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Abstract. This paper studies semi-supervised video object segmenta-
tion through boosting intra-frame interaction. Recent memory network-
based methods focus on exploiting inter-frame temporal reference while
paying little attention to intra-frame spatial dependency. Specifically,
these segmentation model tends to be susceptible to interference from
unrelated nontarget objects in a certain frame. To this end, we propose
Global Spectral Filter Memory network (GSFM), which improves intra-
frame interaction through learning long-term spatial dependencies in the
spectral domain. The key components of GSFM is 2D (inverse) discrete
Fourier transform for spatial information mixing. Besides, we empirically
find low frequency feature should be enhanced in encoder (backbone)
while high frequency for decoder (segmentation head). We attribute this
to semantic information extracting role for encoder and fine-grained de-
tails highlighting role for decoder. Thus, Low (High) Frequency Module
is proposed to fit this circumstance. Extensive experiments on the pop-
ular DAVIS and YouTube-VOS benchmarks demonstrate that GSFM
noticeably outperforms the baseline method and achieves state-of-the-
art performance. Besides, extensive analysis shows that the proposed
modules are reasonable and of great generalization ability. Our source
code is available at https://github.com/workforai/GSFM.
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1 Introduction

Video Object Segmentation (VOS) [36,37,60,65] aims at identifying and seg-
menting objects in videos. It is one of the most challenging tasks in computer
vision with many potential applications, including interactive video editing, aug-
mented reality [32], and autonomous driving [73]. In this paper, we focus on the
semi-supervised setting where target objects are defined by the given masks of
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(a) Query pixel in current frame (b) Matched pixels (STCN) (c) Matched pixels (Ours)

Fig. 1: Illustration of the disadvantages of lacking semantic global information.
The highlight red pixels in the first column are target pixels. The second column
shows that previous method [6] would incorrectly match similar pixels of other
objects. In the third column, our model relieves the confusion problem by en-
hancing low-frequency components and updating features from spectral domain.

the first frame. It is crucial for semi-supervised VOS to fully utilize the available
reference information to distinguish targets from background objects.

Since the critical problem of this task lies in how to make full use of the
spatial-temporal dependency to recognize the targets, matching-based methods,
which perform pixel-level matching with historical reference frames, have re-
ceived tremendous attention. The Space-Time Memory Network [34] memorizes
intermediate frames with segmentation masks as references and performs pixel-
level matching between them with the current frame to segment target objects
in a bottom-up manner, which has been proved effective and has served as the
current mainstream framework. Some works [39,23,5,15,58,40,50,6,61,45,25,58]
further develop STM and have achieved excellent performance.

Although these methods have made great progress in the field of VOS, they
pay little attention to excavating intra-frame dependency and only utilize local
representation for matching and prediction due to the inductive bias of con-
volution. Lacking global dependency would cause low efficacy in distinguishing
similar pixels, e.g., pixels of similar color or objects of the same category. We take
the typical method STCN [6] for illustration. In Fig. 1 (b), some pixels belonging
to background objects are mismatched with the target pixel due to their simi-
lar local features. Ignoring long-range dependency for matching would lead to a
high risk of interference from other objects. Since the matching-based approaches
rely on the matching process to identify the targets, incorrectly matched pixels
would negatively affect the final segmentation and even lead to error accumula-
tion. Therefore, it is necessary to excavate the intra-frame spatial dependency
to enhance the representation of features.

According to the Fourier theory [19], FFT function generates outputs based
on pixels from all spatial locations when processing input feature. Thus, the spec-
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tral domain representation contains rich global information. Inspired by this, we
introduce a Global Spectral Filter Memory network (GSFM), which fuses global
dependency from spectral domain and distinguishes the high-frequency and low-
frequency components for targeted enhancement. In GSFM, we propose the Low
Frequency Module (LFM) and High Frequency Module (HFM) to enhance dif-
ferent representation according to the characteristics of the encoder-decoder net-
work structure.

