RankSeg: Adaptive Pixel Classification with
Image Category Ranking for Segmentation

Haodi He!t, Yuhui Yuan®', Xiangyu Yue?, and Han Hu?

L University of Science and Technology of China
2 UC Berkeley
3 Microsoft Research Asia
DX {yuhui.yuan,hanhu}@nicrosoft.com

Abstract. The segmentation task has traditionally been formulated as
a complete-labeﬂ pixel classification task to predict a class for each pixel
from a fixed number of predefined semantic categories shared by all im-
ages or videos. Yet, following this formulation, standard architectures
will inevitably encounter various challenges under more realistic set-
tings where the scope of categories scales up (e.g., beyond the level of
1k). On the other hand, in a typical image or video, only a few cate-
gories, i.e., a small subset of the complete label are present. Motivated
by this intuition, in this paper, we propose to decompose segmentation
into two sub-problems: (i) image-level or video-level multi-label clas-
sification and (ii) pixel-level rank-adaptive selected-label classification.
Given an input image or video, our framework first conducts multi-
label classification over the complete label, then sorts the complete label
and selects a small subset according to their class confidence scores.
We then use a rank-adaptive pixel classifier to perform the pixel-wise
classification over only the selected labels, which uses a set of rank-
oriented learnable temperature parameters to adjust the pixel classifi-
cations scores. Our approach is conceptually general and can be used
to improve various existing segmentation frameworks by simply using a
lightweight multi-label classification head and rank-adaptive pixel clas-
sifier. We demonstrate the effectiveness of our framework with compet-
itive experimental results across four tasks, including image semantic
segmentation, image panoptic segmentation, video instance segmenta-
tion, and video semantic segmentation. Especially, with our RankSeg,
Mask2Former gains +0.8%/40.7%/+0.7% on ADE20K panoptic seg-
mentation/YouTubeVIS 2019 video instance segmentation/VSPW video
semantic segmentation benchmarks respectively. Code is available at:
https://github.com/openseg-group/RankSeg

Keywords: Rank-Adaptive, Selected-Label, Image Semantic Segmenta-
tion, Image Panoptic Segmentation, Video Instance Segmentation, Video
Semantic Segmentation

T Equal contribution.
4 We use the term “complete label” to represent the set of all predefined categories in
the dataset.
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Fig. 1: Illustrating the motivation of exploiting the multi-label image clas-
sification: (a) An example image selected from COCO-Stuff. (b) The ground-truth
segmentation map consisting of 7 classes. (¢) The histogram of existence probability
over the selected top 20 categories sorted by their confidence scores, which are pre-
dicted with our method. Our method only needs to identify the label of each pixel
from these selected 20 categories instead of all 171 categories. The names of true/false
positive categories are marked with black/red color, respectively. The bars associated
with true positive categories share the same color as the ones adopted in the ground-
truth segmentation map.

1 Introduction

Image and video segmentation, i.e., partitioning images or video frames into
multiple meaningful segments, is a fundamental computer vision research topic
that has wide applications including autonomous driving, surveillance system,
and augmented reality. Most recent efforts have followed the path of fully con-
volutional networks [64] and proposed various advanced improvements, e.g.,
high-resolution representation learning [60/70], contextual representation aggre-

gation [T2J23I35I87I8T], boundary refinement [66J/43I84], and vision transformer
architecture designs [63/61I82I8E]

Most of the existing studies formulate the image and video segmentation
problem as a complete-label pixel classification task. In the following discussion,
we’ll take image semantic segmentation as an example for convenience. For ex-
ample, image semantic segmentation needs to select the label of each pixel from
the complete labeﬂ set that is predefined in advance. However, it is unnecessary
to consider the complete label set for every pixel in each image as most standard
images only consist of objects belonging to a few categories. Figure [2] plots the
statistics on the percentage of images that contain no more than the given class
number in the entire dataset vs. the number of classes that appear within each
image. Accordingly, we can see that 100.00%, 99.99%, 99.14%, and 99.85% of im-
ages contain less than 25 categories on PASCAL-Context [57], COCO-Stuff [§],
ADE20K-Full [T9189], and COCO+LVIS [29I39] while each of them contains 60,
171, 847, and 1,284 predefined semantic categories respectively. Besides, Fig-
ure (1] shows an example image that only contains 7 classes while the complete
label set consists of 171 predefined categories.

To take advantage of the above observations, we propose to re-formulate the
segmentation task into two sub-problems including multi-label image/video clas-
sification and rank-adaptive pixel classification over a subset of selected labels.

