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Abstract. Deep learning-based approaches for shape understanding
and processing tasks have attracted considerable attention. Despite the
great progress that has been made, the existing approaches fail to ef-
ficiently capture sophisticated structure information and critical part
features simultaneously, limiting their capability of providing discrimi-
native deep shape features. To address the above issue, we proposed a
novel deep learning framework, Laplacian Mesh Transformer, to extract
the critical structure and geometry features. We introduce a dual at-
tention mechanism, where the 1st level self-attention mechanism is used
to capture the critical partial/local structure and geometric information
on the entire mesh, and the 2nd level is to fuse the geometrical and
structural features together with the learned importance according to
a specific downstream task. More particularly, Laplacian spectral de-
composition is adopted as our basic structure representation given its
ability to describe shape topology (connectivity of triangles). Our ap-
proach builds a hierarchical structure to process shape features from fine
to coarse using the dual attention mechanism, which is stable under the
isometric transformations. It enables an effective feature extraction that
can tackle 3D meshes with complex structure and geometry efficiently in
various shape analysis tasks, such as shape segmentation and classifica-
tion. Extensive experiments on the standard benchmarks show that our
method outperforms state-of-the-art methods.

Keywords: Laplacian EigenVector, Transformer, Attention Mecha-
nism, Topology Aware, Shape Segmentation & Classification

1 Introduction

3D data analysis has been an important topic in computer graphics and com-
puter vision research. Numerous tasks in semantic understanding [28,3], 3D de-
tection [90,10], shape abstraction [69,65] rely on the advanced 3D shape anal-
ysis and understanding technology, especially for the urgent requirements in
autonomous driving, virtual/augmented reality, robotics, and model creation.

https://orcid.org/0000-0002-9836-4798
https://orcid.org/0000-0002-6503-8312
https://orcid.org/0000-0002-8728-8726


2 XJ. Li, J. Yang, and FL. Zhang

As an essential method to represent 3D shapes, polygonal meshes have been
successfully used in the above applications for efficient modeling and rendering
of 3D objects. To make it possible to learn the features of 3D meshes of neural
networks, many large-scale datasets (e.g. ShapeNet [9], ModelNet [79]) are built
and made available to the public. Considering that the polygonal meshes describe
the detailed surfaces (including the geometry and structures) by a set of 2D poly-
gons [6], some voxelized approaches [46,12] extend the 2D deep learning methods
to the 3D domain. However, it suffers from massive computation and memory de-
mands and thus has a limited capacity to cope with high-resolution mesh data.
Other pioneering works focus on learning features from point clouds to per-
form 3D data analysis, such as PointNet [54] and PointNet++ [56]. They have
achieved good performances on segmentation and classification by multi-layer
perceptrons (MLPs) or dynamic graphs [75]. Although point cloud is lightweight
and mitigates the computation cost issue, it lacks topological information com-
pared to the polygonal meshes. Therefore, the prior deep learning-based meth-
ods fail to capture complex structural information and partial features for shape
analysis.

This work focuses on polygonal meshes and develops a novel deep archi-
tecture based on self-attention [70] to learn 3D shape features in a topology-
aware manner. The design of our network is based on two key observations.
Firstly, the eigenvectors obtained from a Laplacian spectral decomposition on
meshes are used to shape analysis [44,41] and indicate some topological infor-
mation(e.g. symmetry), which can be naturally used as a representation of the
topology of 3D meshes. Secondly, the relationships among the elements of the
structural and partial geometric features can well represent the 3D meshes and
their parts in a discriminative way. The self-attention mechanism used in Trans-
former [70,14,13,83] has shown its capability of extracting the relationships
among all the elements of input signals in natural language processing and im-
age analysis [88,58,29], which can be adopted to analyze 3D shapes [89,18,86]
more effectively, especially for 3D meshes [17].

This paper builds a dual attention architecture in a topology-aware fashion,
Laplacian Mesh Transformer, to understand the complex structure and rich geo-
metric information of 3D meshes. Our method takes raw mesh features as input
and produces global features containing effective descriptions of topology and ge-
ometry information. There are two branches (see Figure 1) that simultaneously
learn critical geometric features and structural features from the Euclidean coor-
dinates and Laplacian spectral decomposition, respectively. In both branches, we
extract features of different scales by four self-attentions. Then we apply a final
attention-based fusion module to learn the importance of the topology and geom-
etry information and fuse them to form the final global features when applying
to different downstream tasks. With the help of the dual attention mechanism
and Laplacian spectral decomposition, we build a hierarchical structure from fine
(partial) to coarse (global) to process shape features. Compared to alternative
methods, our approach utilizes both spatial and spectral information by dual
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attention and is able to dynamically determine the contribution of topology and
geometry features during inference for a better shape understanding.

Our network architecture is illustrated in Figure 1. To demonstrate the ap-
titude of our approach to describe mesh features, we build two downstream
networks to perform shape segmentation and classification on the ShapeNet [9]
and COSEG [76] datasets, which are the fundamental shape analysis tasks in
computer vision. Our extensive experiments demonstrate the robustness of our
Laplacian Mesh Transformer to various vertex types and different triangulations
of meshes. Our method achieves remarkable performance in both segmentation
and classification with a lightweight network, and it can also be potentially ap-
plied to other tasks, such as shape retrieval.

