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Abstract. Recently, several spatial-temporal memory-based methods
have verified that storing intermediate frames and their masks as mem-
ory are helpful to segment target objects in videos. However, they mainly
focus on better matching between the current frame and the memory
frames without explicitly paying attention to the quality of the mem-
ory. Therefore, frames with poor segmentation masks are prone to be
memorized, which leads to a segmentation mask error accumulation
problem and further affect the segmentation performance. In addition,
the linear increase of memory frames with the growth of frame num-
ber also limits the ability of the models to handle long videos. To this
end, we propose a Quality-aware Dynamic Memory Network (QDMN)
to evaluate the segmentation quality of each frame, allowing the mem-
ory bank to selectively store accurately segmented frames to prevent
the error accumulation problem. Then, we combine the segmentation
quality with temporal consistency to dynamically update the memory
bank to improve the practicability of the models. Without any bells
and whistles, our QDMN achieves new state-of-the-art performance on
both DAVIS and YouTube-VOS benchmarks. Moreover, extensive ex-
periments demonstrate that the proposed Quality Assessment Module
(QAM) can be applied to memory-based methods as generic plugins
and significantly improves performance. Our source code is available at
https://github.com/workforai/QDMN.
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1 Introduction

Given a video and the first frame’s annotations of single or multiple objects,
semi-supervised video object segmentation (Semi-VOS or One-shot VOS) aims
at segmenting these objects in subsequent frames. Semi-VOS is one of the most
challenging tasks in computer vision with many potential applications, including
interactive video editing, augmented reality, and autonomous driving.
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Fig. 1: Visual comparison of memory frames of different qualities. The first row
shows the memory frames of MiVOS [6]. The second row shows the memory
frames of our method. The yellow box area illustrates the error accumulation.

Unlike other segmentation tasks that aim to look for the relationship between
features and specific categories, the critical problem of Semi-VOS lies in how
to make full use of the spatial-temporal information to recognize the target ob-
jects. Consequently, the methods that perform matching with historical reference
frames have received tremendous attention in recent years. Some works [40,50,52]
utilize the first frame and the previous adjacent frame as references. Due to
limited reference information, these approaches tend to fail miserably under
challenging scenarios, e.g., the target objects disappear for a while or are drasti-
cally deformed. To excavate more information, the Space-Time Memory Network
(STM) [29] utilizes a memory network to memorize intermediate frames and their
segmentation masks as references, which has been proved effective and has served
as the current mainstream framework. Many approaches [35,21,6,14,46,36,42,7]
further develop the feature extraction and memory readout process of STM and
have achieved excellent performance.

However, these methods mainly focus on optimizing the matching process
while ignoring the impact of the matching target, i.e., memory bank, on the
segmentation results. Specifically, previous methods select memory frames in a
straightforward way, i.e., storing at fixed frame intervals. This approach has
two weaknesses: (1) Frames with poor segmentation results may be memorized
and provide an erroneous reference for subsequent frames, which leads to an
error accumulation problem. As shown in the first row of Fig. 1, if there are
inaccurately segmented masks in the memory bank, the segmentation quality of
subsequent frames will be greatly degraded. Such an observation inspires us to
pay more attention to the design of the memory bank. Since the matching-based
approaches rely on a memory bank to identify the target objects, the memory
bank’s quality (especially the correctness) is very important. (2) In existing
methods, the size of the memory bank would infinitely expand with the growth
of frame number, which makes the models incapable of handling long videos and
greatly limits their practicality.

Therefore, the way of designing the memory bank is a significant issue for
spatial-temporal memory-based methods. Generally speaking, we believe that
the design of the memory bank should meet the following principles: (1) Accu-
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racy: In a one-shot scenario, the memory bank should be composed of the an-
notated frame and frames that are segmented as accurately as possible to obtain
correct supervision information. (2) Temporal consistency: Considering the
continuity of motion, the state of objects in adjacent frames tends to be similar.
In other words, the masks of adjacent frames are of great reference to the current
frame. Based on these two principles, we can selectively store frames with more
reference information as memory and dynamically update the memory bank to
handle videos of arbitrary length.