5 We use “label”, “category”, and “class” interchangeably.
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Fig. 2: Illustrating the cumulative distribution of the number of images that
contain no more than the given class number: The z-axis represents the class
number presented in the image and the y-axis represents the percentage of images
that contain no more than the given class number in the entire dataset. We plot the
cumulative distribution on four benchmarks. We can see that more than 99% of all
images only contain less than 25 categories on four benchmarks, which are marked
with dark purple bars. The above four benchmarks contain 60, 171, 847, and 1,284
predefined semantic categories respectively.
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Fig.3: Illustrating the effectiveness of multi-label classification: The seg-
mentation results of exploiting the ground-truth multi-label during only evaluation or
both training and evaluation on (a) PASCAL-Context, COCO-Stuff, ADE20K-Full,
and COCO+LVIS (image semantic segmentation)/(b) ADE20K (image panoptic seg-
mentation)/(c) VSPW (video semantic segmentation). Refer to Sec[3.4]for more details.
YouTubeVIS results are not included as we can not access the ground-truth.

To verify the potential benefits of our method, we investigate the gains via ex-
ploiting the ground-truth multi-label of each image or video. In other words, the
pixel classifier only needs to select the category of each pixel from a collection
of categories presented in the current image or video, therefore, we can filter
out all other categories that do not appear. Figure [3] summarizes the compar-
ison results based on Segmenter [65] and Mask2Former [I8]. We can see that
the segmentation performance is significantly improved given the ground-truth
multi-label prediction. In summary, multi-label classification is an important but
long-neglected sub-problem on the path toward more accurate segmentation.

Motivated by the significant gains obtained with the ground-truth multi-
label, we propose two different schemes to exploit the benefit of multi-label im-
age predictions including the independent single-task scheme and joint multi-task
scheme. For the independent single-task scheme, we train one model for multi-
label image/video classification and another model for segmentation. Specifically,
we first train a model to predict multi-label classification probabilities for each
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image/video, then we estimate the existing label subset for each image/video
based on the multi-label predictions, last we use the predicted label subset to
train the segmentation model for rank-adaptive selected-label pixel classification
during both training and testing. For the joint multi-task scheme, we train one
model to support both multi-label image/video classification and segmentation
based on a shared backbone. Specifically, we apply a multi-label prediction head
and a segmentation head, equipped with a rank-adaptive adjustment scheme,
over the shared backbone and train them jointly. For both schemes, we need to
send the multi-label predictions into the segmentation head for rank-adaptive
selected-label pixel classification, which enables selecting a collection of cate-
gories that appear and adjusting the pixel-level classification scores according to
the image/video content adaptively.

We demonstrate the effectiveness of our approach on various strong base-
line methods including DeepLabv3 [12], Segmenter [65], Swin-Transformer [53],
BEIT [4], MaskFormer [19], Mask2Former [I8], and ViT-Adapter [15] across mul-
tiple segmentation benchmarks including PASCAL-Context [57], ADE20K [89],
COCO-Stuff [8], ADE20K-Full [89I19], COCO+LVIS [29139], YouTubeVIS [78],
and VSPW [56].

2 Related Work

Image segmentation. We can roughly categorize the existing studies on image
semantic segmentation into two main paths: (i) region-wise classification meth-
ods [II72726/74/58/7I67], which first organize the pixels into a set of regions (usu-
ally super-pixels), and then classify each region to get the image segmentation
result. Several very recent methods [I986J69] exploit the DETR framework [10]
to conduct region-wise classification more effectively; (ii) pixel-wise classifica-
tion methods, which predict the label of each pixel directly and dominate most
previous studies since the pioneering FCN [54]. There exist extensive follow-
up studies that improve the pixel classification performance via constructing
better contextual representations [87IT2I83I81] or designing more effective de-
coder architectures [3[64/T3]. Image panoptic segmentation [42/41] aims to unify
image semantic segmentation and image instance segmentation tasks. Some re-
cent efforts have introduced various advanced architectures such as Panoptic
FPN [41], Panoptic DeepLab [I7], Panoptic Segformer [48], K-Net [86], and
Mask2Former [18]. Our RankSeg is complementary with various paradigms and
consistently improves several representative state-of-the-art methods across both
image semantic segmentation and image panoptic segmentation tasks.