The role of encoder is to extract deep features for subsequent modules, and
the encoded features need to contain rich semantic information. Intuitively, low-
frequency components correspond to high-level semantic information while ignor-
ing details. Some theoretical researches on CNN from spectral domain [63,51,69]
also point out similar observations. Inspired by the above analysis, we propose a
Low-Frequency Module (LFM) for the encoding process to update the features
in the spectral domain and emphasize their low-frequency components. Fig. 1
(c) illustrates that with LFM enhancing global semantic information, the dis-
tinguishability of similar pixels is greatly improved. Extensive experiments also
demonstrate the rationality of emphasizing low-frequency in the encoder.

Different from encoding, features in the decoding process need to contain
more fine-grained information for accurate prediction. And high-frequency com-
ponents correspond to the image parts that change drastically, e.g., object bound-
aries and texture details. Combined with the above analysis, we believe that
focusing on high-frequency components would help to rich the fine-grained rep-
resentation of features and make more accurate predictions of boundaries or
ambiguous regions. Therefore, we introduce a High-Frequency Module (HFM)
in the decoding process, which enhances the high-frequency components of fea-
tures to better capture detailed information. Besides, to take full advantage of
HFM, we combine it with an additional boundary prediction branch to provide
better localization and shape guidance.

Experiments show that the proposed model noticeably outperforms the base-
line method and achieves state-of-the-art performance on DAVIS [36,37] and
YouTube-VOS [60] datasets. The contribution of this paper can be summarized
as follows. Firstly, we propose to leverage the spectral domain to enhance the
global spatial dependency of features for semi-supervised VOS. Secondly, con-
sidering the differences between the process of encoding and decoding, we pro-
pose LFM and HFM to perform targeted enhancement, respectively. Thirdly,
we combine object boundaries and high-frequency to provide better localization
and shape information while keeping the decoding features are fine-grained.

2 Related Work

Semi-supervised video object segmentation. Since the masks for the first
frame are given, early methods [3,48,29,49,56] take the strategy that online fine-
tune the network according to the object mask of the first frame, which suffers
from slow inference speed. Propagation-based methods [46,8,7,62,16,1,18,21,13]
forward propagate the segmentation masks as a reference to the next frame,
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and they are difficult to handle complicated scenarios. Some other researchers
have decoupled VOS into three independent subtasks of detection, tracking, and
segmentation [28,22,17,44]. Although this approach balances running time and
accuracy, it is extremely dependent on the performance of the detectors and
makes the entire pipeline complex.

In recent years matching-based methods have received great attention for ex-
cellent performance and robustness. FEELVOS [47], CFBI [66] and CFBI+ [68]
perform global and local matching with the first frame and the previous adjacent
frame, respectively. AOT [67] associates multiple target objects into the same em-
bedding space by employing an identification mechanism. STM [34] leverages the
memory network to memorize intermediate frames as references, which has been
proved effective and has served as the current mainstream framework. Based
on STM, KMN [39] and RMNet [58] perform local-to-local matching by using
the Gaussian kernel and hard crop strategy. SwiftNet [50] and AFB-URR [25]
reduce memory redundancy by calculating the similarity between query and
memory. LCM [15] and SCM [72] proposes spatial constraint to enhance spatial
location information. EGMN [27] employs an episodic memory network to mem-
orize frames as nodes and capture cross-frame correlations by edges. MiVOS [5]
further developed KMN [39] by utilizing the top-k strategy to reduce noise in-
formation in the memory read block. STCN [6] improves the feature extraction
and performs more reasonable matching by decoupling the image and masks.

Despite the great performance achieved by these methods, they ignore the
importance of fully excavating the intra-frame global information, which may
lead to a high risk of interference by pixels with similar local features.