To this end, we propose a Quality-aware Dynamic Memory Network (QDMN),
which introduces a simple but effective structure called Quality Assessment Mod-
ule (QAM) in this paper to evaluate each frame’s segmentation result and decide
whether a frame can be added to the memory bank as a reference. Being aware
of the segmentation quality limits the impact of noise and provides the accuracy
credentials for dynamically updating the memory bank. Besides, since the objects
in adjacent frames share a similar status to the current target, we introduce a
temporal regularization to penalize the outdated memory. Extensive experiments
demonstrate that the dynamic updating strategy of the memory bank designed
according to the principles of accuracy and temporal consistency is reasonable
and effective. By designing a high-quality memory bank and introducing tempo-
ral consistency, our method achieves new state-of-the-art performance on both
DAVIS [33] and Youtube-VOS [47] benchmark without any bells and whistles.
Furthermore, we also verify that memory-based methods can gain significant
improvement by simply applying our QAM as a generic plugin for video object
segmentation tasks.

Our contributions can be summarized as follows. Firstly, we pinpoint the de-
sign of the memory bank as the Achilles heel of the Semi-VOS task and propose
the strategy for designing a high-quality memory bank. Secondly, we present
QDMN for Semi-VOS, which can selectively memorize high-quality frames and
take advantage of the temporal consistency. Thirdly, QDMN can effectively con-
trol the number of memory frames to avoid memory explosion. Experiments show
that our method surpasses the existing methods on both DAVIS and YouTube-
VOS datasets. Furthermore, QAM can be used as a generic plugin to improve
memory-based methods.

2 Related Work

Propagation-based Methods. Propagation-based methods [39,9,8,49,1,15,41]
treat semi-supervised video object segmentation as a mask propagation task.
MaskTrack [31] concatenates the previous adjacent frame’s segmentation mask
with the current image as input and online fine-tunes the network. AGSS-
VOS [24] proposes an attention-guided decoder to combine the instance-specific
branch and instance-agnostic branch. Based on mask confidence and mask con-
centration, SAT [3] selectively propagates the entire image or local region to the
next frame. The propagation-based method takes advantage of the strong prior
provided by the previous adjacent frame. It can better deal with the appear-
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ance change of the target object, but it has fatal shortcomings in the problem
of occlusion and error accumulation.

Detection-based Methods. Detection-based methods divide the Semi-VOS
task into three subtasks: detection, tracking and segmentation. DyeNet [20] uti-
lizes RPN [34] to generate proposals and applies the re-identification module to
perform matching. PReMVOS [26] uses Mask RCNN [12] to obtain coarse masks
and performs optical flow, re-identification to achieve good performance. Huang
et al [16] and Sun et al [38] integrate segmentation into tracking with a dynamic
template bank. Detection-based methods rely heavily on the detectors, which
dramatically limits the performance of such methods.

Matching-based Methods. Matching-based methods perform matching be-
tween reference frames and the current frame to identify target objects, which
has raised great attention for excellent performance and robustness. PML [4]
proposes a pixel-level embedding network with the nearest neighbor classifier.
FEELVOS [40] and CFBI [50] perform global and local matching with the first
frame and the previous adjacent frame, respectively. AOT [51] associates multi-
ple target objects into the same embedding space by employing an identification
mechanism. STM [29] leverages the memory network to memorize intermedi-
ate frames as references, which has been proved effective and has served as the
current mainstream framework. Based on STM, KMN [35] and RMNet [46] pro-
pose to perform local-to-local matching instead of non-local. SwiftNet [42] and
AFB-URR [23] reduce memory duplication redundancy by calculating the simi-
larity between query and memory. LCM [14] emphasizes the importance of the
first frame and the previous adjacent frame. STCN [7] improves the feature ex-
traction and performs reasonable matching by decoupling the image and masks.
Following the memory-based idea, there are still many variants of STM, such as
JOINT [27], EGMN [25], MiVOS [6], DMN-AOA [22], HMMN [36], and so on.