The main contributions of our method are as follows:

– We design a dual attention mechanism for learning features on 3D polygonal
meshes, which takes eigenvectors from Laplacian spectral decomposition as
the raw topological description;

– We propose a deep architecture that focuses on sophisticated polygonal
meshes and takes the partial geometric/structural features and their im-
portance into consideration in a fine (partial) to coarse (global) manner;

– We conduct extensive experiments on multiple 3D shape analysis tasks to
demonstrate our superior effectiveness compared to state-of-the-art methods.

2 Related Works

This section briefly reviews learning-based methods in the 3D domain and then
summarizes the popular self-attention-based work, which is helpful for many
applications.
Deep Learning on 3D Domain. With the increased availability of 3D
models and the development of deep learning frameworks, there are vari-
ous approaches to analysis and modeling 3D models, thanks to the mighty
deep learning tools nowadays. For different representations of 3D data, recent
works have been developed for voxels [46,12,55,78], multi-view images of 3D
data [64,34,63], point cloud [54,56,19,39,1], meshes [66,73,32,23,20,82], and im-
plicit functions [52,50,47,11]. Voxels represent values on a regular grid in three-
dimensional space, which are similar to pixels inside of a 2D image. Some oper-
ators of deep learning could be extended and applied to the 3D voxels naturally.
For the multi-view images of 3D data, a shape can be rendered into multiple im-
ages from different views. By applying the traditional 2D image CNNs to these
2D images from different views, the entire model is represented by aggregating
the features of these images. The point cloud is a general representation of any
3D shape, which is easy to capture with portable devices. Many works solve the
following challenges: noisy, sparse, and disordered. Compared to point clouds,
meshes are considered a better representation of concrete geometric shapes and
structures. Nevertheless, it is tough to learn on the meshes given their irreg-
ularity. [32] reconstructs a 3D mesh by the laplacian in an extrinsic/intrinsic
manner, but ours uses the laplacian eigenvectors and attention to help the deep
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networks understand shapes. For the comprehensive and detailed review of deep
learning on 3D data, we refer the readers to these surveys [7,33,2,80].
Self-Attention Mechanism. The self-attention mechanism is widely used in
many natural language processing (NLP) and computer vision tasks. The survey
papers [25,37,67,42] have comprehensive discussion on the attention mechanism.
Bahdanau et al. [4] first adopts the attention mechanism (soft-search) into the
neural machine translation, the attention map is predicted to summarize the
contextual relationships by bidirectional RNN [60]. Lin et al. [43] introduces a
model for learning an interpretable embedding by self-attention. Followed by
this, [70] proposed the transformer and applied it to the machine translation,
which does not depend on the convolution operator, and achieves promising
results by utilizing the global context. Furthermore, the researchers made a great
effort to develop and expand the transformer, such as XLNET [83], a two-way
transformer – BERT [15]. However, in the NLP field, the sentences are sequential
and semantic meaningful, while the vertex on 3D meshes are usually disordered
and have no semantics.

At the same time, self-attention also makes great potential impacts and
receives more and more attention in computer vision (e.g. object detection –
DETR [8]). Wang et al. [72] proposed a residual attention module for image
classification in a stacked manner. Zhang et al. [87] designed a generative model
with self-attention, which enables attention-driven and long-range dependency
modeling for image GAN [22]. Recently, Visual Transformer [77] and Vision
Transformer (ViT) [16] interpret an image as semantic visual tokens and se-
quential patches, respectively, then apply the transformer to the above sequen-
tial data. They all exceed the performance of CNN-based methods on image
processing tasks when the training data is sufficient.

Inspired by the local patch structure used in ViT and the basic semantic
information in language words, we propose a dual attention module based on
self-attention, which can take the geometry and topology into consideration,
capturing the local partial criticism on the 3D meshes and obtaining crucial
semantic information.

3 Methodology

3.1 Overview

Given a 3D polygonal mesh M = (V, E) with |V| vertices and |E| edges, our goal
is to let the network learn a function f : V → R|S| that maps vertex features to
vector space S. For the classification task, |S| could be 1 since the whole shape
has one attribute; For the segmentation task, |S| = |V| because each vertex of
the shape has a attribute. The vertex feature typically contains coordinates, nor-
mal, curvatures, PCA, etc. We aim to design a network that can learn a general
function f , describing the importance of geometric and structural contexts. So
we proposed a dual attention mechanism to learn a reasonable fusion between
geometry and topology to improve the performance according to the global con-
text. Our network takes the coordinates, normal, Laplacian eigenvector of the
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Fig. 1: Our framework for shape analysis. The Laplacian eigenvectors and
vertex coordinates are fed the first level of our dual attention mechanism, where
the two self-attention branches for topology and geometry features have the same
architecture. The second level of attention in the fusing module merges the two
sets of features with learned importance to generate the final global feature for
the whole shape, which can be used to perform some downstream tasks.

vertices of a mesh model as input and predicts the probability matrix with size
|V| × ls for each vertex for shape segmentation and probability score with size
lc for each category on the entire shape for classification. In the following sec-
tions, we briefly revisit the formulation of Laplacian spectral decomposition in
Sec. 3.2. Then, we further present the dual attention mechanism (Sec. 3.3) on ge-
ometry and topology for 3D polygonal meshes, which aims to capture the partial
critical features and the importance of geometry and topology. Lastly, we de-
scribe our entire network architecture (Sec. 3.4) that determines the importance
of geometry and topology and feeds the fused feature to perform classification,
segmentation, or other tasks. Our network considers the shape’s geometry and
topology simultaneously and adjusts their importance by the attention mecha-
nism to achieve adequate shape understanding.