Spectral domain learning. Recent years have witnessed increasing research
enthusiasm on combining spectral domain and deep learning [41,10,38,51,69,57].
Among them, some researches [63,51,69] attempt to explain the behavior of con-
volution neural network from the perspective of spectral domain. They point
out that the features of different frequency bands represent different types of
information and observe some properties of deep neural networks related to it.
With the guidance of these works and rethinking about the characteristics of
the encoder-decoder structure, we propose separating the high-frequency and
low-frequency components for reasonably utilizing them. In this paper, we intro-
duce a low-frequency module (LFM) and a high-frequency module (HFM). LFM
enhances the low-frequency components during encoding to fuse global semantic
features, while HFM enhances the high-frequency components in the decoder to
make features contain more fine-grained details.

Some previous methods [25,75,64] applying spatial prior filter or introducing
boundary to features can also be explained from the perspective of spectral
domain. Applying filter kernels or highlighting boundaries in the spatial domain
is essentially a special way to distinguish between high and low frequencies. While
this approach can also serve the purpose of targeted enhancement, it loses the
advantage of global perception in the spectral domain. Therefore, our approach
that updates features in the spectral domain is more generalized and effective.
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Fig. 2: Overview of GSFM. The network takes both query (current frame) and
memory (past frames with masks) as input. LFM enhances low-frequency com-
ponents of features and fuses global information in the spectral domain. Having
KM , KQ and V M extracted from the encoder, the memory read block calculates
similarity between query and memory. The refine module upsamples the features
and outputs to the decoder. With HFM enhancing high-frequency components,
the decoder jointly predicts object masks and boundaries.

3 Method

3.1 Overview

The overall architecture of our GSFM is shown in Fig. 2. Given a video se-
quence and the annotation of the first frame, we process it frame by frame.
During processing, the current frame is considered a query, and the past ref-
erence frames with segmentation masks are memory. Following the baseline
method STCN [6], a Key Encoder extracts key features for each frame, and
a Value Encoder extracts value features only for memory frames. By performing
matching between query and memory in Space-Time Memory Read Block, the
decoder identifies and segments the target object in a bottom-up manner. In
the encoder, for exploiting the intra-frame semantic information to improve the
representative capacity of features and promote the effectiveness of matching,
a low-frequency module (LFM) enhances the low-frequency components of the
features and performs global information updating from the spectral domain. In
the decoder, the high-frequency module (HFM) enhances high-frequency com-
ponents to highlight fine-grained information for accurate prediction. Besides,
we take the strategy that jointly learning object boundaries and masks in an
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end-to-end manner [74,26,9,43]. With the interaction between mask branch and
boundary branch features, the network can better perceive the localization and
shape information, which also helps identify the target objects.

3.2 Frequency Modules

According to the spectral convolution theorem [2] in Fourier theory, updating
a single value in the spectral domain affects globally all original data, which
sheds light on design operations with the non-local receptive field. Intuitively, the
high-frequency components correspond to the pixels varying drastically, such as
object boundaries and textures, while the low-frequency components correspond
to the general semantic information. Some previous theoretical studies [63,51,69]
on spectral-domain and deep learning also point similar observation. Besides,
to show the information represented by different frequency components more
vividly, we take Fig. 3 as an example (for convenience, we use the grayscale

High-pass
filtering

Low-pass
filtering

Fig. 3: Illustration of different fre-
quency components. The top line is
the original image.

image). In Fig. 3, the remaining informa-
tion after high-pass filtering is the edges
and details of objects. After low-pass fil-
tering, the result is an image that retains
the general semantic information (some
details and noise are blurred). Consid-
ering that the role of the encoder is to
extract high-level semantic information,
while the decoder pursues focus on de-
tailed features, we believe that this differ-
ence is similar to the difference between
the high and low-frequency components.
Thus, we propose a low-frequency mod-
ule (LFM) for the encoder and a high-
frequency module (HFM) for the decoder.