Although these methods have achieved great performance, they mainly focus
on better matching the current frame with the memory frames. In other words,
previous works dedicate to optimizing the matching process while neglecting the
importance of matching with the correct object. Besides, they do not take into
account that the size of the memory bank grows linearly with the length of the
video, which greatly impacts the application of the models in real scenarios due
to the hardware memory limitation.

3 Method

3.1 Overview

The overall architecture of our QDMN is shown in Fig. 2. Similar to STM [29],
during video processing, the current frame (t-th frame) is considered as the
query, and the past reference frames with segmentation masks are considered
as the memory. The query and memory are encoded into pairs of key and value
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Fig. 2: Overview of QDMN. (a) is the feature extraction of the reference frames in
the memory bank. (b) QAM is the module used to evaluate whether the current
frame can be added to the memory bank. (c) is the pipeline for predicting the
segmentation result of the current frame It .

maps through visual encoders and corresponding convolution layers. To highlight
the temporal consistency of video, the query feature ft is first enhanced with
the prior mask to obtain the enhanced feature fe. Then the enhanced feature is
encoded into pairs of key KQ and value V Q through corresponding convolution
layers. The Space-Time Memory Read block performs pixel-level matching be-
tween KQ and the memory key KM . The relative matching similarity is used to
address the memory value V M , and the corresponding values are combined to
the decoder for segmentation. Finally, the Quality Assessment Module (QAM)
evaluates the quality of the segmentation result and decides whether the query
frame can become a memory frame.

3.2 Quality Assessment Module

Designing the memory bank is a significant issue for memory network-based
methods. For existing strategy, frames with erroneous masks may be memorized,
which leads to an error accumulation problem. To alleviate this problem and
ensure the accuracy of the memory bank, inspired by [17,18], we propose the
Quality Assessment Module (QAM) to evaluate the segmentation quality and
decide whether a frame can be added to the memory bank as a reference.

QAM is a simple structure but effective module composed of a score encoder,
four convolution layers, and two MLP layers. It takes the query image It and its
segmentation mask Mt as input and outputs the predicted quality scores. Since
the feature extraction process of the score encoder Encs is the same as that
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Score: 0.64 Score: 0.92 Score: 0.39 Score: 0.81

Fig. 3: Illustrations of segmentation masks with different quality scores. The
three rows represent the ground truth, segmentation results, and the quality
scores predicted by QAM, respectively.

of the memory encoder EncM (both takes images with segmentation masks as
input), we directly use the memory encoder as the score encoder, which helps to
save calculations and parameters. Specifically, the structure of the score encoder
Encs and the memory encoder EncM is the same, and the parameters are shared.
The QAM first takes the query image It ∈ R3×H×W and its segmentation mask
Mt ∈ R1×H×W into the score encoder to obtain the score feature map fs ∈
RC×H/16×W/16, whereH×W are resolutions of the input image. Then, fs is input
to the convolution layers and fully connected layers to learn the segmentation
quality score SA

t for the current frame. The process of segmentation quality
assessment can be expressed as:

fs = Encs(It ⊕Mt); SA
t = Fc(Conv(fs)), (1)

where ⊕ denotes the concatenation operation. t is the index of the current frame.
Conv and Fc denote convolution and fully connected layers with sigmoid non-
linear function, respectively.

During training, the target value of the quality score is defined as mask
IoU between the segmentation mask and ground truth. The specific calculation
process is as follows:

loss =
1

N

N∑
i=1

(SA
i −maskIoU(Mi, GT i))

2, (2)

where SA
i represents the quality score of the segmentation result for i-th object,

Mi indicates the segmentation result, GT i is the ground truth. N indicates the
total number of objects.