3.2 Laplacian Spectral Decomposition

The Laplacian Spectral Decomposition effectively describes the mesh topology
and geometric properties, i.e. the connectivity of vertex or symmetry. Figure 2
visualizes Laplacian eigenvectors on some 3D meshes. An observation is that
Laplacian eigenvectors are intuitive when visualized for the segmentation task.
Hence, in most cases, if our networks can determine the instances’ segments by
laplacian features, our network can balance the weights by our dual attention
to get more accurate segmentation. We have a discussion about that in subsec-
tion 4.4.

A mesh M = (V, E) with arbitrary vertices and different connectivity can
be regraded as a graph with |V| nodes and |E| relationships. We can adapt the
graph Laplacian matrix on the 3D mesh to capture the topology of vertices.
The Laplacian spectral decomposition depends on the number of vertices and
different triangulation. In practice, the Laplacian matrix is formulated as follows:

L = A−1(D−W) (1)
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whereA ∈ R|V |×|V | is a diagonal matrix that places the weights of each vertex on
the diagonal of the matrix, the weight is defined as the Voronoi area of the one-
ring triangles surrounding each vertex. W ∈ R|V |×|V | = {wi,j} is a cotangent
weighted adjacent matrix that is sparse and a discretization of the continuous
Laplacian on smooth surfaces [48]. wi,j ̸= 0 means that vertices vi and vj are
connected by a edge on meshes, the value describes the cotangent weight [53,48]
wi,j =

1
2 (cotαij+cotβij) of the edge, where αij , βij are the angles opposite of the

mesh edge (vi, vj). D ∈ R|V |×|V | is the degree matrix that is a diagonal matrix

and each diagonal entry di,i =
∑|V |

j=1 wi,j is the sum of each row of the weighted
adjacent matrix A. After that, we calculate the eigenvector x of the Laplacian
matrix L: det(Lx − λI) = 0 according to [61]. We sort the absolute values of
all the eigenvalues in an ascending order. In our paper, We use the eigenvectors
corresponding to the first 12 eigenvalues as the descriptors of the topology of 3D
meshes. In Sec. 4.4, we evaluate the performance when using different numbers
of eigenvectors.

(a) Vases (b) Chairs

Fig. 2: Laplacian eigenvector visu-
alization. For the two examples from
COSEG, we only visualize the first three
eigenvectors of Laplacian spectral de-
composition in different columns. From
the top row to the bottom row, we show
the eigeowvectors for the meshes with
2000, 3500, and 5000 vertices.

In Figure 2, we illustrate some
visualized Laplacian eigenvectors on
different meshes. We visualize the
Laplacian eigenvectors on the meshes
with different vertex numbers for each
example. From the results, we can
see that the Laplacian eigenvectors
are robust to different discretizations
when the meshes can be discretized
into reasonable sets of triangles, which
is suitable for revealing the topology
of meshes.

3.3 Dual Attention

Given a polygonal mesh M, we use
the above formulation to encode the
topology ft ∈ R|V |×12 of that mesh in the vertex feature. We also encode the
shape geometry fg ∈ R|V |×3 of 3D meshes represented by the vertex coordinates
into the vertex feature. Now that each mesh can be represented as the vertex
feature set {ft, fg}, which is defined on the vertex set V of mesh M. Turning
the 3D mesh graph into a vertex-wise feature set prevents using complex graph
structures when training the network. Besides, the vertex-wise feature fits the
self-attention operator [70], which is permutation-invariant and independent of
the connection between vertices.

The structure of our dual attention is illustrated in Figure 1. There are
two attention modules: one is the self-attention (adopted from PCT [24]) with
two branches, another is the fusion attention which learns the importance of
geometry and topology adaptive according to the global context. The features
are firstly fed to the self-attention encoder Encg for encoding the geometry
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feature fg and the other self-attention encoder Enct for encoding the topology
feature ft. The two encoders Encg, Enct have a similar structure. For the encoder
Enct = {encemb, encsa, enccat, encslp} in the topology branch, it contains one
embedding module encemb, four self-attention operators {encsai , i = 1, 2, 3, 4},
and one feature concatenation block enccat. At the end of the encoder, the feature
map goes through a single layer of perceptrons encslp to generate the final feature
f ′
t for topology. We formulate the above process as:

ft = encemb(ft), f
1
t = encsa1 (ft)

f i
t = encsai (f i−1

t ), i = 2, 3, 4

ft = enccat(f1
t , f

2
t , f

3
t , f

4
t ), f ′

t = encslp(ft)

(2)

where encemb consists of two FC layers with batch-normalization and ReLU
activation, which embeds the features into a 128-dimensional embedding space.
encsa is a standard self-attention module, and its architecture is presented in Fig-
ure 1. enccat performs the concatenation of multiple feature maps. Finally, for the
topology branch, the network Enct maps the Laplacian eigenvector ft ∈ R|V |×12

into the feature space f ′
t ∈ R128. The geometry branch perform the same process,

Encg takes the coordinates fg ∈ R|V |×3 as input and generates the geometry
feature f ′

g ∈ R128. The two branches do not share weights.