Video segmentation. Most of the previous works address the video segmen-
tation task by extending the existing image segmentation models with temporal
consistency constraint [71]. Video semantic segmentation aims to predict the se-
mantic category of all pixels in each frame of a video sequence, where the main ef-
forts focus on two paths including exploiting cross-frame relations to improve the
prediction accuracy [44U36J40125/59/TT] and leveraging the information of neigh-
boring frames to accelerate computation [B5IT7ATI38I34I52]. Video instance seg-
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mentation [78] requires simultaneous detection, segmentation and tracking of in-
stances in videos and there exist four mainstream frameworks including tracking-
by-detection [68/49J912432], clip-and-match [6l2], propose-and-reduce [50], and
segment-as-a-whole [T2I377516). We show the effectiveness of our method on
both video semantic segmentation and video instance segmentation tasks via
improving the very recent state-of-the-art method Mask2Former [16].
Multi-label classification. The goal of multi-label classification is to identity
all the categories presented in a given image or video over the complete label
set. The conventional multi-label image classification literature partitions the
existing methods into three main directions: (i) improving the multi-label clas-
sification loss functions to handle the imbalance issue [765], (ii) exploiting the
label co-occurrence (or correlations) to model the semantic relationships between
different categories [33J46I14179], and (iii) localizing the diverse image regions as-
sociated with different categories [73I28/80/455T]. In our independent single-task
scheme, we choose the very recent state-of-the-art method Query2Label [51] to
perform multi-label classification on various semantic segmentation benchmarks
as it is a very simple and effective method that exploits the benefits of both
label co-occurrence and localizing category-dependent regions. There exist few
efforts that apply multi-label image classification to address segmentation task.
To the best of our knowledge, the most related study EncNet [85] simply adds a
multi-label image classification loss w/o changing the original semantic segmen-
tation head that still needs to select the label of each pixel from all predefined
categories. We empirically show the advantage of our method over EncNet in
the ablation experiments. Besides, our proposed method is naturally suitable
to solve large-scale semantic segmentation problem as we only perform rank-
adaptive pixel classification over a small subset of the complete label set based
on the multi-label image prediction. We also empirically verify the advantage of
our method over the very recent ESSNet [39] in the ablation experiments.

3 Owur Approach

We first introduce the overall framework of our approach in Sec. 3.1} which is
also illustrated in Figure 4} Second, we introduce the details of the independent
single-task scheme in Sec. and those of joint multi-task scheme in Sec.
Last, we conduct analysis experiments to investigate the detailed improvements
of our method across multiple segmentation tasks in Sec.

3.1 Framework

The overall framework of our method is illustrated in Figure[4] which consists of
one path for multi-label image classification and one path for semantic segmen-
tation. The multi-label prediction is used to sort and select the top x category
embeddings with the highest confidence scores which are then sent into the
rank-adaptive selected-label pixel classifier to generate the semantic segmenta-
tion prediction. We explain the mathematical formulations of both multi-label
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Fig.4: Tllustrating the framework of our approach: Given an input image that
contains person, grass, and railing, which are marked with ®, @, and @, respectively.
First, we use the multi-label image classification model g(-;61) and multi-label image
classifier to predict the presence probabilities of all categories. Second, we sort the labels
according to the predicted presence probabilities and select the top x most probable
category embeddings. Last, we send the selected subset of category embeddings into
the rank-adaptive selected-label pixel classifier to identify the label of each pixel based
on the pixel embeddings output by the semantic segmentation model f(-;62).

image classification and rank-adaptive selected-label pixel classification as fol-
lows:

Multi-label image classification. The goal of multi-label image classification
is to predict the set of existing labels in a given image x € R#*W >3 where H and
W represent the input height and width. We generate the image-level multi-label
ground truth y9¢ from the ground truth segmentation map and we represent
y9¢ with a vector of K binary values [y¢*, v, ..., y%]T, 49" € {0,1}, where K
represents the total number of predefined categories and yigt = 1 represents the
existence of pixels belonging to i-th category and yft = 0 otherwise.

The prediction y € R is a vector that records the existence confidence
score of each category in the given image x. We use g(+;61) to represent the
backbone for the multi-label image classification model. We estimate the multi-
label predictions of input x with the following sigmoid function:

e6(g9(x;61),hy)
Yk = 4e§(g(x;91)7hk) ¥ 17 (1)

where yy, is the k-th element of y, g(x; ;) represents the output feature map, hy
represents the multi-label image classification weight associated with the k-th
category, and £(-) represents a transformation function that estimates the sim-
ilarity between the output feature map and the multi-label image classification
weights. We supervise the multi-label predictions with the asymmetric loss that
operates differently on positive and negative samples by following [BI51].