The architecture of LFM and HFM is the same, and their difference is the
frequency domain filter (LFM is a low-pass filter, and HFM is a high-pass filter).
In our experiments, the filter is set in the form of Gaussian. Here we take LFM
as an example to introduce the process. As shown in Fig. 4, having the image
feature tensor x, LFM first transfers it to the spectral domain by FFT. Then
the spectral features y will be passed through a low-pass filter to enhance low-
frequency components, which helps to make features rich in global semantic
information. Specifically, we generate a coefficient map g with the same spatial
size of the feature y and perform element-wise multiplication between them with
the help of broadcast mechanism. For LFM, the center of the coefficient map has
the value of 0 and increases around in the form of Gaussian (without spectrum
centralization, the center of the spectrum after FFT is high frequency, and the
surrounding is low frequency). Before updating the spectral domain, note that
the spectral features are complex numbers for the FFT operation. To make the
complex number features compatible with the neural layers, we split the complex
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Algorithm: Pseudocode of LFM

# x: input feature
# B: batchsize, C: dimension of channel, H, W: spatial size of input feature
# y r, y i: the real and imaginary part of the spectral features, respectively

# generate the Gaussian frequency filter
g = Make gaussian filter(H, W) # g: (B, 1, H, W)
y = FFT(x) # y: (B, C, H, W)
y = y ⇤ g
# convert complex number features to real number
y r, y i = y.real, y.imag # y r, y i: (B, C, H, W)
y = Concatenate([y r, y i], dim=1) # y: (B, 2⇤C, H, W)
y = ReLU(Conv(y))
# convert back to complex number
y r, y i = Split(y, dim=1) # y r, y i: (B, C, H, W)
y = Complex(y r, y i)
y = iFFT(y) # y: (B, C, H, W)

return x + y

1

Fig. 4: The Pseudocode of Low Frequency Module (LFM)

number into a real part y r and an imaginary part y i. For ease of computation,
we append the imaginary part to the real part by concatenating them along the
channel dimension, forming a new tensor with double channels. Essentially, the
resultant tensor is treated as a vanilla real number tensor, and we can perform a
series of neural layers on it. To update features in the spectral domain, we utilize
1×1 convolution with ReLU activation function. According to the convolution
theorem [19], convolution in one domain equals point-wise multiplication in the
other domain, which implies that the 1×1 convolution in spectral-domain incurs
a global update in the spatial domain. After that, the results are converted back
to complex numbers by splitting them into real and imaginary parts along the
channel dimension. Inverse 2-D FFT operation transfers the spectral features
back to the spatial domain. Finally, LFM outputs the enhanced features by
adding the updated features y with initial tensor x.

3.3 Details-aware Decoder

Only utilizing local information for pixel-level mask prediction may lead to a lack
of overall perception of the objects and an over-reliance on pixel appearance in-
formation such as pixel color. Intuitively, object boundaries and object masks
have a close relation. It would be helpful to locate and identify target objects
from the background if the model has some sense of the shape or boundary of the
objects, especially with HFM highlighting detailed information. Besides, since
semi-supervised VOS is a pixel-level tracking task, accurate boundary segmenta-
tion is significant. Otherwise, it is easy to cause error accumulation. Therefore,
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we propose to combine HFM and object boundaries to provide localization and
more detailed guidance.

The architecture of the decoder is shown in Fig. 2. Compared to the vanilla
mask decoder of other memory network-based approaches, we add a branch ded-
icated to predicting object boundaries so that the model gives more attention to
the object boundaries and shapes. The input feature of the boundary branch is
first processed by HFM to enhance its high-frequency components, which helps
to better perceive fine-grained information for accurate prediction. In addition,
due to the special relationship between object boundaries and object masks,
there is a lot of mutually exploitable information between their features. Specifi-
cally, features from the mask branch can provide basic information for localizing
boundaries. After making sense of object boundaries, the shape and location
information in boundary features is also conducive to guiding more precise mask
predictions. To take full advantage of the special relationship between them, we
take a fusion module [9] for the interaction between the mask branch and the
boundary branch. Take the Mask → Boundary (M2B) Fusion as example, the
fusion process can be formulated as follows:

f̃b = F(fm) + fb, (1)

where f̃b denotes the fused boundary features, fm is the mask branch feature,
and fb is the boundary branch feature. F is a 1 × 1 convolution with ReLU
function. The fusion block is the same for the boundary → Mask (M2B) Fusion.