Since QAM evaluates the segmentation quality for each object individually,
we take the average of all object scores in one frame as the quality score of
this frame. In addition, considering that the segmentation difficulty varies for
different video scenes, we normalize the quality scores of all frames in a video
to better measure the relative quality of the segmentation results, which helps
to memorize more helpful information under challenging scenarios. Specifically,
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the final quality score of each frame is its initial predicted score divided by the
score of the first frame. Formally, the process can be expressed as:

S̄A
t =

1
N

∑N
i=1 S

A
ti

S̄A
1

, (3)

where N represents the total number of objects in the t-th frame, S̄A
t indicates

the quality score of the segmentation result in frame t, S̄A
1 represents the quality

score of the first frame.
Figure 3 shows some visualization results of the quality assessment, the first

two columns are the same video, and the last two columns represent another
video. We can observe that the driver is considered part of the car in the first
column, which is a bad case. The pink zebra in the third column is not recognized,
and the orange zebra is matched with similar background objects.

For the hard case, our QAM identifies these suboptimal results well, which
shows that the segmentation accuracy of a frame is consistent with its quality
score. Extensive experiments also verify this. With QAM, the memory bank can
selectively memorize frames whose quality scores are higher than the memory
threshold σ, that is, frames with accurate segmentation masks. In this way, even
if a frame is poorly segmented owing to fast object motion or other factors, it
will not affect the subsequent frames or cause error accumulation.

3.3 Dynamically Updated Memory Bank

Algorithm: 1 Pseudocode of Dynamic Memory Bank

Input：memory bank Memory, video frames sequence {It}
of length L

1: t = 2 # the ground truth mask of the first
frame is given

2: j = 1 # the relative index of memory frames
3: while t ≤ L do
4: if SA

t ≥ σ then
5: # to filter the inaccurately segmented frames
6: j = j + 1
7: if len(Memory) ≤ β then
8: Memory.add({j : [It,Mt, S

A
t ]}) # store

It,Mt, S
A
t to the j position in memory.

9: else
10: SR

min, idmin = inf, inf
11: for k in Memory.keys() do # k is the

relative index of the frame in the memory bank
12: SC

k = exp(k − j)
13: SR

k = SA
k + SC

k

14: if SR
k < SR

min then
15: SR

min = SR
k , idmin = k

16: end if
17: end for
18: Memory.del(idmin) # remove the mem-

ory frame with the lowest reference score SR

19: Memory.add({j : [It,Mt, S
A
t ]})

20: end if
21: end if
22: t = t+ 1
23: end while

1

The infinite increase of the memory frames
with the growth of frame number greatly lim-
its the practicability of the model in the real-
world scenario. Thus, it is necessary to limit
the size of the memory bank and update it
dynamically to adapt to new scenarios.

Due to the temporal consistency of video,
the appearance of the target objects in adja-
cent frames is similar. The masks of adjacent
frames are more instructive for the segmenta-
tion of current frame. Combining the above
analysis and considering accuracy, we suggest
dynamically updating the memory bank in
accordance with these two principles (Algo-
rithm.1). Specifically, when the memory bank
reaches a certain storage limit, we will dy-
namically update the memory bank to han-
dle different video scenes. For quantifying the
temporal consistency and measuring the dis-
tance between each memory frame and the
current frame, we compute the temporal con-
sistency score SC as:

SC
k = e−|t−k|, (4)
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where k is the index of each memory frame, t is the index of the current frame.
Based on the accuracy score SA and the temporal consistency score SC , the

reference score of each memory frame in the memory bank can be calculated by
SR
k = S̄A

k +SC
k . By removing the memory frames with the lowest reference score,

the memory bank is dynamically updated to handle different video scenarios and
prevent the memory explosion problem.