Rank-adaptive selected-label pixel classification. The goal of semantic
segmentation is to predict the semantic label of each pixel and the label is
selected from all predefined categories. We use z € RT*WXX o represent the
predicted pixel classification probability map for the input image x. We use
f(:;02) to represent the semantic segmentation backbone and z9 € RZ*W to
represent the ground-truth segmentation map. Instead of choosing the label of
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Fig.5: (a) Illustrating the framework of Query2Label: The multi-label image
classification backbone g(-;61) is set as Swin-L by default. The transformation &(-) is
implemented as two transformer decoder layers followed by a linear layer that prepares
the refined category embeddings for the multi-label image classifier. (b) Illustrating
the framework of Segmenter w/ selected category embeddings: The semantic
segmentation backbone f(-;62) is set as ViT-B/16 or ViT-L/16. The transformation
¥(+) is implemented as two transformer encoder layers followed by ¢2-normalization
before estimating the segmentation map.

each pixel from all K predefined categories, based on the previous multi-label
prediction y for image x, we introduce a more effective rank-adaptive selected-
label pixel classification scheme:

— Sort and select the top k elements of the classifier weights according to the
descending order of multi-label predictions y = [y1,y2, - , Yx]:

[WhWZ;"' 7WN] = TOP'K'([WhWQa"' 7WK}7y)’ (2)

— Rank-adaptive classification of pixel (4, ) over the top « selected categories:

e¥(f(x502)i,5,Wi)/Th

Zijk = S e (f(x302)i 5, W) /7’ (3)
where [w1, wa, -+, Wg| represents the pixel classification weights for all K pre-
defined categories and [W1,Wa, - -+ , W] represents the top k selected pixel clas-

sification weights associated with the largest multi-label classification scores.
f(x;62) represents the output feature map for semantic segmentation. ¢(-) rep-
resents a transformation function that estimates the similarity between the pixel
features and the pixel classification weights. k represents the number of selected
category embeddings and & is chosen as a much smaller value than K. We ap-
ply a set of rank-adaptive learnable temperature parameters |1y, T2, ,Tx] to
adjust the classification scores over the selected top x categories. The tempera-
ture parameters across different selected classes are shared in all of the baseline
experiments by defaultﬂ We analyze the influence of k choices and the bene-
fits of such a rank-oriented adjustment scheme in the following discussions and
experiments.

5 We set 1y=72=: - - =7, for all baseline segmentation experiments.
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Fig.6: Illustrating the framework of joint multi-task scheme: g(-;601) and
f(;02) are set as the shared multi-task backbone and 61 = 6. £(-) is implemented
as one transformer encoder layer or two transformer decoder layers or global average
pooling + linear projection. v¥(-) is implemented as two transformer encoder layers
followed by L2-normalization before estimating the segmentation map.
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3.2 Independent single-task scheme

Under the independent single-task setting, the multi-label image classification
model g(-;01) and the semantic segmentation model f(-;62) are trained sepa-
rately and their model parameters are not shared, i.e., 61 # 65. Specifically, we
first train the multi-label image classification model g(-; 61) to identify the top &
most likely categories for each image. Then we train the rank-adaptive selected-
label pixel classification model, i.e., semantic segmentation model, f(-;62) to
predict the label of each pixel over the selected top x classes.

Multi-label image classification model. We choose the very recent SOTA
multi-label classification method Query2Label [51] as it performs best on multi-
ple multi-label classification benchmarks by the time of our submission according
to paper—with—codem The key idea of Query2Label is to use the category embed-
dings as the query to gather the desired pixel embeddings as the key/value, which
is output by an ImageNet-22K pre-trained backbone such as Swin-L, adaptively
with one or two transformer decoder layers. Then Query2Label scheme applies a
multi-label image classifier over the refined category embeddings to predict the
existence of each category. Figure illustrates the framework of Query2Label
framework. Refer to [5I] and the official implementation for more details. The
trained weights of Query2Label model are fixed during both training and infer-
ence of the following semantic segmentation model.

Rank-adaptive selected-label pixel classification model. We choose a
simple yet effective baseline Segmenter [65] as it achieves even better perfor-
mance than Swin—IE| when equipped with ViT-L. Segmenter first concatenates
the category embedding with the pixel embeddings output by a ViT model to-
gether and then sends them into two transformer encoder layers. Last, based
on the refined pixel embeddings and category embeddings, Segmenter computes
their ¢5-normalized scalar product as the segmentation predictions. We select
the top x most likely categories for each image according to the predictions of
the Query2Label model and only use the selected top x category embeddings

" https:/ /paperswithcode.com/task/multi-label-classification
8 Segmenter w/ ViT-L: 53.63% vs. Swin-L: 53.5% on ADE20K.
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instead of all category embeddings. Figure [pb|illustrates the overall framework
of Segmenter with the selected category embeddings.