Boundary Ground Truth. Following previous works [59,70], we take the
boundary prediction as a pixel-level classification problem. Since only the ground
truth of the mask is available in the video object segmentation dataset, we use
the Laplacian operator to generate the boundary ground truth. The Laplacian
operator is a second-order gradient operator. As it is regarded as a classification
problem, the resultant boundaries need to be converted into binary maps, and
we binarize them with a threshold of 0.1.

Boundary Loss. Following previous work [9], we use dice loss [31] and binary
cross-entropy to optimize the boundary predictions. Dice loss measures the over-
lap between predicted boundaries and ground truth. More importantly, dice loss
can better handle category imbalance and focus on foreground pixels, which is
compatible with boundary prediction (the number of boundary points is much
less than points of non-boundary). The boundary loss Lb can be formulated as
follows:

Lb = LDice + LBCE . (2)

The dice loss is given as follows:

LDice = 1− 2
∑

i p
iqi∑

i(p
i)2 +

∑
i(q

i)2 + ϵ
, (3)

where p and q denote the predictions and ground truth, respectively. i denotes
the i-th pixel and ϵ is a smooth term to avoid zero division.
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3.4 Other Modules

Encoder. Following STCN [6], we construct a Key Encoder and a Value En-
coder. For each frame, the key features are extracted only once. In other words,
we would reuse the “query key” as the “memory key” if one frame is memorized
into the memory during video sequences. For memory frames, since both mem-
ory keys and memory values are extracted from the same image, it is natural to
reuse existing key features as the input of value encoder. Specifically, a backbone
first extracts memory features from images with segmentation masks and the re-
sultant features are concatenated with the last layer features from key encoder.
Then two ResBlocks [14] and a CBAM block [55] process them and output the
final memory value features V M .

Space-Time Memory Read Block. The query frame and T memory frames

are encoded into the followings: memory key KM ∈ RCk×T×H/16×W/16, memory

value V M ∈ RCv×T×H/16×W/16, query key KQ ∈ RCk×H/16×W/16

In the Space-Time Memory Read block, activation weights are computed by
measuring the similarities between KQ and KM . Then the V M is retrieved by a
weighted summation with the weights to get the output M . This operation can
be summarized as:

Mi =
1

Z

∑
j

D(KQ
i ,KM

j )V M
j , (4)

where i and j are the index of the query and the memory location, Z =∑
j D(KQ

i ,KM
j ) is the normalizing factor. D denotes similarity measure (fol-

lowing [6], in our experiments we take the L2 distance as measurement).

Refine Module. We use the same refinement module as previous works [33,6,5].
The role of the refinement modules is to process the matched value features and
merge the detail information from the shallow layer of the encoder.

4 Implementation Details

Following the training strategy in previous works [6,67,5], we first pretrain our
model on static image datasets [52,42,71,4,20] and then perform main training on
YouTube-VOS and DAVIS datasets. During pretraining, each image is expanded
into a pseudo video of three frames by data augmentation. For main training,
we randomly pick three frames in chronological order (with a ground-truth mask
for the first frame) from a video to form a training sample. The range of random
sampling varies with the training process. In the intermediate period of training,
the sampling range is set larger to improve the robustness of the model, while
at the end of training, it is set smaller to narrow the gap between training and
inference. We use randomly cropped 384×384 patches for training.

