θ)− P (ŷ2n|R; θ), (1)

where ŷ1n is the first most probable label category and ŷ2n is the second most
probable label category.

CONF [11] The main concept of the confidence selection strategy is to acquire
labels for samples whose prediction has the least confidence [11,12]. As can be
observed in Eq. 2, the score for a region (SCONF

R ) is produced by averaging
the softmax confidence of all pixels within the region. After that, we select a
portion of regions with the least confidence score in the unlabeled dataset for
label acquisition.

SCONF
R =

1

N

N∑
n=1

P (ŷ1n|R; θ), (2)

where ŷ1n is the softmax confidence value of the predicted category label.

ENT [11] In the field of information theory, entropy is a widely used metric to
evaluate the information of a probability distribution [7]. The idea of this type
of selection strategy is to select regions with the largest entropy for labeling [11].
As shown in Eq. 3, the score for a region (SENT

R ) is formed by averaging the
softmax entropy of all pixels in a region. After that, a portion of regions with
the largest entropy in the unlabeled dataset is selected for label acquisition.

SENT
R = − 1

N

N∑
n=1

c∑
i=1

[P (yin|R; θ) · log[P (yin|R; θ)]], (3)

where c is the number of categories, and P (yin|R; θ) represents the softmax prob-
ability that the model predicts pixel n as class i.
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BADGE [1] Ash et al. proposed selecting a batch of diverse and uncertain
samples for labeling with a designed gradient embedding space. Specifically, the
method first calculates the gradient embedding of each sample to indicate its un-
certainty and then selects diverse samples for label acquisition with k-means++.
In our implementation, we produce the regional gradient embedding by averag-
ing the value of all pixels within it. Then, we follow its original implementation
to cluster the regions with the k-means++ algorithm.

ReDAL [13] Wu et al. proposed acquiring a batch of diverse point cloud regions
with high uncertainty for labeling by entropy, 3D characteristics, and greedy
diversity selection. In our implementation, we carefully replaced the 3D charac-
teristics term as detected 2D edges and followed the rest of the algorithm.

AADA [9] Su et al. presented the first active domain adaptation approach
for image classification. The concept of this method is to leverage the softmax
entropy and the domain discriminator to select uncertain samples that are far
from the source domain distribution. In our implementation, we calculated the
region-level softmax entropy and domain discriminator result and followed the
rest of the algorithm.

CLUE [4] Prabhu et al. presented another active domain adaptation method by
clustering the uncertainty-weighted embeddings. The same, we treated a region
as the fundamental label query unit and followed the original implementation.

4 More Experimental Results and Analyses

In this section, we first discuss the effectiveness of UDA warm-up and hyper-
parameter selections. Then, we analyze the influence of inaccurately predicted
categories. Finally, we report the raw tables of Fig. 3 in the main paper in Tab. 4,
5 and show the per-class performance of our active learning strategy in Tab. 6.

4.1 Effectiveness of UDA Warm-up

Tab. 1 shows the mIoU scores after applying the UDA method [10] as the warm-
up step. The result shows that the performance of the UDA method is still far
from that of full supervision and our method.

We further investigate the effectiveness of UDA warm-up on the GTA5 →
Cityscapes task. With 1% target domain labeled regions, our method can reach
64.0 ∼ 64.1 mIoU with and without warm-up. This shows that UDA warm-up
plays little role in our improvement. The main reason for using warm-up in our
experiments is to follow prior domain adaptation works [3,8,14].
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Table 1. mIoU scores of UDA warm-up [10] on the two tasks.

(a) GTA → Cityscapes

DeepLabV2 DeepLabV3+
mIoU (%) 44.61 45.51

(b) SYNHTIA → Cityscapes

DeepLabV2 DeepLabV3+
mIoU (%) 39.95 43.04

4.2 Effectiveness of Initial Balance Coefficient

As mentioned in Sec. 3.3 of the main paper, the balance coefficient α is de-
signed to balance between density-aware and the uncertainty-based method at
the first active selection round. We investigate the effectiveness of α with the
DeepLabV3+ model backbone for the two tasks.

As can be observed in Tab. 2, with the aid of partial or full acquired anno-
tations by our designed density-aware method, models are able to obtain higher
mIoU scores compared with only using conventional uncertainty-based method
(α = 0). For the GTA5 → Cityscapes task, only adopting density-aware selec-
tion strategy at the beginning achieve the best result; while for the SYNTHIA
→ Cityscapes task, choosing α = 0.5 to combine density-aware and uncertainty-
based methods obtain the best performance. The experimental results confirm
the effectiveness of our density-aware selection in severe domain shift.

Table 2.We report the mIoU scores with different balance coefficients α. We found that
using only the uncertainty-based method, i.e., α = 0, obtained the worst results among
all combinations. The results show that using some or all of the obtained annotations
through density-aware selection can improve model performance.