3.3 Joint multi-task scheme

Considering that the independent single-task scheme suffers from extra heavy
computation overhead as the Query2Label method relies on a large backbone,
e.g., Swin-L, we introduce a joint multi-task scheme that shares the backbone
for both sub-tasks, in other words, 6, = 6 and the computations of ¢(-;61) and
f(+;02) are also shared.

Figure [6] shows the overall framework of the joint multi-task scheme. First,
we apply a shared multi-task backbone to process the input image and output
the pixel embeddings. Second, we concatenate the category embeddings with
the down-sampled pixel embeddingsEl7 send them into one transformer encoder
layer, and apply the multi-label image classifier on the refined category embed-
dings to estimate the multi-label predictions. Last, we sort and select the top
k category embeddings, concatenate the selected category embeddings with the
pixel embeddings, send them into two transformer encoder layers, and compute
the semantic segmentation predictions based on fs-normalized scalar product
between the refined selected category embeddings and the refined pixel embed-
dings. We empirically verify the advantage of the joint multi-task scheme over
the independent single-task scheme in the ablation experiments.

3.4 Analysis experiments

Oracle experiments. We first conduct several groups of oracle experiments
based on Segmenter w/ ViT-B/16 on four challenging image semantic segmenta-
tion benchmarks ( PASCAL-Context/COCO-Stuff/ ADE20K-Full/COCO-+LVIS),
Mask2Former w/ Swin-L on both ADE20K panoptic segmentation benchmarkm
and VSPW video semantic segmentation benchmark.
- Segmenter/Mask2Former + GT (train + eval): the upper-bound segmentation
performance of Segmenter/Mask2Former when training & evaluating equipped
with the ground-truth multi-label of each image or video, in other words, we
only need to select the category of each pixel over the ground-truth existing
categories in a given image or video.
- Segmenter/Mask2Former + GT (eval): the upper-bound segmentation perfor-
mance of Segmenter/Mask2Former when only using the ground-truth multi-label
of each image or video during evaluation.

Figure [J| illustrates the detailed comparison results. We can see that only
applying the ground-truth multi-label during evaluation already brings consid-
erable improvements and further applying the ground-truth multi-label during

9 Different from the semantic segmentation task, the multi-label image classification
task does not require high-resolution representations.

10 We choose Swin-L by following the MODEL_ZOO of the official Mask2Former im-
plementation: https://github.com/facebookresearch/Mask2Former
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Table 1: Ablation of the improvements with our method. MT: multi-task learning with
auxiliary multi-label image classification scheme. LS: label sort and selection, in other
words, sort and select the top « classes. RA: rank-adaptive-7, which applies independent
7 for pixel classification scores associated with the different ranking positions.

Image semantic seg. Image panoptic seg.[Video semantic seg.
Method. PASCAL-Context{COCO-Stuff ADE20K-Full COCO+LVIS| ADE20K VSPW
Baseline 53.85 41.85 17.93 19.41 48.1 59.4
+ MT 54.05 42.38 17.81 20.26 48.2 59.5
+ MT + LS 54.27 44.31 18.26 21.13 48.8 59.6
+ MT + LS + RA 54.76 44.98 18.78 21.26 48.9 60.1

training significantly improves the segmentation performance across all bench-
marks. For example, when compared to the baseline Segmenter or Mask2Former,
Segmenter + GT (train + eval) gains +17%/424% /+19%/+27% absolute mIoU
scores across PASCAL-Context/COCO-Stuff/ADE20K-Full/COCO+LVIS and
Mask2Former + GT (train + eval) gains +11%/+13% on ADE20K/VSPW.

Improvement analysis of RankSeg. Table [I| reports the results with dif-
ferent combinations of the proposed components within our joint multi-task
scheme. We can see that: (i) multi-task learning (MT) introduces the auxiliary
multi-label image classification task and brings relatively minor gains on most
benchmarks, (ii) combining MT with label sorting & selection (LS) achieves
considerable gains, and (iii) applying the rank-adaptive-r manner (shown in
Equation instead of shared-7 achieves better performance. We investigate the
possible reasons by analyzing the value distribution of learned 1/7 with the rank-
adaptive-7 manner in Figure Iﬂ which shows that the learned 1/7 is capable of
adjusting the pixel classification scores based on the order of multi-label classi-
fication scores. In summary, we choose “MT + LS 4+ RA” scheme by default,
which gains +0.91%/+43.13%/40.85%/+41.85%/+40.8%/40.7% over the baseline
methods across these six challenging segmentation benchmarks respectively.