Our models are trained with eight 32GB Tesla V100 GPUs with the Adam
optimizer using PyTorch. The batch size is set to 16 for each GPU during pre-
training and 8 during main training. It takes about 18 hours to perform pre-
training and 6 hours for main training. We adopt ResNet50 [14] as backbone for
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Table 1: The quantitative evaluation on DAVIS dataset. ‘*’ indicates our re-
implementation version. The results of baseline method are underlined

Method
DAVIS2016 DAVIS2017 val DAVIS2017 test-dev

FPS
J F J&F J F J&F J F J&F

RANet [53] 86.6 87.6 87.1 63.2 68.2 65.7 53.4 56.2 55.3 -
FEELVOS [47] 81.1 82.2 81.7 69.1 74.0 71.5 55.2 60.5 57.8 -
RGMP [33] 81.5 82.0 81.8 64.8 68.6 66.7 51.3 54.4 52.8 -
DMVOS [54] 88.0 87.5 87.8 - - - - - - -
STM [34] 88.7 89.9 89.3 79.2 84.3 81.8 69.3 75.2 72.2 7.9
KMN [39] 89.5 91.5 90.5 80.0 85.6 82.8 74.1 80.3 77.2 7.1
CFBI [66] 88.3 90.5 89.4 79.1 84.6 81.9 71.1 78.5 74.8 3.4
GCM [23] 87.6 85.7 86.6 69.3 73.5 71.4 - - - -
G-FRTM [35] - - 84.3 - - 76.4 - - - -
GIEL [12] - - - 80.2 85.3 82.7 72.0 78.3 75.2 -
SwiftNet [50] 90.5 90.3 90.4 78.3 83.9 81.1 - - - 20.6
RMNet [58] 88.9 88.7 88.8 81.0 86.0 83.5 71.9 78.1 75.0 <11.9
SSTVOS [11] - - - 79.9 85.1 82.5 - - - -
LCM [15] 89.9 91.4 90.7 80.5 86.5 83.5 74.4 81.8 78.1 <9.5
MiVOS [5] 87.8 90.0 88.9 80.5 85.8 83.1 72.6 79.3 76.0 6.5
JOINT [30] - - - 80.8 86.2 83.5 - - - 3.8
RPCMVOS [61] 87.1 94.0 90.6 81.3 86.0 83.7 75.8 82.6 79.2 -
DMN-AOA [24] - - - 81.0 87.0 84.0 74.8 81.7 78.3 <6.2
HMMN [40] 89.6 92.0 90.8 81.9 87.5 84.7 74.7 82.5 78.6 6.8
AOT-L [67] 89.7 92.3 91.0 80.3 85.7 83.0 75.3 82.3 78.8 15.2
STCN* [6] 90.1 92.2 91.1 81.5 87.9 84.7 72.7 79.6 76.1 11.7

GSFM (Ours) 90.1 92.7 91.4 83.1 89.3 86.2 74.0 80.9 77.5 8.9

key encoders and ResNet18 for value encoder. Bootstrapped cross-entropy loss
(hard example mining) is used for mask segmentation. Binary cross-entropy loss
and Dice loss are used for boundary prediction. The weight of boundary predic-
tion loss is 0.05. For inference, we adopt top-k filtering [6,5] in our experiment
with k = 50 in default. We memorize every 3 frame, and no previous temporary
frame is used. Unless otherwise specified, we utilize the DAVIS2017 val set for
experiment analysis.

5 Experiments

5.1 Comparisons with State-of-the-Art Methods

DAVIS 2016 [36] is a densely annotated video object segmentation benchmark
which contains 20 high-quality annotated video sequences. We compare GSFM
with state-of-the-art methods in Table 1. Since the scenarios in this dataset are
relatively simple and only focus on a single target object, the segmentation re-
sults of most of the methods are excellent. Based on the STCN [6], our method
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Table 2: Evaluation on YouTube-VOS 2018 validation set. Seen and Unseen
denote the presence or absence of these categories in the training set, respectively.
G is the averaged score of all J and F .

