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In this supplementary, we present additional quantitative and qualitative re-
sults to further validate the efficacy of our proposed multi-scale spatio-temporal
split attention based video instance segmentation (MS-STS VIS) framework.
The additional ablation studies w.r.t. different design choices are presented in
Sec. S1 followed by additional qualitative results in Sec. S2. We discuss how
different settings impact the proposed MS-STS VIS performance. All the exper-
iments are conducted on Youtube-VIS [5] dataset. For fair evaluation, we follow
the same settings of [3] for baseline and our model. We choose ResNet-50[1]
as our backbone for all the ablation experiments shown. Additional qualitative
results is reported on Youtube-VIS [5.4].

S1 Additional Ablation Analysis

S1.1 Encoding Spatio-temporal Attention

Design of attention module: We note that baseline [3] only employs spatial
attention (SA) across scales and ignores temporal attention (TA). (i) While a
joint multi-scale spatio-temporal attention can address this, it is memory-wise
prohibitive. (ii) A memory-efficient alternative is a dis-joint attention, where TA
is computed separately (our intra-scale) and then combined with SA. While this
improves the results, it does not explicitly capture joint spatio-temporal (ST)
information likely to aid in VIS task. This motivates us to introduce a light-
weight ST attention (inter-scale) that efficiently attends to all scales, taking two
successive scales at a time. Our hybrid MS-STS with both intra- and inter-scale
attention achieves significant gain of 2.0% over the baseline. Furthermore, using
ST attention at inter-scale, as in our MS-STS, yields better results compared
to using it at intra-scale. Consequently, since our carefully designed inter-scale
attention attends to only two scales at a time and our intra-scale temporal
attention causes negligible overhead (fewer tokens to attend), we observe only
a minor drop in inference speed compared to the baseline (Ours: 10 FPS ws.
Baseline [3]: 11 FPS).

Encoder Variants Integrating Spatio-temporal Attention: Next, we ab-
late the encoder design variants integrating spatio-temporal attention on the
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Fig. S1: Encoder variants integrating spatio-temporal attention. (a) The baseline
encoder with standard deformable attention. In (b) Sequential Attention-I and
(c) Sequential Attention-II, the MS-STS attention is integrated into the stan-
dard deformable attention (a) sequentially in each encoder layer. Similarly, in
Sequential Encoder-1 (d) and Sequential Encoder-II (e), the proposed MS-STS
encoder (N, attention layers) is placed sequentially after or before the standard
deformable encoder. Finally, in (f), we show the proposed Split Attention En-
coder, where our MS-STS attention is in parallel to the deformable attention in
every encoder layer.

Youtube-VIS 2019 [5] val. set. For this ablation, we only consider the variations
w.r.t. the encoder and exclude our other contributions (i.e., temporal consis-
tency in decoder and foreground-background (fg-bg) separability) from our fi-
nal VIS framework. Fig. S1 presents the encoder design variations integrating
spatio-temporal attention. The baseline encoder with the standard multi-scale
deformable spatial attention is shown in Fig. S1(a). We integrate our proposed
MS-STS attention module in a sequential manner after and before the baseline
deformable attention in each layer of the encoder and refer to these variants
as Sequential Attention-I (Fig. S1(b)) and Sequential Attention-II (Fig. S1(c)).
Similarly, we refer to the variants with sequentially placed encoders (N, layers
together form an encoder) as Sequential Encoder-I (Fig. S1(d)) and Sequen-
tial Encoder-II (Fig. S1(e)). Finally, our proposed split attention based encoder,
where our MS-STS attention module is in parallel to the standard deformable
attention in each encoder layer is shown in Fig. S1(f). The VIS performance of
each of the variants is presented in Tab. S1. The proposed split attention encoder
achieves the best performance with an absolute gain of 2.0% in terms of overall
mask AP, over the baseline encoder.
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Table S1: VIS performance comparison on Youtube-VIS 2019 val. set, with en-
coder variants integrating spatio-temporal attention. All results are reported
using the same ResNet-50 backbone. Note that here we only analyze the en-
coder variants and exclude our other contributions (i.e., temporal consistency in
decoder and foreground-background (fg-bg) separability). Our proposed split at-
tention encoder achieves the best performance over the other variants considered,
since it effectively encodes the multi-scale spatio-temporal feature relationships
that are crucial to tackle target appearance deformations in videos. Notably, the
proposed split attention encoder achieves a significant gain in performance at a
higher overlap threshold of AP75. See Sec. S1.1 and Fig. S1 for more details.

Method | AP AP, AP AR: ARy
(a) Baseline Encoder 46.4 68.7 50.3 44.9 54.3
(b) Sequential Attention-I 47.0 69.1 51.5 45.4 54.8
(c) Sequential Attention-IT 47.3 69.3 51.8 45.6 55.1
(d) Sequential Encoder-I 46.8 68.8 51.3 45.3 54.6
(e) Sequential Encoder-II 47.1 68.9 51.4 45.5 54.4
(f) Proposed Split Attention Encoder 48.4 70.4 54.8 45.9 56.1
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Fig.S2: Example encoder attention map along with final mask w/o and with
fg-bg loss. Our loss aids fg-bg separability and mask plausibility for confusing
(left: behind person & racket) and cluttered (right: tree branches around deer)
backgrounds, leading to better masks compared to w/o fg-bg loss (white dotted
regions).