Furthermore, we proposed an attention-based fusion module encfus to merge
two features f ′

t , f
′
g with an attention mask adaptively. The module learns to ad-

just the attention mask for achieving better performance for the given shape
analysis tasks. It takes the generated features f ′

t , f
′
g as inputs and predicts the

attention weights wt, wg for the feature fusion. The weights wg and wt are pre-
dicted by three FC layers and batch-norm layers. For the final output, we use
the exponential function exp(·) to ensure the weights are non-negative. Namely,
the final output f is:

(wt, wg) = encfus(f ′
t , f

′
g)

f = wtf
′
t + wgf

′
g

(3)

where wt, wg are learnable weights and wt + wg = 1. wt and wg describe their
contribution to the global feature f . In the end, the attention-based fusion mod-
ule learns to determine the importance of geometry and topology according to
the global context.

3.4 Network Architecture

We build deep network models based on our proposed dual attention module to
perform shape analysis tasks. The overall pipeline is illustrated in Figure 3.

For any mesh M, we can obtain its geometry feature fg and topology feature
ft by the coordinates and Laplacian spectral decomposition. Then, we can obtain
the global feature f that fuses the geometry feature fg and topology feature ft
according to their learned importance by our proposed dual attention. Since



8 XJ. Li, J. Yang, and FL. Zhang

dual attention can understand more critical factors for shape understanding, it
gives a reasonable criticism during inference, conforming to human intuition.
We can then feed the global shape feature f to downstream network modules for
shape analysis tasks. Particularly, we implement segmentation and classification
networks to demonstrate the effectiveness of our approach.
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Fig. 3:Architecture of segmentation
and classification networks. The seg-
mentation network (bottom) first pro-
cesses the fused global feature and
the vector of labels. Then the pro-
cessed global feature is duplicated, goes
through average and max pooling, re-
spectively, and is then concatenated
with category features. Two embedding
modules take the concatenated features
to predict vertex-wise labels. In the clas-
sification network (top), the fused global
features go through three MLPs, then a
softmax operation is adopted to predict
the probability.

Segmentation: Part segmentation
predicts a vertex-wise function that
can map the vertex features to seman-
tic labels for each vertex, i.e. segment
the whole shape into some meaningful
semantic parts (e.g. arm, chair back,
etc.). For learning the 3D shape in
a cross-category manner, we simulta-
neously feed the category information
as a one-hot vector and fused global
feature to the segmentation network
as shown in Figure 3, which com-
prises five MLPs, each including a lin-
ear layer, a batch-norm layer, and an
activation (ReLU/LeakyReLU). Nev-
ertheless, for the final output, we use
sigmoid(·) as activation to predict the
probabilities (∈ R|V |×k) of all seman-
tic labels for each vertex. Note that
we add one dropout layer for avoid-
ing overfitting, k is the number of
part semantics. Finally, the probabili-
ties are turned to a semantic label by
an argmax function.
Classification: This task aims to predict the probability of belonging to one
semantic category for a given shape, which maps the input features to one se-
mantic label for the whole mesh, such as chairs, tables, etc. Most parts of the
classification network are the same as the segmentation network, but it predicts
only one probability vector (∈ Rk) for the whole shape, where k is the number
of categories.

4 Experiments & Evaluations

Laplacian Mesh Transformer is a general method for applying self-attention on
triangular meshes to exploit shape features, enabling various applications, such
as segmentation, classification, and shape retrieval. In this section, we present
extensive quantitative and qualitative experiments on our shape classification
and segmentation networks to evaluate the efficiency of the extracted features
by Laplacian Mesh Transformer. We test our method and the existing deep
models on three popular large scale datasets (i.e. ShapeNet [9], ModelNet [79],
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COSEG [84]). We also perform ablation studies to demonstrate the effectiveness
of our key components. The experiments were conducted on a computer with an
i9-9900K CPU and an RTX 2080Ti GPU.

4.1 Implementation Details

We primarily use the above large datasets for our experiments. ShapeNet pro-
vides 16 categories with semantic part labels, and ModelNet contains 40 cate-
gories of CADmodels without any semantic part labels. COSEG dataset contains
models segmented and labeled over 11 categories. For COSEG, we use the three
largest and most commonly used categories, i.e. Vase, Chairs, and Tele-aliens.
We follow the official splits of training and test set for all the above datasets.
Due to the non-manifold nature of raw 3D data, we must ensure the shape is
a manifold for the Laplacian spectral decomposition. Therefore, we follow the
manifold algorithm [31] to preprocess the raw data and simplify [26] these water-
tight meshes to roughly the same number (2048) of vertices. Note that we have
demonstrated that our network is independent of the number of vertices. The
input features include coordinates (3) and Laplacian eigenvectors (12) for two
branches. The 12-d Laplacian eigenvectors are the absolute Laplacian eigenvec-
tors corresponding to the 12 lowest frequencies. For all the shapes, we scale them
into a unit sphere. According to the evaluation (see Table 4), we achieve the best
performance using four attention blocks and 12-d Laplacian eigenvectors.