Methods
Seen Unseen G

J F J F

OnAVOS [48] 60.1 62.7 46.6 51.4 55.2
PReMVOS [28] 71.4 75.9 56.5 63.7 66.9
STM [34] 79.7 84.2 72.8 80.9 79.4
AFB-URR [25] 78.8 83.1 74.1 82.6 79.6
GCM [23] 72.6 75.6 68.9 75.7 73.2
KMN [39] 81.4 85.6 75.3 83.3 81.4
G-FRTM [35] 68.6 71.3 58.4 64.5 65.7
SwiftNet [50] 77.8 81.8 72.3 79.5 77.8
SSTVOS [11] 80.9 - 76.6 - 81.8
RMNet [58] 82.1 85.7 75.7 82.4 81.5
LCM [15] 82.2 86.7 75.7 83.4 82.0
MiVOS [5] 80.0 84.6 74.8 82.4 80.4
JOINT [30] 81.5 85.9 78.7 86.5 83.1
HMMN [40] 82.1 87.0 76.8 84.6 82.6
RPCMVOS [61] 83.1 87.7 78.5 86.7 84.0
DMN-AOA [24] 82.5 86.9 76.2 84.2 82.5
AOT-L [67] 82.5 87.5 77.9 86.7 83.7
STCN* [6] 81.8 86.4 77.8 85.6 82.9

GSFM (Ours) 82.8 87.5 78.3 86.5 83.8

achieves the performance of 91.4 J&F .

DAVIS 2017 [37] is a multiple objects benchmark. The validation set contains
59 objects in 30 videos. In the Table 1, GSFM achieves an average score of 86.2,
which outperforms baseline methods by 1.5 J&F . What’s more, we also test our
model on the more challenging DAVIS 2017 test-dev split set. It also significantly
surpasses the baseline method (1.4 J&F).

YouTube-VOS [60] is the largest benchmark available for video object segmen-
tation. It contains 3471 videos in the training set (65 categories), 507 videos in
the valid set (additional 26 categories not in the training set), and 541 videos
in the test set. As shown in Table 2, our method achieves competitive results
(83.8) on YouTube-VOS and outperforms the baseline methods by 0.9 J&F .

Qualitative Results. Fig. 5 shows some comparison examples between ours
GSFM and STCN [6]. In the first example, similar pixels of the dogs are easily
mis-segmented by STCN because only local information is used for matching.
While with LFM enhancing global semantic information, GSFM can identify
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(a)

(b)

(a)

(b)

Fig. 5: Visualization results of our proposed method. (a) denotes the segmenta-
tion results of our baseline method [6]. (b) is the results of our GSFM. The first
example shows that our model can better perceive the overall semantic informa-
tion of the target and thus identify similar objects. The second example shows
that our approach makes a better determination of the ambiguous areas

targets more robustly. This is also illustrated in Fig. 1. The second example
shows that with HFM enhancing fine-grained information, the proposed model
has a better judgment for details and ambiguous areas.

5.2 Ablation Study

Table 3: Enhancing different fre-
quency. freqL, freqH , and freqF de-
notes enhancing low, high, and full-
frequency, respectively

LFM HFM J F J&F

freqF freqH 81.6 88.0 84.8↓0.5

freqH freqH 80.8 87.6 84.2↓1.1

Attn. freqH 81.6 88.2 84.9↓0.4

freqL freqF 81.4 87.9 84.7↓0.6

freqL freqL 81.2 87.7 84.5↓0.8

freqL freqH 81.9 88.7 85.3

Table 4: The quantitative results
of generalization effect. FM de-
notes the proposed LFM and HFM
and ✓ indicates deployed

Method FM J F J&F

STM [34]
78.8 84.2 81.5

✓ 80.8 86.2 83.5↑

KMN [39]
79.7 85.5 82.6

✓ 81.6 87.8 84.7↑

MiVOS [5]
79.8 85.6 82.7

✓ 81.7 87.4 84.6↑

Analysis on LFM and HFM. In addition to the observation in some theo-
retical works [51], we conduct experiments to verify the rationality of enhancing
low-frequency in encoder and high-frequency in decoder. The results are shown
in Table 3. Note that enhancing full frequency is different from removing the
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(a) Quantitative results

