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Abstract. Deep learning methods have achieved impressive performance
for multi-class medical image segmentation. However, they are limited
in their ability to encode topological interactions among different classes
(e.g., containment and exclusion). These constraints naturally arise in
biomedical images and can be crucial in improving segmentation qual-
ity. In this paper, we introduce a novel topological interaction module
to encode the topological interactions into a deep neural network. The
implementation is completely convolution-based and thus can be very ef-
ficient. This empowers us to incorporate the constraints into end-to-end
training and enrich the feature representation of neural networks. The
efficacy of the proposed method is validated on different types of inter-
actions. We also demonstrate the generalizability of the method on both
proprietary and public challenge datasets, in both 2D and 3D settings,
as well as across different modalities such as CT and Ultrasound. Code
is available at: https://github.com/TopoXLab/TopoInteraction
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1 Introduction

Instead of using hand-crafted features, state-of-the-art deep segmentation meth-
ods [4,5,6,16,29] learn powerful feature representations automatically and achieve
satisfactory performances. However, standard deep neural networks cannot learn
global structural constraints regarding semantic labels, which can often be crit-
ical in biomedical domains. While existing works mostly focus on encoding the
topology of a single label [18,19,8,35], limited progress has been made address-
ing the constraints regarding interactions between different labels. Even strong
methods (e.g., nnUNet [21]) may fail to preserve the constraints as they only
optimize per-pixel accuracy. For example, in the segmentation of abdominal
aorta, we know a priori that the aorta wall always encloses the lumen. Exploit-
ing this constraint can help us segment the wall correctly, providing accurate
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(a) Input (b) UNet (c) nnUNet (d) Ours (e) GT

Fig. 1: Motivating examples for aorta segmentation. Red and yellow represent
aortic lumen and wall, respectively. Anatomically, the lumen is always enclosed
by the wall, separated from the background (illustrated in (e) ground truth
GT ). Even strong baselines, e.g., (b) UNet and (c) nnUNet, fail to respect this
anatomically important topological constraint because often the intensity of the
wall in the input is similar to that of the background. Our proposed method
explicitly encodes the constraint, thereby improving the segmentation quality.

geometric measures (e.g., wall thickness and aorta volume) for the prediction of
aortic aneurysm eruption risk [11]. See Fig. 1 for an illustration. Another kind of
global constraint is mutual exclusion of different labels. For example, in multi-
organ segmentation, ensuring different organs to not touch each other can help
improve the segmentation quality.

In this paper, we investigate how to help deep neural networks learn these
global structural constraints, which we call topological interactions, between dif-
ferent semantic labels. To encode such interaction constraints into convolutional
neural networks is challenging; it is hard to directly encode hard constraints
into kernels while keeping them learnable. Traditional methods [10,38,31,26,22,3]
solve the segmentation problem as a combinatorial optimization problem (e.g.,
graph-cut or multicut) and encode these topological interactions as constraints
of the solution. However, these approaches do not apply to deep neural net-
works, which do not rely on a global optimization for the inference. Even if
one can encode the constrained optimization as a post-processing step, it will
be very inefficient. More importantly, the optimization is not differentiable and
thus cannot be incorporated into training.

We propose a novel method to learn the topological interactions for multi-
class segmentation tasks. A desirable solution should be efficient. Furthermore,
it should be incorporated into training to help the network learn. Our key ob-
servation is that a broad class of topological interactions, namely, enclosing
and exclusion, boils down to certain impermissible label combinations of ad-
jacent pixels/voxels. Inspired by such observation, we propose a topological in-
teraction module that encodes the constraints into a neural network through a
series of convolutional operations. Instead of directly encoding the constraint
into the convolutional kernels, the proposed module directly identifies locations
where the constraints are violated. Our module is extremely efficient due to the
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convolution-based design. Furthermore, it can naturally be incorporated into the
training of neural networks, e.g., through an extra loss penalizing the constraint-
violating pixels/voxels. As shown in Fig. 1, incorporated with our module, the
network can learn to segment aortic walls correctly even when strong baselines,
such as nnUNet, fail.

We evaluate the proposed method by performing experiments on both pro-
prietary and public challenge datasets, in both 2D and 3D settings, and across
different modalities. The results show that our method is generalizable and can
be employed in various scenarios where topological interactions apply. It not only
enforces the constraints, but also improves the segmentation quality significantly
in standard metrics such as DICE, Hausdorff distance, etc. This is as expected;
a network that encodes the constraints also learns a better representation for
segmentation. In summary, our contributions are as follows:

– We propose an efficient convolution-based module to encode the topological
interactions in a multi-class segmentation setting.