Methods Input Type MN10 MN40 SN

PointNet [54] Point - 89.2 -
PointNet++ [56] Point - 91.9 -
SO-Nett [40] Point 95.7 93.4 -
PCT [24] Point - 93.2 -

3DShapeNets [79] Volume 83.5 77.0 -
VoxNet [46] Volume 91.0 84.5 -

ACNN [5] Mesh - - 93.9
SyncSpecCNN [85] Mesh - - 99.7

SPH [36] Mesh - 68.2 -
LaplacianNet [57] Mesh 97.4 94.2 99.8

Ours Mesh 98.6 95.5 99.4

Table 1: Comparison on shape clas-
sification of ModelNet10(MN10), Mod-
elNet40(MN40), and ShapeNet(SN). All
the alternative methods are classified
into three clusters according to the input
type. Note that ‘-’ indicates the number
is not reported.

We train the dual attention and
downstream networks simultaneously.
Our network is trained for 1000
epochs using the Adam solver [38]
with a learning rate starting from
5e-4 and decaying every 100 epochs
with a decay rate of 0.8. The train-
able parameters are initialized ran-
domly with Gaussian distribution.
We implemented our network in Py-
Torch [51]. The backbone network
of self-attention is borrowed from
PCT [24]. Most linear layers are com-
posed of MLPs with ReLU activation.
Empirically, our network converges in
one day with a batch size of 32.

4.2 Shape Classification

We compare our shape classification network with state-of-the-art methods quan-
titatively. We evaluate all the methods on three datasets, ShapeNet (16 cate-
gories), ModelNet40 (40 categories), and ModelNet10 (10 categories), which are
all widely used benchmarks for 3D shape classification. The output of our clas-
sification network is a probability score vector over all categories. We optimize
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the network by minimizing the cross-entropy loss between the ground truth one-
hot vector and the probability logits. We observe that our method successfully
beats all the other methods on the ModelNet Benchmark, including point-based
methods [54,56,40,24], volume-based methods [46,79], and mesh-based meth-
ods [5,85,36,57]. Meanwhile, our method achievess comparable performance on
the ShapeNet compared to SyncSpecCNN and LaplacianNet. The results are
shown in Table 1, we report the overall accuracy across all categories. The
mean overall accuracy on three large datasets is 97.9%, which outperforms the
attention-based models such as PCT [24] and strong mesh-based models such
as [57]. Note that our method only takes the 3-d coordinates and 12-d Laplacian
eigenvectors as input, more inputs features (e.g. normal) could further improve
the performance of our network. Please refer to our supplementary for more
evaluations.

4.3 Shape Segmentation

Fig. 4: Part segmentation results.
We examples from different categories
of ShapeNet. Note that the performance
on Motor is lower than most other cat-
egories as in Table 2, due to its more
complex topology and the larger num-
ber of mechanical parts.

Mesh segmentation is a critical and
challenging task supporting methods
for shape understanding and syn-
thesis. Here, we evaluate our dual-
attention mechanism on ShapeNet [9]
and COSEG [84] datasets for part
segmentation, which aims to divide
a mesh into meaningful parts. Our
network architecture for part segmen-
tation is illustrated in Figure 3. In
ShapeNet, we train our network in the
cross-categories setup where there are
16 categories and 50 different parts in
total. Compared to ShapeNet, some
of the categories in COSEG con-
tain fewer data, bringing difficulties
to deep learning methods. The three
large categories of COSEG are: Vase, Chair, Tele-Alines, which contain 200,
300, 400 shapes, respectively. Moreover, its ground truth labels are anno-
tated on point clouds sampled from the meshes. Since we need the Lapla-
cian eigenvectors on the manifold meshes with graph structure in our input,
we turn the raw meshes to manifold meshes [31] and transfer the labels on
the point cloud to the nearest mesh vertices in the data preparation stage.
More evaluations are presented in supplementary. The input features include
three parts: coordinates (3), Laplacian eigenvectors (12), and the category la-
bel (one-hot vector). Our network generates vertex-level semantic probabil-
ities on the input meshes. The cross-entropy loss is used to supervise the
output of the network according to ground truth one-hot vectors. Following
previous works, we evaluate the performance of each method by the widely
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Method Mean Airplane Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motorbike Mug Pistol Rocket Skateboard Table

A
cc

u
ra

cy
Shapeboost [35] 77.2 85.8 93.1 85.9 79.5 70.1 81.4 89.0 81.2 71.1 86.1 77.2 94.9 88.2 79.2 91.0 74.5
Guo et al. [27] 77.6 87.4 91.0 85.7 80.1 66.8 79.8 89.9 77.1 71.6 82.7 80.1 95.1 84.1 76.9 89.6 77.8

ShapePFCN [34] 85.7 90.3 94.6 94.5 90.2 82.9 84.9 91.8 82.8 78.0 95.3 87.0 96.0 91.5 81.6 91.9 84.8
LaplacianNet [57] 91.5 89.6 90.2 88.2 88.2 83.2 82.3 95.6 88.7 87.4 96.3 70.6 97.0 92.7 82.2 94.7 92.6

Ours 92.6 90.7 96.5 95.0 89.1 92.7 93.2 96.9 93.5 90.3 97.1 85.7 98.6 94.5 82.5 92.5 92.6

