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A. Datasets

ADE20K/ADE20K-Full. The ADE20K dataset [16] consists of 150 classes and
diverse scenes with 1, 038 image-level labels, which is divided into 20K/2K/3K
images for training, validation, and testing. Semantic segmentation treats all 150
classes equally, while panoptic segmentation considers the 100 thing categories
and the 50 stuff categories separately. The ADE20K-Full dataset [16] contains
3, 688 semantic classes, among which we select 847 classes following [6].
PASCAL-Context. The PASCAL-Context dataset [13] is a challenging scene
parsing dataset that consists of 59 semantic classes and 1 background class,
which is divided into 4, 998/5, 105 images for training and testing.
COCO-Stuff. The COCO-Stuff dataset [2] is a scene parsing dataset that con-
tains 171 semantic classes divided into 9K/1K images for training and testing.
COCO+LVIS. The COCO+LVIS dataset [7,9] is bootstrapped from stuff an-
notations of COCO [10] and instance annotations of LVIS [7] for COCO 2017
images. There are 1, 284 semantic classes in total and the dataset is divided into
100K/20K images for training and testing.
VSPW. The VSPW [12] is a large-scale video semantic segmentation dataset
consisting of 3, 536 videos with 251, 633 frames from 124 semantic classes, which
is divided into 2, 806/343/387 videos with 198, 244/24, 502/28, 887 frames for
training, validation, and testing. We only report the results on val set as we can
not access the test set.
YouTubeVIS. YouTube-VIS 2019 [14] is a large-scale video instance segmenta-
tion dataset consisting of 2, 883 high-resolution videos labeled with 40 semantic
classes, which is divided into 2, 238/302/343 videos for training, validation, and
testing. We report the results on val set as we can not access the test set.

B. Comparison with EncNet and ESSNet

Comparison with EncNet. Table 1 compares our method to EncNet [15] based
on Segmenter w/ ViT-B/16 and reports the results on the second and last rows.

† Equal contribution.
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Table 1: Comparison with EncNet and ESSNet based on Segmenter w/ ViT-B.

Method
ADE20K COCO-Stuff COCO+LVIS

#params. FLOPs mIoU (%) #params. FLOPs mIoU (%) #params. FLOPs mIoU (%)

Baseline 102.50M 78.84G 48.80 102.51M 79.25G 41.85 103.37M 102.53G 19.41

EncNet 109.15M 84.89G 49.06 109.18M 85.29G 42.81 110.90M 108.58G 19.32

ESSNet 101.42M 78.05G 48.91 101.43M 78.42G 42.13 102.29M 100.25G 19.11

Ours 109.74M 78.71G 49.68 109.70M 78.55G 44.98 111.45M 99.59G 21.26

We follow the reproduced EncNet settings in mmsegmentation and tune the
number of visual code-words as 64 as it achieves the best result in our experi-
ments. According to the comparison results, we can see that our method signif-
icantly outperforms EncNet by +0.62%/+2.17%/+1.94% on ADE20K/COCO-
Stuff/COCO+LVIS, which further verifies that exploiting rank-adaptive selected-
label pixel classification is the key to our method.
Comparison with ESSNet. We compare our method to ESSNet [9] on ADE20K/
COCO-Stuff/COCO+LVIS on the last two rows of Table 1. Different from the
original setting [9] of ESSNet, we set the number of the nearest neighbors associ-
ated with each pixel as the same value of κ in our method to ensure fairness. We
set the dimension of the representations in the semantic space as 64. According
to the results on COCO+LVIS, we can see that (i) our baseline achieves 19.41%,
which performs much better than the original reported best result (6.26%) in [9]
as we train all these Segmenter models with batch-size 8 for 320K iterations. (ii)
ESSNet achieves 19.11%, which performs comparably to our baseline and this
matches the observation in the original paper that ESSNet is expected to perform
better only when training the baseline method with much smaller batch sizes. In
summary, our method outperforms ESSNet by +0.77%/+2.85%/+2.15% across
ADE20K/COCO-Stuff/COCO+LVIS, which further shows the advantage of ex-
ploiting multi-label image classification over simply applying k-nearest neighbor
search for each pixel embedding.

C. DeepLabv3/Swin/BEiT/MaskFormer/Mask2Former + RankSeg

We illustrate the details of combining our proposed joint multi-task scheme with
DeepLabv3/Swin/BEiT/MaskFormer/Mask2Former in Figure 1 (a)/(b)/(c)/(d)/(e)
respectively.

The main difference between DeepLabv3/Swin/BEiT and the Figure 6 (within
the main paper) is at DeepLabv3/Swin/BEiT uses a decoder architecture to re-
fine the pixel embeddings for more accurate semantic segmentation prediction.
Besides, we empirically find that the original category embeddings perform bet-
ter than the refined category embeddings used for the multi-label prediction. For
MaskFormer and Mask2Former, we apply the multi-label classification scores
to select the κ most confident categories and only apply the region classifica-
tion over these selected categories, in other words, we perform rank-adaptive
selected-label region classification instead of rank-adaptive selected-label pixel
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(a) DeepLabv3 + RankSeg

(b) Swin + RankSeg

(c) BEIT + RankSeg

(d) MaskFormer + RankSeg

(e) Mask2Former/SeMask/ViT-Adapter + RankSeg

Fig. 1: The overall framework of combining our method with DeepLabv3 [3], Swin [11],
BEIT [1], MaskFormer [6], Mask2Former [5], SeMask [8], and ViT-Adapter [4].
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Table 2: Hyper-parameter settings of Mask2Former + RankSeg.