(a) GTA → Cityscapes with 1% Target Labels

α 0 0.25 0.5 0.75 1.0
mIoU (%) 59.57 61.95 63.30 63.73 64.03

(b) SYNHTIA → Cityscapes with 1% Target Labels

α 0 0.25 0.5 0.75 1.0
mIoU (%) 61.56 61.98 62.47 62.07 61.87

4.3 Effectiveness of Different Scheduling Policies

As discussed in Sec. 3.3 of the main paper, due to the rapid domain shift reduc-
tion, we design a dynamic scheduling policy to half decay the labeling budget
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of the domain exploration and gradually put more emphasis on the uncertainty-
based method. Here we discuss the effectiveness of five budget scheduling policies
on the GTA5 → Cityscapes task with DeepLabV3+ model backbone, including
pure density, pure uncertainty, even distribution, linear decay, and half decay.

We classify these five policies based on the λ value in Eq. 7 in the main
paper. Pure density and pure uncertainty refer to λ = 1 and λ = 0 respectively.
Even distribution means evenly assigning the labeling budgets to our density-
aware method and uncertainty-based approach for each active selection round,
i.e., λ = 0.5. Linear decay refers to the linear decrease of the labeling budgets
assigned to the density-aware method. In our implementation, the proportion of
density-aware selection method is initialized as 1.0 and linearly decreases by 0.2
for each step, i.e., λ = 1.0−0.2(n−1). Half decay is our budget scheduling policy
described in Sec. 3.3 of the main paper, i.e., λ = α · 2−β(n−1), (α, β) = (1, 1).

As shown in Tab. 3, our half-decay approach obtains the best performance
with 1%, 3%, and 5% budgets. Overall, the result suggests that our density-aware
technique and traditional uncertainty-based method complement each other to
reach better adaptability under our dynamic scheduling policy.

Table 3. We compare different label budget scheduling strategies on the GTA →
Cityscapes task. The result shows that our designed half-decay method performs the
best among all strategies.

Scheduling Policy
mIoU

1% 3% 5%

Pure Density (λ = 1) 64.03 69.38 70.69
Pure Uncertainty (λ = 0) 59.97 68.79 70.70

Even Distribution (λ = 0.5) 63.30 69.66 71.15
Linear Decay (λ = 1.0− 0.2(n− 1)) 64.03 69.49 71.14

Our Half Decay (λ = 2−(n−1)) 64.03 69.86 71.25

4.4 Influence of Inaccurately Predicted Categories

As mentioned in Sec. 3.2 in the main paper, our density-aware selection estimates
the domain density with the extracted region features and the corresponding
predicted categories. Since the predicted category might be inaccurate, especially
in the first stage in the ADA, we conducted an experiment to verify whether our
method is robust under this issue.

The result shows that indeed the initially predicted category might indeed
be inaccurate, but our method can recall more of these mispredicted data for
labeling. According to the statistics, about 56% of “target bus regions” were
predicted as other classes by the initial model. Still, our method recalled 25%
of these mispredicted regions to re-label, while the uncertainty-based methods
could only recall 4% of them. Overall, we show our approach is effective even
with noisy initial labels in this experiment.
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Table 4. Results of mIoU performance (%) on GTA [5] → Cityscapes [2] with
DeepLabV3+ network backbone.

% Target Labels RAND MAR CONF ENT BADGE ReDAL AADA CLUE D2ADA

1 58.81 57.95 59.90 59.57 62.67 61.97 55.84 60.13 64.03
2 61.11 64.33 65.72 66.08 65.62 65.93 61.71 62.96 67.65
3 62.23 67.08 68.83 68.79 67.73 67.12 64.93 64.99 69.86
4 63.62 68.47 69.55 69.83 68.66 68.55 65.74 65.88 70.66
5 63.50 69.44 70.70 70.70 70.50 68.30 66.01 67.13 71.25

Table 5. Results of 16-classes mIoU performance (%) on SYNTHIA [6] → Cityscapes
[2] with DeepLabV3+ network backbone.

% Target Labels RAND MAR CONF ENT BADGE ReDAL AADA CLUE D2ADA

1 59.05 60.67 61.94 61.56 61.64 61.08 54.16 60.17 62.47
2 60.96 67.23 68.20 67.75 66.29 66.58 59.84 64.71 69.35
3 63.65 69.68 69.70 70.23 69.18 69.30 63.12 66.50 71.01
4 65.53 70.43 71.17 71.28 70.26 69.97 66.09 67.46 72.40
5 66.09 71.37 71.50 71.76 71.08 71.01 67.03 68.37 72.74

Table 6. Complete experimental results of our proposed D2ADA on (a) GTA5 →
Cityscapes and (b) SYNTHIA → Cityscapes with different percentage of acquired
target labels.