Io
U

FeaStNet [71] 81.5 79.3 74.2 69.9 71.7 87.5 64.2 90.0 80.1 78.7 94.7 62.4 91.8 78.3 48.1 71.6 79.6
ACNN [5] 79.6 76.4 72.9 70.8 72.7 86.1 71.1 87.8 82.0 77.4 95.5 45.7 89.5 77.4 49.2 82.1 76.7

VoxelCNN [85] 79.4 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.5 58.7 91.8 76.4 51.2 65.3 77.1
Yi et al. [85] 84.7 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 62.1 82.9 82.1

LaplacianNet [57] 84.3 82.9 83.4 81.7 80.0 75.4 71.8 91.9 81.0 80.9 92.5 59.2 93.5 86.3 74.3 90.3 86.4

Ours 83.7 83.2 92.1 87.2 71.0 91.2 80.6 91.3 86.9 81.9 93.4 60.6 94.6 87.3 63.9 85.6 88.4

Table 2: Comparison with different shape segmentation methods on
ShapeNet. Based on the output of different methods, we compare our method
with the others using accuracy and/or IoU. Ours outperforms SOTA algorithms
in 13/16 categories on the accuracy metric.

used accuracy and IoU (Intersection-over-Union). We compare our method
with the state-of-the-art shape segmentation methods [35,27,34,57,71,5,85].

Methods Vases Chairs Tele-aliens Mean

MeshCNN [26] 85.2 92.8 94.4 90.8
PD-MeshNet [49] 81.6 90.0 89.0 86.8
SubdivNet [30] 96.7 96.7 97.3 96.9
Xie et al. [81] 87.1 85.9 83.2 85.4

Wang et al. [74] 95.9 91.2 90.7 92.6
LaplacianNet [57] 94.2 92.2 93.9 93.4

Ours 98.1 97.7 97.4 97.7

Table 3: Mesh segmentation ac-
curacy on COSEG [76] of each
method. Our method achieves the
best performance.

In Table 2, we report the accuracy
and IoU scores over ShapeNet of all the
methods, which demonstrates that our
method achieves the best performance
on the average scores. For the accuracy
and IoU on each category, our method
outperforms the prior methods on 13
and 9 categories, respectively. Table 3
presents the accuracy score on COSEG
dataset. We follow the SubdivNet for
spliting training and testing sets for each
category. In this table, we compare with
some mesh-based segmentation methods [26,49,81,74,57]. We can observe that
our method beats all the alternative methods on three datasets and achieves
97.7% on the average accuracy. For the Tele-alines dataset, we outperform Sub-
divNet [30] by a small margin. Figure 4 shows some examples of the shape
segmentation task on ShapeNet (16 categories).

4.4 Ablation Studies

We perform five sets of ablation studies to demonstrate the necessity and effec-
tiveness of our key designs. We first evaluate the dual attention and Laplacian
features by checking the performance on the shape segmentation.Then, we vali-
date the choice of the number of Laplacian eigenvectors and self-attention blocks.
Finally, we demonstrate that our Laplacian mesh transformer is robust to various
triangulation and different numbers of vertices. Table 4 shows all the ablation
studies quantitatively on the COSEG dataset for the part segmentation.
With v.s. Without dual attention (DA). Our critical designs, dual
attention, discriminates the importance of topology and geometry of the
input shape for the specific task. Here, we aim to demonstrate the im-
portance of using the two-stage attention for shape analysis quantita-
tively and qualitatively, including self-attention based topology/geometry
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feature extractor and attention-based fusion (FA) module. We built and
trained two ablated networks: The first one (denoted as Ours-w/o DA)
only has one attention-based feature extractor and no fusing module.

Methods Vases Chairs Tele-aliens Mean

Ours (#LEV 6) 95.3 96.2 90.0 93.8
Ours (#LEV 18) 95.9 96.6 96.7 96.4

Ours (#SA 2) 95.2 95.2 95.8 95.4
Ours (#SA 3) 97.6 97.0 96.1 96.9
Ours (#SA 5) 95.4 97.8 96.9 96.7

Ours (#V 2000) 97.9 97.5 97.3 97.5
Ours (#V 3500) 97.2 97.0 97.4 97.2
Ours (#V 5000) 97.9 97.1 97.2 97.4
Ours (Remesh) 98.0 97.7 97.1 97.6

Ours (w/o LEV) 95.5 95.7 88.0 93.1
Ours (w/o DA) 95.1 93.3 88.4 92.2
Ours (w/o FA) 95.4 96.2 89.3 93.6

Ours full-version
(#SA 4, #LEV 12)

98.1 97.7 97.4 97.7

Table 4: Ablation studies. We evalu-
ate the architectures without Dual At-
tention (DA), Fused Attention (FA),
and test different numbers of Lapla-
cian Eigenvectors (LEV), Self-Attention
(SA) blocks, and different triangula-
tions.

We directly feed the concatenation of
coordinates (3) and Laplacian eigen-
vectors (12) to the feature extractor
and use the processed feature in the
following segmentation network. The
second ablated version (denoted as
Ours-w/o FA) adopts the original two
branches to process topological and
geometric inputs separately and re-
places the fusing module with a simple
concatenation operation. Then, the
concatenated features are fed to the
following segmentation network. Ta-
ble 4 reports their performance on
part segmentation. The quantitative
results demonstrate that the dual at-
tention mechanism brings a large im-
provement.