K=100) 2 K=100)

(a) PASCAL-Context (b) coco-stutt (c) ADE20K-Fun (d) coco+rvis

Fig. 7: Illustrating the values of learned 1/7 with rank-adaptive-7 manner on four se-
mantic segmentation benchmarks. We can see that the values of 1/7 are almost mono-
tonically decreasing, thus meaning that the pixel classification scores of the category
associated with larger multi-label classification scores are explicitly increased.
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4 Experiment

4.1 Implementation details

We illustrate the details of the datasets, including ADE20K [89], ADE20K-
Full [89/T9], PASCAL-Context [57], COCO-Stuff [§], COCO+LVIS [29]39],
VSPW [56], and YouTubeVIS [7§], in the supplementary material.
Multi-label image classification. For the independent single-task scheme, fol-
lowing the official implementatiorﬂ of Query2Label, we train multi-label image
classification models, e.g., ResNet-101 [3I], TResNetL [62], and Swin-L [53], for
80 epochs using Adam solver with early stopping. Various advanced tricks such
as cutout [22], RandAug [2I] and EMA [30] are also used. For the joint multi-task
scheme, we simply train the multi-label image classification models following the
same settings as the segmentation models w/o using the above-advanced tricks
that might influence the segmentation performance. We illustrate more details
of the joint multi-task scheme in the supplementary material.

Segmentation. We adopt the same settings for both independent single-task
scheme and joint multi-task scheme. For the segmentation experiments based
on Segmenter [65], DeepLabv3 [12], Swin-Transformer [53], BEIT [4], and ViT-
Adapter [15]. we follow the default training & testing settings of their reproduced
version based on mmsegmentation [20]. For the segmentation experiments based
on MaskFormer or Mask2Former, we follow their official implementation[™}
Hyper-parameters. We set k as 25, 50, 50, 100, and 100 on PASCAL-Context,
ADE20K, COCO-Stuff, ADE20K-Full, and COCO+LVIS respectively as they
consist of a different number of semantic categories. We set their multi-label
image classification loss weights as 5, 10, 10, 100, and 300. The segmentation
loss weight is set as 1. We illustrate the hyper-parameter settings of experiments
on MaskFormer [I9] or Mask2Former [I8] in the supplementary material.
Metrics. We report mean average precision (mAP) for multi-label image clas-
sification task, mean intersection over union (mloU) for image/video semantic
segmentation task, panoptic quality (PQ) for panoptic segmentation task, and
mask average precision (AP) for instance segmentation task.

4.2 Ablation experiments

We conduct all ablation experiments based on the Segmenter w/ ViT-B and re-
port their single-scale evaluation results on COCO-Stuff test and COCO+LVIS
test if not specified. The baseline with Segmenter w/ ViT-B achieves 41.85%
and 19.41% mIoU on COCO-Stuff and COCO+LVIS, respectively.

Influence of the multi-label classification accuracy. We investigate the
influence of multi-label classification accuracy on semantic segmentation tasks
based on the independent single-task scheme. We train multiple Query2Label
models based on different backbones, e.g., ResNet101, TResNetL, and Swin-L.

' https://github.com/SlongLiu/query2labels
2 https://github.com/facebookresearch/Mask2Former
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Table 2: Influence of the multi-label image classification accuracy (mAP) on semantic
segmentation accuracy (mloU) based on independent single-task manner.

Backbone COCO-Stuff COCO+LVIS

ResNet101 [63][TResNetL [63][Swin-L [563][ResNet101 [63][TResNetL [63]Swin-L [53]
mAP (%) 55.17 60.10 64.79 26.54 31.01 34.93
mloU (%) 39.34 42.87 44.42 16.30 19.88 21.19
A -2.51 +1.02 +2.57 -3.11 +0.47 +1.78

Table 3: Independent single-task scheme vs. Joint multi-task scheme: we adopt Swin-L
as the backbone for the multi-label predictions in the independent single-task scheme.
COCO-Stuff COCO+LVIS

#params.| FLOPs [mIoU (%) A |#params.| FLOPs [mIoU (%) A
Indep. single-task.| 343.21M | 182.8G 44.42  +42.52]| 347.33M |233.62G| 21.19 +1.78
Joint multi-task. [109.73M|78.71G| 44.98 +3.08/111.45M |99.59G| 21.26 +1.85