– The proposed module is very efficient and generic. It can be incorporated into
any backbone to encode the constraints in an end-to-end training pipeline.

– Through extensive experiments on multiple medical imaging datasets, we
show our method effectively improves the segmentation quality without in-
creasing computational cost.

2 Related Work

Multi-Class Image Segmentation. Numerous graph or energy based methods
have been proposed to deal with multi-class image segmentation in the pre-
deep learning era. Some of these methods integrate fuzzy spatial relations [9] or
encode spatial interactions via inter-object distances [28]. Others encode spatial
relationships for hierarchical segmentation [12,36]. For example, Strekalovskiy et
al. [36] enforce geometric constraints by introducing a label ordering constraint.
Li et al. [27] propose to segment nested objects with graph-based approaches.
Delong et al. [10] propose to encode geometric constraints between different
regions into a graph cut framework for multi-class image segmentation.
Geometric and Topological Constraints. Early works, using classic frame-
works such as level set or Markov random field, enforce topological or geometric
constraints while solving the energy minimization problem [14,25,3,10,38,31,26,22].
However, these methods cannot be easily incorporated into the training of deep
neural networks. In recent years, new methods have been proposed to incorpo-
rate geometric/topological constraints into the training of deep neural networks
(DNNs) [18,19,8,35,39]. These methods enable the DNNs to learn geometry-
/topology-aware representations and to deliver better segmentation results. How-
ever, all these methods are focusing on the topology, e.g., connections, loops and
branches, of a single foreground class. They cannot enforce topological interac-
tions between different classes. For example, in aorta segmentation, forcing the
aortic wall to be a tube in 3D cannot guarantee that the wall contains the lumen
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Fig. 2: Schematic illustration of the topological interactions: containment and
exclusion. BG denotes the background class. Containment: β contains α. Ex-
clusion: α and γ are mutually exclusive.

and separates it from the background. This gap motivates our investigation on
encoding the inter-class topological interactions in DNN training.

The method closest to ours is [2], which we refer to as TopoCRF. It en-
codes the mutual exclusion constraint as a constraint on the posterior proba-
bility (softmax layer output) at each pixel/voxel, without taking neighborhoods
into account. Therefore, this approach cannot really exclude the case when ad-
jacent pixels have a forbidden label combination. The explicit construction of 2c
constraint-encoding priors for a c-class problem is also very expensive and does
not scale. Additional methods similar to TopoCRF are [32] which we refer to
as MIDL, and [13] which we refer to as NonAdj. MIDL is a direct application
of TopoCRF by simply adding a DICE loss term. NonAdj extends TopoCRF
by taking the adjacent pixels into consideration, however, it requires a strong
pre-trained model to perform well. Both MIDL and NonAdj focus on modeling
joint distributions, and thus suffer from similar issues as TopoCRF.

3 Methodology

Broadly speaking, topological interactions between different foreground classes
include two types, containment and exclusion. In Fig. 2, we illustrate these con-
straints using three class labels, α, β and γ.

– Containment: Class β contains α if β completely surrounds α. We use
solid arrow from β to α to denote the containment relationship. In real
applications, e.g., aorta segmentation, the aortic wall contains the lumen.
See Fig. 3(a) for an illustration.

– Exclusion: Classes α and γ are mutually exclusive if the pixels/voxels of
class α and class γ cannot be adjacent to each other. We use dashed double-
arrow to denote the exclusion relationship. In multi-organ segmentation,
there is clear separation between stomach and liver. They are mutually ex-
clusive. See Fig. 3(c) for an illustration.

These constraints are quite general and can be observed in different medical
imaging applications. See Fig. 3 for more examples. We can also enforce stronger
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Fig. 3: Multi-class topological interactions for each dataset.

constraints. For containment, we may require the surrounding class (β in Fig. 2)
to be at least d-pixel thick. For exclusion, we may require the gap between two
mutually exclusive classes to be at least d-pixel wide. We call these generalized
constraints d-containment and d-exclusion.

Overview of the Proposed Method. Though the aforementioned topological
interactions are global constraints, we observe that they can be encoded in a
localized manner. Specifically, both containment and exclusion constraints can
be rewritten as forbidding certain label combinations for adjacent pixels/voxels.
In the example in Fig. 2, β contains α equals to the constraint that a pixel/voxel
of label α cannot be adjacent to a pixel/voxel of any label other than β and
itself. Exclusion is more straightforward, α and γ are mutually exclusive if any
two adjacent pixels/voxels do not have the label pair (α, γ) or (γ, α).