For our dual attention, we aim
to learn the importance in a self-
supervised fashion and use the impor-
tant feature to determine more accu-
rately. Figure 5 illustrates some segmentation results using our full network,
where we also visualize the learned importance of the topology and geometry
of different shapes, which contributes significantly to the better segmentation
results of our method. The results and the visualization (Figure 5) demonstrate
that our model can simultaneously learn the structural information and critical
features without any supervision. Some amount of supervision could be good
guidance for training the network, but the data is hard to annotate and very
time-consuming. Moreover, how to balance the importance of each task in multi-
task learning is very difficult to supervise.

With v.s. Without Laplacian Eigenvectors (LEV). In this experiment,
we tested a network where all the Laplcian EigenVectors are replaced by the
vertex coordinates (3) in the upper branch. In Table 4, we see that removing
the Laplacian eigenvectors gives worse performance than our full model, which
shows the critical role of the Laplacian eigenvectors for representing the shape
topology.

Number of LEVs and Self-Attention (SA) blocks. We tested different
numbers of LEVs (4, 6, 18) and SA blocks (2, 3, 5) used in our network on part
segmentation. The results in Table 4 show that the combination of 4 SAs and
12 LEVs achieves the best performance. Therefore, we set the default number
of LEVs and SA blocks to 12 and 4, respectively. From the results, we find that
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more LEVs can result in more noises for the input features, and fewer LEVs
are not sufficient to represent meaningful topological information. Besides, the
network’s performance reaches saturation as the number of SA increases.

Topology Geometry Fused

HighLow

LowHigh

LowHigh

LowHigh

Segmentation

query point

Fig. 5: Importance visualization. We
visualize the attention maps from the self-
attention (geometry & topology) and fused
attention modules. For each shape, we
show the three vertex-wise attention maps
for two different query points in a row
vertex-wise attention maps. We can ob-
serve that our dual attention is able to de-
termine which is more important on the
specific task, e.g. part segmentation. Blue
to yellow means increasing weights.

Different Triangulation and
Vertex Numbers. To demon-
strate that our network is inde-
pendent of triangulation and ver-
tex numbers, we conducted exper-
iments on processed meshes with
different triangulation and various
vertex numbers. We first subdi-
vide [45] the meshes and simplify or
sample [21,68] them to 2000, 3500,
and 5000 vertices to train the mod-
els Ours-#V 2000, Ours-#V 3500,
and Ours-# 5000 respectively. We
use a mixture of two categories for
training and the third for testing.
The official splits of training and
test data are applied to the three
datasets. As shown in Table 4, the
above models achieve similar per-
formance as our original model.

Moreover, we re-mesh [59] the
data of COSEG and simplify them
to around 2048 vertices. Figure 2
shows that LEV is independent of
the connectivity of triangles since
it is induced from the geodesic dis-
tance and invariant under the isometric transformation, so that our method can
resist the instability of different discretizations. Table 4 reports the quantita-
tive evaluation result. The performance on the re-meshed datasets is close to the
original performance of our complete network.

4.5 Limitations & Failure Cases

Our approach is limited by the geometric properties of 3D meshes. Although
there are many available mesh datasets, the meshes are non-manifold and
have complex topological structures, which could lead to problematic/non-
robust Laplacian spectral decomposition results. For example, most meshes from
ShapeNet [9] are created by artists who do not consider geometric proper-
ties. Hence, all the meshes need a pre-process to be manifold to achieve suc-
cessful decomposition and have to be simplified to a specific number of ver-
tices before feeding into networks. We also show several representative failure
cases as shown in Figure 6: In Figure 6 (a), our method failed to cope with
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(a) (b) (c) (d)

Fig. 6: Failure Cases. The first row is
groundtruth and the second row is seg-
mented by our method.

tiny parts and recognized them as the
noises of the main body of the rocket.
In Figure 6 (b), for a car with no
roof, our network expects a complete
topology structure and recognizes the
top of the window as the roof. The
lack of training data on certain parts
may cause a failure of our network,
like in Figure 6 (c), where the engines
are recognized as a tail. Figure 6 (d)
shows a failure example caused by our
simplification step. We use the quadratic edge collapse method [21] to simplify
the meshes, which generates sparse vertices on flat surfaces, such as the keyboard
part of the laptop here. Although only the label of one vertex is mispredicted,
it still produces apparent artifacts.

5 Conclusions & Future Works

In this paper, we present a novel shape analysis framework, Laplacian Mesh
Transformer, which efficiently utilizes the shape topology and geometry informa-
tion in deep feature extraction for polygonal meshes. More particularly, inspired
by the recent advances of Transformer-based models in natural language pro-
cessing and 2D image analysis, we propose the dual attention mechanism that
achieves higher performance than prior works. In its two-stage process, we first
explore the relationships between the elements of geometry features and topology
features extracted by Laplacian spectral decomposition and then adopt a fusing
attention module to merge the features effectively. Such a hierarchical structure
to process features from fine to coarse can tackle 3D meshes with complex struc-
ture and geometry, benefiting shape analysis tasks. An avenue for future research
is to apply the proposed learning framework to other potential tasks, such as
shape retrieval or generative modeling. Another direction of future work is to
design a transformer operator on irregular meshes, like the 2D CNN kernels in
images. Furthermore, we hope to integrate the Laplacian spectral decomposition
into our network architecture in an end-to-end manner, enabling the network to
take raw non-manifold mesh data with arbitrary connectivities and vertex num-
bers as input, e.g. [62]. If the meshes have a large number of vertices, segmenting
the meshes into patches would be a good solution to extend our scalability. For
unstructured data such as point clouds, we can extend our work by construct-
ing graphs based on proximity (as done by SyncSpecCN [85]) and using graph
Laplacian, such as the raw LiDAR data for autonomous driving.
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registration in the time of transformers. Advances in Neural Information Processing
Systems 34, 5731–5744 (2021)