Method

Table 4: Influence of the size of the selected label set, i.e., k.
COCO-Stuff COCO+LVIS

25 50 75 100 125 150 171 50 100 200 [1,284
mloU (%)|44.65|44.98|44.58|44.67[44.41|44.37[44.20(20.36[21.26(20.99(20.93
A +2.80(4+3.13|+2.73|+2.82|+2.56|+2.52|+2.35|+0.95|+1.85|+1.58|+1.52

K

Table 5: Influence of the multi-label Table 6: Influence of multi-label prediction
classification loss weight. head architecture.

multi—labeI. 1 5 10 20  Method #params.|FLOPs|mAP mIoU (%) A
izlgoif‘%)‘;’elght 9 1il63 3862 53lga s CAP+Linear|103.24M(76.94G[60.62] 43.19 +1.34
mloU (%) 44.11144.90|44.98[44.04 2% TranDec | 114.27TM |78.83G|61.15| 44.07 +2.22

A +2.26/4-3.051+-3.13|+2.19 1x TranEnc | 109.73M |78.71G |62.52| 44.98 +3.13

Then we train three Segmenter w/ ViT-B segmentation models based on their
multi-label predictions independently. According to the results in Table[2] we can
see that more accurate multi-label classification prediction brings more seman-
tic segmentation performance gains and less accurate multi-label classification
prediction even results in worse results than baseline.

Independent single-task scheme vs. Joint multi-task scheme. We com-
pare the performance and model complexity of the independent single-task scheme
(w/ Swin-L) and joint multi-task scheme in Table[3] To ensure fairness, we choose
the # of labels in the selected label set, i.e., k, as 50 for both schemes, and the
segmentation models are trained & tested under the same settings. According
to the comparison results, we can see that joint multi-task scheme achieves bet-
ter performance with fewer parameters and FLOPs. Thus, we choose the joint
multi-task scheme in the following experiments for efficiency if not specified.
Influence of different top «. We study the influence of the size of selected la-
bel set, i.e., k, as shown in Table[d] According to the results, our method achieves
the best performance on COCO-Stuft/COCO+LVIS when £=50/k=100, which
achieves a better trade-off between precision and recall for multi-label pre-
dictions. Besides, we attempt to fix k=50 during training and report the re-
sults when changing x during evaluation on COCO-Stuff: k=25: 44.89% /xk=50:
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44.98% /k=T75: 45.00% /Kx=100: 45.01%. Notably, we also report the results with
k=K, in other words, we only sort the classifier weights, which also achieve con-
siderable gains. Therefore, we can see that sorting the classes and rank-adaptive
adjustment according to multi-label predictions are the key to the gains. In sum-
mary, our method consistently outperforms baseline with different x values. We
also attempt to use dynamic « for different images during evaluation but observe
no significant gains. More details are provided in the supplementary material.
Influence of the multi-label classification loss weight. We study the influ-
ence of the multi-label image classification loss weights with the joint multi-task
scheme on COCO-Stuff and report the results in Table[5] We can see that setting
the multi-label classification loss weight as 10 achieves the best performance.
Influence of &(-) choice. Table[6]compares the results based on different multi-
label prediction head architecture choices including “GAP+Linear” (applying
global average pooling followed by linear projection), “2x TranDec” (using two
transformer decoder layers), and “1x TranEnc” (using one transformer encoder
layer) on COCO-Stuff. Both “2x TranDec” and “1x TranEnc” operate on fea-
ture maps with 3—12 resolution of the input image. According to the results, we can
see that “I1x TranEnc” achieves the best performance and we implement &(-)
as one transformer encoder layer if not specified. We also attempt generating
multi-label prediction (mAP=>58.55%) from the semantic segmentation predic-
tion directly but observe no performance gains, thus verifying the importance of
relatively more accurate multi-label classification predictions.

More comparison results with the previous EncNet [85] and ESSNet [39] are
summarized in the supplementary material.