We enforce these constraints into DNN training by proposing a novel topo-
logical interaction module. The idea is to go through all pairs of adjacent pix-
els/voxels and identify the pairs that violate the desired constraints. Pixels be-
longing to these pairs are the ones inducing errors into the topological interac-
tion. We will refer to them as critical pixels. Our topological interaction module
will output these critical pixels. Then, we can incorporate the module into train-
ing by designing a loss paying extra penalty to these critical pixels.

An efficient implementation of the module, however, is not trivial. Simply
looping through all pixels is too expensive to serve as a frequent operation during
training. To this end, we propose an efficient implementation of the constraints
purely based on convolutional operations (Sec. 3.1). The method is much more
efficient and can easily generalize to more challenging d-containment and d-
exclusion without much extra computational expense. Finally, in Sec. 3.2, we
incorporate the proposed module into training by formulating a loss function
penalizing the critical pixels. This ensures the DNNs learn better feature rep-
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Fig. 4: An overview of the proposed method. The proposed module encodes the
topological interactions between the different classes (e.g., media and lumen
classes in the IVUS dataset follow the containment constraint). Critical pixels
are identified and used for the new loss Lti.

resentation while respecting the imposed constraints, as we will demonstrate
empirically. Fig. 4 provides an overview of the proposed method.

3.1 Topological Interaction Module

The topological interaction module encodes the topological interactions defined
above. Recall the key is to forbid certain label combinations appearing in any pair
of adjacent pixels. Our module identifies the pairs that violate the constraints.

Next, we explain how to map the constraints into the local constraints regard-
ing two labels that should not appear in adjacent pixels. For exclusion constraint,
the forbidding label pair is obvious. In Fig. 2, labels α and γ are mutually ex-
clusive. We create new labels A = α and C = γ, and forbid them to appear in
adjacent pixels. For containment constraints, say label β contains label α (as in
Fig. 2), we create a new label A = α and a new label C being the union of all
other labels except for α and β. Then β containing α is equivalent to A = α not
touching C.

For the rest of this section, we focus on how to create a module identifying
adjacent pixel pair having the label pair (A,C) or (C,A). For ease of exposition,
we assume a 2D 4-connectivity neighborhood (i.e., each pixel is only adjacent to
4 neighboring pixels), and so d = 1. The approach can be naturally generalized
to other connectivities as formalized in the classic digital topology [34].
Naive Solution. Given a discretized segmentation map predicted by the net-
work, the naive solution is simply looping over all pixels and for each pixel, scan
all its neighbors. For every pair of adjacent pixels with the label pair (A,C) or
(C,A), we flag both of the pixels as critical. The obvious issue with this naive
solution is that it is very expensive. Furthermore, such computation can only run
on a CPU, and so is rather slow; this is detailed in the Supplementary Material.1

1 There is an alternate way to better implement this naive solution by creating extra
maps representing neighboring pixels. The issue of such a method is it does not
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Fig. 5: 2D illustration of the proposed strategy to detect the set V of topological
critical pixels. We use 4-connectivity kernel. The entire critical pixel map V is
highlighted with ∗’s.

Convolution-Based Solution. Let P ⊆ Rd denote the d-dimensional discrete
segmentation map predicted by the network. We want to generate a critical pixel
map in which only those label-A pixels with a label-C neighbor are activated
and vice-versa. We achieve this goal through manipulations of different semantic
masks. First, to determine the critical pixels in A, we expand the C mask by
d pixels, and then find out the intersection of the expanded mask with the A
mask (d = 1 for 2D 4-connectivity). In this way, we obtain the set of all the
critical A pixels: they fall within the expanded C mask, and thus must be a
neighbor of some C pixels. In top row of Fig. 5, second to fourth columns, we
show the C mask (denoted by MC), its expansion, and the intersection with the
A mask (denoted by MA), resulting in the critical A pixels. In a similar manner,
we can obtain the set of critical C pixels by expanding the A mask and finding
its intersection with the C mask. This is illustrated in the bottom row, second
to fourth columns of Fig. 5.