3.4 Prior Enhancement Strategy

In addition to considering temporal consistency when designing a memory bank,
we further utilize the prior provided by the previous adjacent frame to enhance
temporal information. We adopt a similar module structure to SCM [54] to intro-
duce the prior information from the previous adjacent frame. Instead of introduc-
ing spatial constraint in the decoder like SCM, we utilize the prior information
in the query encoding process to better learn the target object’s appearance
feature and avoid over-reliance on the prior information.

Specifically, in the query encoding process, the segmentation mask of the
previous adjacent frame Mt−1 ∈ R1×H×W is downsampled and concatenated
with the query’s embedding ft ∈ RC×H/16×W/16. Then the resultant feature
goes through convolution and non-linear function to fuse information between
channels, through which a prior feature map fp ∈ R1×H/16×W/16 is produced.
Finally, we perform an element-wise product between fp and ft to get the en-
hanced feature fe ∈ RC×H/16×W/16. Formally, the process can be expressed as
the following equation:

fe = Conv(ft ⊕Mt−1)⊗ ft. (5)

Furthermore, we find that it is better to provide weak prior (mentioned
above) than strong prior (masks of the previous frame have a great influence
on the feature of the current frame). We found two primary reasons through ex-
periments: the first one is that the prior information may be noisy, and providing
a strong prior may lead to error accumulation; the second one is that providing
strong prior makes the model overly dependent on it, which weakens its ability
to extract features and identify objects. Table 6 shows the disadvantages of pro-
viding strong prior under challenging scenarios. In Section 5.3, we will describe
the specific approach of providing strong prior.

3.5 Memory Read and Decoder

In the Space-Time Memory Read block [29], soft weights are first computed by
measuring the similarities between query key KQ and memory key KM . Then
the memory value V M is retrieved by a weighted summation with the soft weights
and concatenated with query value V Q to get the output y. This operation can
be summarized as:

yi = V Q
i ⊕ 1

Z

∑
∀j

D(KQ
i ,KM

j )V M
j , (6)
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where i and j are the index of the query and the memory location, Z =∑
∀j D(KQ

i ,KM
j ) is the normalizing factor. D denotes the similarity measure

(in our experiment is dot product).
Our decoder stays close to that of [55,29]. The decoder takes the output y

of the Space-Time Memory Read block as input and predicts the object masks.
It consists of an ASPP layer [2], a residual block, and two upsample blocks that
upscale the feature map to the initial image size.

4 Implementation Details

Following the training strategy in MiVOS [6], we first pretrain our model on
static image datasets [43,37,53,5,19] and then perform main training on YouTube-
VOS and DAVIS datasets. Besides, we also experiment with the synthetic dataset
BL30K proposed in MiVOS, which is not used unless otherwise specified. Dur-
ing pretraining, each image is expanded into a pseudo video of three frames by
random affine, horizontal flip, color and brightness augmentation. We randomly
pick three frames in chronological order (with a ground-truth mask for the first
frame) from a video to form a training sample in the main training. The range
of random sampling varies with the training process. In the intermediate pe-
riod of training, the sampling range is set larger to improve the robustness of
the model, while at the end of the training, it is set smaller to narrow the gap
between training and inference. Our models are trained end-to-end with two
32GB Tesla V100 GPUs with the Adam optimizer in PyTorch. The batch size
is set to 28 during pretraining and 16 during main training. We adopt ResNet-
50 [13] as backbone for all encoders. Bootstrapped cross-entropy loss [6] is used
for segmentation, and MSE loss is used for quality score evaluation. The initial
learning rate is 2e-5. During inference, we choose the memory threshold σ of 0.8
by default. Ablation studies are conducted on a single 1080Ti GPU and DAVIS
2017 validation set in default.