High-pass 
Filter

Low-pass 
Filter

𝜎 = 3 𝜎 = 5 𝜎 = 7 𝜎 = 10 𝜎 = 15

(b) Visualization of filter kernels

Fig. 6: Analysis on the selection of frequency filters

module since it still updates the features in the spectral domain. From the ta-
ble we can see that, when the high-frequency components are enhanced in the
encoder, there is a significant decrease on performance (1.1 J&F), which illus-
trates the encoded features need contain enough high-level semantic information.
Conversely, decoder features need have fine-grained detail information. Besides,
we have also tried other strategy that fusing global information, e.g., attention,
and LFM works better.

Generalizability Analysis. To demonstrate the generalization ability of our
frequency modules and prove that the lack of intra-frame global dependency is
a common problem of memory network-based methods, we conduct experiments
by applying our modules on some other methods as well. As shown in Table 4, the
effectiveness of these methods is significantly improved by adding the frequency
modules, which further shows the rationality of enhancing different frequency
components separately in different parts of the network.

Selection of Frequency Filters. When performing frequency enhancement,
we need to choose the cutoff frequency σ that distinguishes high and low fre-
quency (the value of the cutoff frequency affects the frequency filter). After visu-
alizing and experimenting with Gaussian filter kernels of different cutoff frequen-
cies, finally, we choose σ = 7 as the cutoff frequency in default. Fig. 6(a) shows
that too large or too small cutoff frequency will have a bad effect. From Fig. 6(b)
we can see that if σ is set too large, the high-pass filter will pass almost all fre-
quencies while the low-pass filter will filter out all frequencies, which losses the
function of selective enhancement. Same thing if σ is set too small.

Component Analysis. We experiment with the effectiveness of the proposed
LFM, HFM, and Boundary Decoder. As shown in Table 5, all of them bring
performance improvement and their combination works better (upgraded 1.2).

Effect of Small Objects. Although the LFM takes a residual structure to
enhance low-frequency components during encoding, it does not result in infor-
mation loss. To prove that, we analyze the segmentation effect of small objects
on YouTubeVOS dataset. Fig. 7 and Table 6 show the qualitative results and
quantitative results respectively. In Table 6, we count the results for objects with
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Table 5: Ablation study of the proposed modules

LFM HFM Boundary Branch J F J&F FPS

80.8 87.4 84.1 11.7

✓ 81.5 87.9 84.7↑0.6 11.3

✓ 81.2 87.8 84.5↑0.4 10.9

✓ ✓ 81.8 88.2 85.0↑0.9 9.5

✓ ✓ 81.4 87.7 84.6↑0.5 9.1

✓ ✓ ✓ 81.9 88.7 85.3↑1.2 8.9

reference gt mask
of the first frame

Prediction of STCN 
(query frame)

Prediction of ours
(query frame)

Fig. 7: Qualitative results on small objects.

Area 5% 1% 0.5%

STCN 80.6 76.3 73.5
Ours 81.4 78.1 75.0

Table 6: Quantitative results on
small objects.

area less than 5%, 1% and 0.5% of the image. It can be seen that the segmen-
tation results of small objects are not worse, but better due to the enhanced
discrimination of features.

6 Conclusions

To fully utilize the intra-frame spatial dependency, we propose a Global Spectral
Filter Memory network (GSFM) for semi-supervised video object segmentation
in this paper. According to the different characteristics of encoding and decoding,
GSFM separately enhances corresponding frequency components. With LFM
integrating high-level semantic information and HFM highlighting fine-grained
details, GSFM shows excellent performance on the popular DAVIS [36,37] and
YouTube-VOS [60]. Besides, extensive experiments also demonstrate the ratio-
nality and generalization ability of our frequency modules. We hope that the
strategy enhancing low-frequency for encoding and high-frequency for decoding
would inspire some research in related fields.
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