(a) GTA5 → Cityscapes

% Target Labels Road SW Build Wall Fence Pole TL TS Veg. Terrain Sky PR Rider Car Truck Bus Train Motor Bike mIoU

D2ADA
(DeepLabV2)

1% 93.63 59.90 86.92 39.59 40.95 44.04 51.78 53.87 88.34 45.30 86.60 71.09 46.82 89.81 57.58 69.71 58.65 52.54 68.45 63.45

2% 95.34 69.08 88.54 48.24 49.26 45.21 54.41 59.61 89.00 52.73 90.64 73.09 50.23 91.20 69.36 73.00 59.99 56.03 69.57 67.61

3% 96.11 72.52 88.98 48.33 50.52 46.42 55.35 62.08 89.55 53.86 90.69 74.11 52.69 91.47 67.90 77.01 65.13 59.20 70.75 69.09

4% 96.27 73.91 89.28 49.03 52.66 47.12 56.44 63.54 89.73 56.52 91.76 74.49 53.74 91.66 68.25 76.29 62.99 59.08 71.21 69.68

5% 96.29 73.57 89.26 50.01 52.26 47.94 56.91 64.65 89.27 53.94 92.25 73.91 52.86 91.84 69.67 78.87 62.70 57.65 71.05 69.73

D2ADA
(DeepLabV3+)

1% 93.19 59.06 87.50 37.95 43.54 45.43 53.63 47.59 88.23 44.72 89.73 72.04 48.58 91.11 63.40 68.98 58.56 54.88 68.47 64.03

2% 95.50 69.38 88.91 43.63 50.05 48.77 56.19 58.97 89.39 51.66 90.68 73.94 51.31 91.65 66.52 72.15 58.69 57.48 70.40 67.65

3% 96.27 73.91 89.37 47.65 52.37 50.12 57.14 64.29 89.50 55.64 91.50 75.03 53.03 92.28 69.97 77.16 63.13 57.35 71.54 69.86

4% 96.77 76.58 89.75 47.28 53.79 52.33 57.92 65.41 89.90 56.69 92.27 75.31 53.01 92.09 68.77 76.43 67.25 58.82 72.16 70.66

5% 96.97 77.83 89.97 45.98 55.04 52.74 58.69 65.80 90.37 58.94 92.14 75.69 54.36 92.26 69.04 78.01 68.51 59.05 72.33 71.25

(b) SYNTHIA → Cityscapes

% Target Labels Road SW Build Wall Fence Pole TL TS Veg. Sky PR Rider Car Bus Motor Bike mIoU mIoU*

D2ADA
(DeepLabV2)

1% 93.82 61.50 85.21 26.15 19.21 40.75 46.41 53.16 86.11 87.27 70.78 46.77 86.54 34.08 48.49 66.21 59.53 66.64

2% 94.95 67.30 87.79 37.92 42.04 44.09 53.45 61.05 88.17 90.11 73.64 53.37 89.98 66.26 53.54 69.36 67.07 73.00

3% 95.73 71.75 88.48 38.68 44.08 46.4 54.48 64.64 88.68 90.18 74.49 53.99 90.72 73.27 57.48 70.86 68.99 74.98

4% 96.21 73.95 88.93 41.23 48.24 47.45 55.31 65.65 89.23 91.24 74.59 54.39 91.07 73.37 58.21 71.55 70.04 75.67

5% 96.41 74.57 89.09 42.51 47.70 47.99 55.64 66.46 89.47 91.73 75.10 55.15 91.37 76.97 57.97 71.77 70.62 76.28

D2ADA
(DeepLabV3+)

1% 92.45 55.44 86.75 34.94 29.07 44.90 48.97 54.43 87.09 90.27 73.66 49.39 88.98 40.74 52.85 69.64 62.47 68.51

2% 95.54 71.45 88.78 38.97 45.69 50.34 55.57 64.78 89.46 92.06 75.61 53.38 91.14 69.67 55.49 71.70 69.35 74.97

3% 96.13 74.04 89.11 39.64 49.52 52.58 56.24 65.91 89.89 92.80 76.38 54.63 92.20 76.06 58.77 72.31 71.01 76.50

4% 96.19 74.40 89.91 48.48 50.71 53.60 58.10 66.88 90.01 93.29 77.15 56.28 92.25 78.39 59.54 73.27 72.40 77.36

5% 96.67 76.76 90.27 48.73 51.06 54.24 58.28 67.99 90.41 93.37 77.37 56.41 92.53 77.53 58.88 73.29 72.74 77.67
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5 Qualitative Results

Due to space limitations, we show the qualitative results in the supplementary
material. As shown in Fig. 1, we show five inference results of different ap-
proaches for the GTA5 → Cityscapes domain adaptation task, including success
and failure cases.

The first three rows present the results that our method outperforms the
UDA method [10] and the previous ADA approach [9]. As shown in the first
row, our segmentation result is close to full supervision with clear boundaries.
Compared with the prior UDA [10] and ADA [9] practices, our method can better
capture the scene structure and significantly outperforms them. The second and
the third rows show that our method can better recognize hard categories, such
as “train” and “fences” (shown on the red bounding box).

The fourth and fifth rows present two failure cases of our method. As observed
from the red bounding boxes, our method performs worse than full supervision
in these pictures’ corners or boundary areas. However, compared with the two
existing approaches, our method still achieves better results. We believe that the
problem of poor performance in the pictures’ corners or boundary areas may be
improved through a better active selection strategy, which is worthy of further
research in the future.

Fig. 1. Qualitative results of different approaches for the GTA5 →
Cityscapes domain adaptation task. We present three success cases (in the top
three rows) and two failure cases (in the bottom two rows) of our method. For more
detailed explanation, please refer to Sec. 5.
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