5 Experiments

5.1 Comparisons with State-of-the-Art Methods

DAVIS 2016 [32] is a single object benchmark for video object segmentation.
As shown in Table 1, QDMN trained without synthetic dataset still outperforms
most previous methods (91.0 J&F). With synthetic training data, QDMN sur-
passes all existing methods and achieves the performance of 92.0 J&F .
DAVIS 2017 [33] is a multiple objects extension of DAVIS 2016. In the Table 1,
QDMN achieves an average score of 84.6 and 85.6 for training without synthetic
data and with synthetic data, respectively. What’s more, we also test our model
on the challenging DAVIS 2017 testing split set. It achieves the best performance
(81.9) compared to all previous methods.
YouTube-VOS [47] is a large-scale benchmark for video object segmentation.
As shown in Table 2, without synthetic training data, our QDMN also achieves
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Table 1: Comparison with other methods on DAVIS dataset. ‘*’ indicates using
synthetic training dataset [6].

Method
DAVIS2016 DAVIS2017 val DAVIS2017 test-dev

J F J&F J F J&F J F J&F

RANet [44] 86.6 87.6 87.1 63.2 68.2 65.7 53.4 56.2 55.3
FEELVOS [40] 81.1 82.2 81.7 69.1 74.0 71.5 55.2 60.5 57.8
RGMP [28] 81.5 82.0 81.8 64.8 68.6 66.7 51.3 54.4 52.8
DMVOS [45] 88.0 87.5 87.8 - - - - - -
STM [29] 88.7 89.9 89.3 79.2 84.3 81.8 69.3 75.2 72.2
KMN [35] 89.5 91.5 90.5 80.0 85.6 82.8 74.1 80.3 77.2
CFBI [50] 88.3 90.5 89.4 79.1 84.6 81.9 71.1 78.5 74.8
GIEL [11] - - - 80.2 85.3 82.7 72.0 78.3 75.2
SwiftNet [42] 90.5 90.3 90.4 78.3 83.9 81.1 - - -
RMNet [46] 88.9 88.7 88.8 81.0 86.0 83.5 71.9 78.1 75.0
SSTVOS [10] - - - 79.9 85.1 82.5 - - -
LCM [14] 89.9 91.4 90.7 80.5 86.5 83.5 74.4 81.8 78.1
MiVOS [6] 87.8 90.0 88.9 80.5 85.8 83.1 72.6 79.3 76.0
MiVOS* [6] 89.7 92.4 91.0 81.7 87.4 84.5 74.9 82.2 78.6
JOINT [27] - - - 80.8 86.2 83.5 - - -
RPCMVOS [48] 87.1 94.0 90.6 81.3 86.0 83.7 75.8 82.6 79.2
DMN-AOA [22] - - - 81.0 87.0 84.0 74.8 81.7 78.3
HMMN [36] 89.6 92.0 90.8 81.9 87.5 84.7 74.7 82.5 78.6
STCN [7] 90.8 92.5 91.6 82.2 88.6 85.4 72.7 79.6 76.1
AOT-L [51] 89.7 92.3 91.0 80.3 85.7 83.0 75.3 82.3 78.8

QDMN (Ours) 90.2 91.7 91.0 81.8 87.3 84.6 74.2 81.2 77.7
QDMN* (Ours) 90.7 93.2 92.0 82.5 88.6 85.6 78.1 85.4 81.9

state-of-the-art performance (83.0). If we use synthetic data for training, the
overall score of QDMN will be boosted to 83.8.
Qualitative results. The qualitative comparison between baseline and our
QDMN are shown in Fig. 4. We show the performance on two challenging sce-
narios, i.e., occlusion scenes and similar objects. Both STM [29] and MiVOS [6]
have lost targets in the occlusion scene. STM lost targets in the scene with sim-
ilar objects, while MiVOS identified other objects incorrectly. In contrast, our
method can achieve satisfactory performance in challenging scenarios.