69. Tulsiani, S., Su, H., Guibas, L.J., Efros, A.A., Malik, J.: Learning shape abstrac-
tions by assembling volumetric primitives. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2635–2643 (2017)

70. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
 L., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

71. Verma, N., Boyer, E., Verbeek, J.: Feastnet: Feature-steered graph convolutions
for 3d shape analysis. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 2598–2606 (2018)



Laplacian Mesh Transformer 19

72. Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., Tang, X.:
Residual attention network for image classification. In: IEEE Conference on Com-
puter Vision and Pattern Recognition. pp. 6450–6458. IEEE Computer Society
(2017). https://doi.org/10.1109/CVPR.2017.683, https://doi.org/10.1109/CVPR.
2017.683

73. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: Generat-
ing 3D mesh models from single RGB images. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 52–67 (2018)

74. Wang, P., Gan, Y., Shui, P., Yu, F., Zhang, Y., Chen, S., Sun, Z.: 3d shape segmen-
tation via shape fully convolutional networks. Computers & Graphics 76, 182–192
(2018)

75. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic
graph cnn for learning on point clouds. Acm Transactions On Graphics (tog) 38(5),
1–12 (2019)

76. Wang, Y., Asafi, S., Van Kaick, O., Zhang, H., Cohen-Or, D., Chen, B.: Active
co-analysis of a set of shapes. ACM Transactions on Graphics (TOG) 31(6), 1–10
(2012)

77. Wu, B., Xu, C., Dai, X., Wan, A., Zhang, P., Tomizuka, M., Keutzer, K., Vajda,
P.: Visual transformers: Token-based image representation and processing for com-
puter vision. CoRR abs/2006.03677 (2020), https://arxiv.org/abs/2006.03677

78. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a prob-
abilistic latent space of object shapes via 3d generative-adversarial modeling. In:
Proceedings of the 30th International Conference on Neural Information Processing
Systems. pp. 82–90 (2016)

79. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A
deep representation for volumetric shapes. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. pp. 1912–1920 (2015)

80. Xiao, Y.P., Lai, Y.K., Zhang, F.L., Li, C., Gao, L.: A survey on deep geometry
learning: From a representation perspective. Computational Visual Media 6(2),
113–133 (2020)

81. Xie, Z., Xu, K., Liu, L., Xiong, Y.: 3d shape segmentation and labeling via extreme
learning machine. In: Computer graphics forum. vol. 33, pp. 85–95. Wiley Online
Library (2014)

82. Yang, J., Mo, K., Lai, Y.K., Guibas, L.J., Gao, L.: Dsg-net: Learning disentangled
structure and geometry for 3d shape generation. arXiv preprint arXiv:2008.05440
3, 3 (2020)

83. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: Xlnet:
Generalized autoregressive pretraining for language understanding. Advances in
neural information processing systems 32 (2019)

84. Yi, L., Kim, V.G., Ceylan, D., Shen, I.C., Yan, M., Su, H., Lu, C., Huang, Q.,
Sheffer, A., Guibas, L.: A scalable active framework for region annotation in 3d
shape collections. ACM Transactions on Graphics (ToG) 35(6), 1–12 (2016)

85. Yi, L., Su, H., Guo, X., Guibas, L.J.: Syncspeccnn: Synchronized spectral cnn
for 3d shape segmentation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 2282–2290 (2017)

86. Yu, X., Rao, Y., Wang, Z., Liu, Z., Lu, J., Zhou, J.: Pointr: Diverse point cloud
completion with geometry-aware transformers. In: Proceedings of the IEEE/CVF
international conference on computer vision. pp. 12498–12507 (2021)

87. Zhang, H., Goodfellow, I.J., Metaxas, D.N., Odena, A.: Self-attention genera-
tive adversarial networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Interna-

https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/CVPR.2017.683
https://doi.org/10.1109/CVPR.2017.683
https://arxiv.org/abs/2006.03677


20 XJ. Li, J. Yang, and FL. Zhang

tional Conference on Machine Learning. Proceedings of Machine Learning Re-
search, vol. 97, pp. 7354–7363. PMLR (2019), http://proceedings.mlr.press/v97/
zhang19d.html

88. Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition. pp. 10076–10085 (2020)

89. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. pp. 16259–
16268 (2021)

90. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object
detection. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 4490–4499 (2018)

http://proceedings.mlr.press/v97/zhang19d.html
http://proceedings.mlr.press/v97/zhang19d.html

	Laplacian Mesh Transformer:Dual Attention and Topology Aware Network for 3D Mesh Classification and Segmentation