Method
Image semantic seg. Image panoptic seg.Video semantic seg.Video instance seg.

ADE20K ADE20K VSPW YouTubeVIS 2019

κ. 150 150 124 40

ml-cls. loss weight 10 10 10 10

seg. loss weight 1 1 1 1

Table 3: Influence of the number of the
nearest neighbor within ESSNet. The
class embedding dimension is fixed as
64 by default.

# of nearest neighbors 16 32 64 100

mIoU (%) 11.07 16.19 18.4519.11

Table 4: Influence of class embedding di-
mension within ESSNet. The number of the
nearest neighbor is set as 100 by default.

Dimension 16 32 64 128

FLOPs 100.18G100.21G100.25G100.37G

mIoU (%) 19.05 19.19 19.11 19.20

Table 5: Dynamic κ with differ-
ent confidence thresholds.

Threshold 0.1 0.05 0.02 0.01

mIoU (%) 44.03 44.64 44.54 44.56

△ +2.18+2.79+2.69+2.71

Table 6: Combination with MaskFormer, SeMask,
and ViT-Adapter.

Method
Image semantic seg. Image panoptic seg.
ADE20K mIoU (%) ADE20K PQ (%)

Backbone Swin-B Swin-L ResNet-50

MaskFormer [6] 53.9 55.6 34.7
+ RankSeg 55.1 55.8 36.5

SeMask [8] − 58.2 −
+ RankSeg − 58.5 −
ViT-Adapter [4] − 60.5 −
+ RankSeg − 60.7 −

classification for MaskFormer and Mask2Former. We also improve the design of
Mask2Former + RankSeg by replacing the down-sampled pixel embeddings with
the refined object query embeddings output from the transformer decoder and
observe slightly better performance while improving efficiency.

D. Hyper-parameter settings on Mask2Former.

Table 2 summarizes the hyper-parameter settings of experiments based on Mask-
Former and Mask2Former. Considering our RankSeg is not sensitive to the choice
of κ/multi-label image classification loss weight/segmentation loss weight, we
simply set κ=K/multi-label image classification loss weight as 10.0/segmentation
loss weight as 1.0 for all experiments and better results could be achieved by
tuning these parameters. We also adopt the same set of hyper-parameter settings
for the following experiments based on MaskFormer, SeMask, and ViT-Adapter.

E. Ablation study of ESSNet on COCO+LVIS.

We investigate the influence of the number of nearest neighbors and the class
embedding dimension in Table 3 and Table 4 based on Segmenter w/ ViT-B.
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Fig. 2: Illustrating the curve of mAPs and mIoUs based on “Swin”, “Swin +
RankSeg”, and “Swin + RankSeg” w/ smaller learning rate and loss weight on
the multi-label classification head.

According to Table 3, we can see that ESSNet [9] is very sensitive to the
choice of the number of nearest neighbors. We choose 100 nearest neighbors as it
achieves the best performance.4 Table 4 fixes the number of nearest neighbors as
100 and compares the results with different class embedding dimensions. We can
see that setting the dimension as 32, 64, or 128 achieves comparable performance.

F. Dynamic κ

We compare the results with dynamic κ scheme in Table 5 via selecting the
most confident categories, of which the confidence scores are larger than a fixed
threshold value. Accordingly, we can see that using dynamic κ with different
thresholds consistently outperforms the baseline but fails to achieve significant
gains over the original method (44.98%) with fixed κ = 50 for all images.

G. Segmentation results based on MaskFormer and SeMask.

Table 6 summarizes the results based on combining RankSeg with MaskFormer [6]
and SeMask [8]. According to the results, we can see that our RankSeg improves
MaskFormer by 1.2%/1.8% on ADE20K image semantic/panoptic segmenta-
tion tasks based on Swin-B/ResNet-50 respectively. SeMask and ViT-Adapter
also achieve very strong results, e.g., 58.5% and 60.7%, on ADE20K with our
RankSeg.

H. Multi-label classification over-fitting issue.

Figure 2 shows the curve of multi-label classification performance (mAP) and
semantic segmentation performance (mIoU) on ADE20K val set. These evalu-

4 Our method sets the number of selected categories κ as 100 on COCO+LVIS by
default.
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ation results are based on the joint multi-task method “Swin-B + RankSeg”.
According to Figure 2 (a), we can see that the mAP of “Swin-B + RankSeg:
Learning rate=6e-5, loss weight=10”5 begins overfitting at 48K training itera-
tions and the multi-label classification performance mAP drops from 71.96% to
70.20% at the end of training, i.e., 160K training iterations.

To overcome the over-fitting issue of multi-label classification, we attempt
the following strategies: (i) larger weight decay on the multi-label classifica-
tion head, (ii) smaller learning rate on the multi-label classification head, and
(iii) smaller loss weight on the multi-label classification head. We empirically
find that the combination of the last two strategies achieves the best result. As
shown in Figure 2, we can see that using a smaller learning rate and smaller loss
weight together, i.e., “Swin-B + RankSeg: Learning rate=6e-6, loss weight=5”,
alleviates the overfitting problem and consistently improves the segmentation
performance.

I. Qualitative results

We illustrate the qualitative improvement results in Figure 3. In summary, our
method successfully removes the false-positive category predictions of the base-
line method.
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Fig. 3: Qualitative improvements of “Segmenter + RankSeg” over “Segmenter” on
COCO-Stuff test. Both methods are based on the backbone ViT-B/16. We mark
the correctly classified pixels with white color and the error pixels with the colors
associated with the predicted categories for the predicted segmentation results (shown
on the third and fourth columns). The names of true/false positive categories are
marked with black/red color, respectively.
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