5.2 Generic Plugins

To further prove the effectiveness of our proposed QAM, we apply it as a general
plugin to other methods. The results on the DAVIS2017 validation set are shown
in Table 3 (the baseline performance is our re-implementation results). It can be
seen that with QAM, the performance of these methods has been significantly
boosted. Besides, QAM is easy to be deployed on other methods, and we hope
that the QAM would shed light on the studies of related fields that need to
memorize reference information.
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Table 2: Evaluation on YouTube-VOS 2018 val set. Seen and Unseen denote
whether the categories exist in the training set. G is averaged overall score.

Methods
Seen Unseen G

J F J F

STM [29] 79.7 84.2 72.8 80.9 79.4
AFB-URR [23] 78.8 83.1 74.1 82.6 79.6
GCM [21] 72.6 75.6 68.9 75.7 73.2
KMN [35] 81.4 85.6 75.3 83.3 81.4
G-FRTM [30] 68.6 71.3 58.4 64.5 65.7
SwiftNet [42] 77.8 81.8 72.3 79.5 77.8
GIEL [11] 80.7 85.0 75.0 81.9 80.6
SSTVOS [10] 80.9 - 76.6 - 81.8
RMNet [46] 82.1 85.7 75.7 82.4 81.5
LCM [14] 82.2 86.7 75.7 83.4 82.0
MiVOS [6] 80.0 84.6 74.8 82.4 80.4
MiVOS* [6] 81.1 85.6 77.7 86.2 82.6
JOINT [27] 81.5 85.9 78.7 86.5 83.1
HMMN [36] 82.1 87.0 76.8 84.6 82.6
DMN-AOA [22] 82.5 86.9 76.2 84.2 82.5
STCN [7] 81.9 86.5 77.9 85.7 83.0
AOT-L [51] 82.5 87.5 77.9 86.7 83.7

QDMN (Ours) 82.0 86.8 77.5 85.5 83.0
QDMN* (Ours) 82.7 87.5 78.4 86.4 83.8

5.3 Ablation Study

The effectiveness of QAM. To demonstrate the effectiveness of the QAM,
we conduct specific analyses from three dimensions.

(1) Accuracy of the predicted scores. We perform a histogram visual-
ization of the distribution of the ground truth mask IoU and prediction scores
at 0.05 intervals(Fig. 5). When multiple objects are in a frame, the average is
taken. We can see that the quality score and ground truth mask IoU are posi-
tively correlated, which verifies the accuracy of the scores predicted by QAM.

(2) Memory Threshold. We test different memory thresholds σ on DAVIS
2017 test-dev set, and the results are shown in Fig. 6. We can see that it will hurt
the segmentation effect if the threshold is set too high or too low. The reason
is that if the threshold σ is too high, only a few intermediate frames will be
memorized, leading to losing a lot of helpful information; if the σ is too low, the
model may memorize some incorrect noise information. Besides, the performance
is worst when the memory threshold is 0 (at this time, QAM does not filter poor
segmentation masks), which proves the motivation of the QAM is correct.

(3) Applying QAM only at inference stage. To further prove that filter-
ing out inaccurately segmented frames has a beneficial effect on segmentation, we
construct experiments that adding QAM only at the inference stage. Specifically,
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Fig. 4: Visual comparison of QDMN with baseline methods.Each row demon-
strates five frames sampled from a video sequence.

for QAM, we load its parameters trained in QDMN. For other parts, we load the
weights of the initial model (trained without QAM). As shown in Table 4, the
performance of all vanilla models has been improved after adding QAM, which
shows the importance of filtering poorly segmented frames.

Table 4: The effect of adding QAM
only in the inference stage

Methods J&F(σ=0) J&F(σ=0.8)

STM 81.5 82.5↑
KMN 82.6 83.4↑
MiVOS 82.7 83.5↑

Table 5: Ablation study of pro-
posed components.