S1.2 Foreground-Background Separability Loss

To complement overall goal of class-specific segmentation, our fg-bg loss aims
to enhance separation between fg-bg regions in encoder feature space in a class-
agnostic manner. The enhanced encoder features aid in improved decoding of
target instances. We conjecture that in the aforementioned class-agnostic (bi-
nary) setting, both fg-bg separability and mask plausibility (Fig. S2) strive for
a common objective leading to an absolute gain of 1.0% on the final VIS task
(Tab. 3:left in the main paper).

S1.3 Aggregation of Temporal Information

Our proposed MS-STS attention module explicitly correlates and aggregates
temporal information within multiple frames to learn video level instance fea-
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Table S2: Effect of input frames on baseline vs. proposed MS-STS VIS frame-
work.

Method ‘ Input Frames ‘ AP APso APs AR, AR
Baseline 38.4 58.7 40.1 36.6 42.1
MS-STS (ours) 40.7 63.3 43.7 41.0 49.6
Baseline 41.7 64.7 45.5 42.6 50.3
MS-STS (ours) 44.4 67.5 48.6 45.4 53.1
Baseline 44.3 69.1 49.4 44.2 52.3
MS-STS (ours) 47.5 71.5 51.7 45.7 56.1
Baseline 46.4 68.7 50.3 44.9 54.3
MS-STS (ours) 50.1  73.2 56.6  46.1  57.7
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Fig.S3: Our temporal attention in decoder improves mask consistency, particu-
larly, second car (in yellow) in frames 2 and 3.

tures. In Tab. S2, we analyse the effect of using fewer frames for instance segmen-
tation. As presented in Tab. S2, our proposed MS-STS attention shows significant
improvement with increase number of input frames over the baseline.

Furthermore, our temporal attention in decoder aims to improve the temporal
consistency of queries. It is computed as standard self-attention on box-queries
of an instance across T frames. Here, Fig. S3 shows that the temporal mask
consistency improves with temporal attention in decoder.

S1.4 A Note on the Video Length T

Following baseline SeqFormer [3], we use T=>5. Since videos are annotated at 6
fps (every 5% frame in 30fps video) in Youtube-VIS, T=5 a 0.83 sec, during
which we observe target appearance deformations to occur. Further, our ap-
proach maintains gain of >2.0% over baseline, when using a higher 7=36 with
a reduced spatial resolution, as in VisTR [2].

S2 Additional Qualitative Results

Our method achieves favorable performance by accurately associating and seg-
menting object instances under fast motion, e.g., rows 2, 3, 6, 7 in Fig. S4 and
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Fig.S4: Additional Qualitative results obtained by our MS-STS VIS framework
on seven example videos in the Youtube-VIS 2019 val set. Our MS-STS VIS
achieves promising video mask prediction in various challenging scenarios in-
cluding, fast motion (person, skateboard in row 2, rabbit in row 6, person, mo-
torbike in row 7), scale change (rabbit in row 6, person, motorbike in row 7),
aspect-ratio change (mouse in row 1, person in rows 2, 3). Also see the videos
in https://github.com/OmkarThawakar/MSSTS-VIS.

rows 2 to 4 in Fig. S5. Notably, we can observe that our approach success-
fully tracks and segments the true object instance and not its shadow/reflection
Fig. S4 (row 6) and Fig. S5 (row 6). Furthermore, Fig. S4 (rows 1, 2, 6, 7) and
Fig. S5 (rows 1 to 7) show the performance of our proposed approach, when the
target object instances undergo changes in aspect ratio and size. Our method re-
liably tracks and segments the object instances despite these changes in aspect
ratio and size. Fig. S4 (rows 1, 5) display qualitative results under occlusion.
Our proposed method accurately segments and tracks objects, such as mouse,
tortoise and rabbit in these examples. Furthermore, Fig. S6 shows a qualita-
tive comparison between our MS-STS VIS and other recent approaches on two
example videos from Youtube-VIS 2019 val. set.
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Fig. S5: Qualitative results on seven example videos in the Youtube-VIS 2021
val set. Our MS-STS VIS achieves favorable video mask prediction in various
scenarios involving target appearance deformations: fast motion (dog in row 2,
train in row 3, earless seal in row 4), scale variation (person in row 1 and cat
in row 7), aspect-ratio change (bear in row 6). Also see the videos in https:
//github.com/OmkarThawakar/MSSTS-VIS.


https://github.com/OmkarThawakar/MSSTS-VIS
https://github.com/OmkarThawakar/MSSTS-VIS

MS-STS Attention Transformer 7

Cross-VIS PCAN SeqFormer MS-STS VIS

Fig. S6: Comparing MS-STS VIS with other recent methods.
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