4.3 State-of-the-art experiments

Image semantic segmentation. We apply our method to various state-of-
the-art image semantic segmentation methods including DeepLabv3, Seg-Mask-
L/16, Swin-Transformer, BEIT, and ViT-Adapter-L. Table [7| summarizes the
detailed comparison results across three semantic segmentation benchmarks in-
cluding ADE20K, COCO-Stuff, and COCO+LVIS, where we evaluate the multi-
scale segmentation results on ADE20K/COCO-Stuff and single-scale segmenta-
tion results on COCO+LVIS (due to limited GPU memory) respectively. More
details of how to apply our joint multi-task scheme to these methods are pro-
vided in the supplementary material. According to the results in Table[7] we can
see that our RankSeg consistently improves DeepLabv3, Seg-Mask-L/16, Swin-
Transformer, BEIT, and ViT-Adapter-L across three evaluated benchmarks. For
example, with our RankSeg, BEIT gains 0.8% on ADE20K with slightly more
parameters and GFLOPs.

Image panoptic segmentation & Video semantic segmentation & Video
instance segmentation. To verify the generalization ability of our method, we
extend RankSeg to “rank-adaptive selected-label region classification” and apply
it to the very recent Mask2Former [18]. According to Table [8] our RankSeg im-
proves the image semantic segmentation/image panoptic segmentation/video se-
mantic segmentation/video instance segmentation performance by +0.7%/+0.8%



14 Haodi He, Yuhui Yuan, Xiangyu Yue, Han Hu

Table 7: Combination with DeepLabv3, Seg-Mask-L, Swin-B, BEIT, and ViT-Adapter.
ADE20K COCO-Stuff COCO+LVIS

#params.| FLOPs |mIoU(%)|#params.| FLOPs |mloU(%)|#params.| FLOPs [mIoU(%)

DeepLabv3 87.21M | 347.64G | 45.19 87.22M | 347.68G | 38.42 88.08M [350.02G| 11.04

+ RankSeg 91.87TM | 349.17G | 46.61 91.75M | 349.09G | 39.86 93.21M |359.47G| 12.76

Seg-Mask-L/16|333.23M | 377.83G 53.63 [333.26M | 378.57G 47.12 334.4M | 420.2G | 23.71

+ RankSeg 345.99M | 377.18G | 54.47 | 346.03M | 377.46G | 47.93 | 348.31M | 422.6G 24.60

Method

Swin-B 121.42M| 299.81G 52.4 [121.34M| 299.98G | 47.16 [122.29M|309.34G| 20.33
+ RankSeg 125.43M | 300.48G | 53.01 | 125.46M | 300.56G | 47.85 | 126.89M [306.53G| 20.81
BEIT 441.27M |1745.99G| 57.0 |441.30M |1746.54G| 49.9 OOM
+ RankSeg 456.28M | 1751.04G | 57.8 | 456.35M | 1751.34G | 50.3 OOM
ViT-Adapter-L|570.74M |2743.20G| 60.5 N/A N/A
-+ RankSeg 584.71M | 2747.81G | 60.7 N/A N/A

OOM means out of memory error on 8 x 32G V100 GPUs.
N/A means the results are available due to limited GPU resources.

Table 8: Combination with Mask2Former based on Swin-L.

Image semantic seg. Image panoptic seg. Video semantic seg. Video instance seg.
Method ADE20K ADE20K VSPW (T=2) YouTubeVIS 2019 (T=2)
#params,| FLOPs [mloU(%)#params. FLOPs [PQ(%)#params.| FLOPs jmloU(%)#params.| FLOPs |[AP(%)

Mask2Former [18]205.51M(369.02G| 57.3 |205.55M[377.98G| 48.1 [205.50M|737.38G| 59.4 |205.52M[753.79G| 60.4
+ RankSeg 208.79M |369.83G| 58.0 |208.83M |379.11G| 48.9 |208.75M |738.14G| 60.1 |208.70M |754.59G| 61.1

T=2 means each video clip is composed of 2 frames during training/evaluation and we report the GFLOPs over 2 frames.

/+0.7%/+0.7% respectively with slightly more parameters and GFLOPs. More
details about the Mask2Former experiments and the results of combining Mask-
Former with RankSeg are provided in the supplementary material.

5 Conclusion

This paper introduces a general and effective rank-oriented scheme that formu-
lates the segmentation task into two sub-problems including multi-label classi-
fication and rank-adaptive selected-label pixel classification. We first verify the
potential benefits of exploiting multi-label image/video classification to improve
pixel classification. We then propose a simple joint multi-task scheme that is
capable of improving various state-of-the-art segmentation methods across mul-
tiple benchmarks. We hope our initial attempt can inspire more efforts towards
using a rank-oriented manner to solve the challenging segmentation problem
with a large number of categories. Last, we want to point out that designing
& exploiting more accurate multi-label image/video classification methods is a
long-neglected but very important sub-problem towards more general and accu-
rate segmentation.
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