QAM PEM J F J&F

80.3 85.5 82.9

✓ 81.7 87.1 84.3↑

✓ 81.1 86.1 83.6↑

✓ ✓ 81.8 87.3 84.6↑

Component Analysis. We analyze the effectiveness of our modules in Table 5.
PE represents the prior enhancement strategy introduced to highlight temporal
consistency. As shown in the table, both the QAM and PE bring remarkable
performance improvement.

Dynamic Memory Updating Strategy. Due to the lack of a widely used
large-scale long video dataset in this field, we choose to demonstrate the effec-
tiveness of our proposed memory bank dynamic updating strategy by compress-
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Fig. 5: Distribution of the prediction
score and the ground truth mask IoU.

Fig. 6: The quantitative results of dif-
ferent memory threshold σ.

Fig. 7: The performance for different mem-
ory upper limit.

Methods w / QAM J F J&F

STM [29]
78.8 84.2 81.5

✓ 81.0 86.2 83.6↑

KMN [35]
79.7 85.5 82.6

✓ 81.9 87.4 84.7↑

STCN [7]
81.5 87.7 84.6

✓ 82.5 88.7 85.6↑

Table 3: Applying QAM as general
plugin. w / QAM indicates that
whether the QAM is deployed on
this method.

ing the upper limit of the memory. As shown in Figure 7, The segmentation
effect remains unaffected even at low memory upper limit, and the speed is im-
proved as a result of our memory bank design strategy. The similar phenomenon
is observed on the YouTube-VOS set, which illustrates the effectiveness of our
dynamic updating strategy.

Besides, we also perform analysis on long videos (without annotations). We
find that previous memory network methods store up to about 70 frames and the
memory explosion occurs, which greatly limits the practicability. But QDMN can
handle videos of arbitrary length by setting upper memory limit and dynamically
updating the memory. What’s more, the FPS of previous methods will drop from
14 to about 2 before memory explodes, while the FPS of QDMN will stay around
7 after the initial drop (assuming the upper memory limit is 25).
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Table 6: Ablation study of different
enhancement strategy. “Weak” means
providing weak prior (PE). “Strong”
means providing strong location prior.

Strategy
DAVIS YouTube-VOS

J F J&F J F G
Weak 81.8 87.3 84.6 79.8 86.2 83.0

Strong 82.4 87.9 85.2 77.5 83.8 80.7

Enhancement Strategy. For PE,
we directly concatenate the prior mask
with the deepest layer feature of the
current frame to provide a weak prior.
In contrast, we also try to provide a
strong prior. Specifically, we extract
the feature of the prior mask and fuse
it with the middle layer features of the
current frame. After convolution and
downsampling, the fused features are
added to the deepest layer features of
the current frame. Compared with the
current enhancement strategy, this ap-
proach can significantly enhance the influence of the prior mask. However, al-
though this approach works well in common scenarios, the performance drops
significantly under challenging situations, as shown in Table 6. The reason for
this phenomenon is that the strong prior makes the model overly dependent on
it, which weakens the model’s ability to recognize objects.

Speed Analysis. We also experiment with the impact of the proposed modules
on the inference speed. With our modules, the FPS of baseline has changed from
8.6 to 7.8 on DAVIS2017 val set. The increased running time brought by QAM
and PE is nearly negligible (no more than 10%), mainly because we directly use
the feature extracted by the memory encoder for quality assessment.

6 Conclusion

In this paper, we propose that the design of the memory bank should follow the
principles of accuracy and temporal consistency. To support this, we introduce
a Quality-aware Dynamic Memory Network (QDMN) for semi-supervised video
object segmentation, which selectively memorizes accurately segmented interme-
diate frames as references and emphasizes video temporal consistency. Without
bells and whistles, our QDMN achieves new state-of-the-art performance on the
popular benchmark YouTube-VOS and DAVIS with almost no additional infer-
ence time. Furthermore, the QAM also has a remarkable improvement for other
approaches as a general plugin.
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