In practice, expanding a mask can be done efficiently using the dilation mor-
phological operation [15]. In dilation, we convolve a given binary mask with a
kernel K. The kernel defines the neighbors of a given voxel. Formally, let MA and
MC be the class masks for A and C respectively. We then obtain neighborhood
information NA and NC via dilation/convolution as follows:

NA := MA ⊛K, NC := MC ⊛K (1)

where we use ⊛ to denote the standard convolution operation. K is the convolu-
tion kernel which we refer to as the connectivity kernel. As we are dealing with
2D 4-connectivity case, the connectivity kernel used is as shown in Fig. 5. Notice
that in map NA, all the pixels which are in contact with class A get activated.
We obtain NC in a similar way. Now that we have the expanded neighborhood

scale well with larger neighborhood (which is necessary for more general constraints
assuming a gap of width d between forbidden label pairs). See the Supplementary
Material for more details.
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information, and we use this to find which pixels of A and C fall in each other’s
neighborhood. If V denotes the entire critical pixel map, it can be further divided
into VA and VC which contain the critical pixels in class A and C respectively.
We can then quantify them as:

VA := MA ⊙NC , VC := MC ⊙NA, V := VA ⊕ VB (2)

where ⊕ denotes the union operation, and ⊙ denotes the Hadamard product.
Fig. 5 gives an overview of our method to compute topological critical pixels

in the form of a binary mask V . Thus through the manipulation of maps ob-
tained via standard convolution, we are able to augment existing information by
deriving information relevant to topological interactions.
Remark on the Connectivity Kernel K. We remark that the connectivity
kernel K depends on the definition of neighborhood. Our current choice of K
corresponds to the 4-connectivity neighborhood (illustrated in Fig. 5). In gen-
eral, we can choose different neighborhood definitions corresponding to different
kernels. Following the classic digital topology [34], in 2D, we can have 4- and
8-connectivities. In 3D, we can have 6- and 26-connectivities. We can also specify
different connectivity kernels for classes A and C. See Supplementary Material
for illustrations.2

We also note it is natural to generalize the neighborhood definition and mod-
ify the kernel accordingly to enforce the more general/stronger constraints: d-
containment and d-exclusion. These constraints essentially boil down to the con-
straint that labels A and C cannot appear on two pixels within distance d. To
encode such constraints, we simply define the neighborhood of a pixel p to be
all pixels within a (2d+1)× (2d+1) local patch centered at p. The connectivity
kernel is then an all-one kernel of the same size.
Computational Efficiency. We analyze the computational efficiency of the
proposed method by determining its complexity as a function of the input and
neighborhood size. Let the image size be N×N . Suppose we enforce a separation
of d pixels, then the neighborhoods to be inspected for each pixel will be k × k,
where k = 2d+1. In the naive solution, we require scanning the neighborhood of
each pixel via loops and so the time complexity is in the order of O(N2k2), not
really scalable. This is apart from the fact that such a solution can only run on
a CPU. On the contrary, the convolution-based solution has a time complexity
O(N2 logN). Here logN is due to the FFT (Fast Fourier Transform) implemen-
tation of convolution. While the naive solution’s running time is quadratic to k,
our proposed is independent of k due to FFT. In practice, deep learning frame-
works are highly optimized for convolution operations, and so they are several
orders of magnitude cheaper than the naive solution. The memory requirement
for both methods is similar in the order of O(N2) to store the map V .
2 In digital topology, to ensure the Jordan curve theorem is correct, one needs to have

either 4-conn. for foreground and 8-conn. for background, or the opposite. This is
not in conflict with our method. A and C are both considered foreground labels. In
2D, they can use either 4-conn. or 8-conn. as long as they are the same. Similar rules
apply to 3D.
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3.2 Incorporating into End-to-End Training

To incorporate the proposed topological interaction module into end-to-end
training, we propose a topological interaction loss to correct the violations by
penalizing the critical pixels.

Let f ∈ Rc×H×W be the multi-class likelihood map predicted by the network,
where c, H and W denote the number of classes, height and width of the image,
respectively. g ∈ RH×W is the ground truth segmentation map with discrete
labels, 0, 1, ..., c − 1. We use Lpixel to denote the pixel-wise loss function, such
as, cross-entropy, mean-squared-error, or dice losses. We use the binary mask
V obtained from Sec. 3.1, to define Lti, denoting the additional topological
interaction loss, as:

Lti = Lpixel(f ⊙ V, g ⊙ V ) (3)

Lti can essentially encode the topological interactions, correct the topological
interaction errors, and eventually produce a segmentation that is topologically
correct. The final loss of our method, Ltotal, is given by:

Ltotal = Lce + λdiceLdice + λtiLti (4)

where Lce and Ldice denote the cross-entropy and dice loss. The loss is controlled
by the weights λdice and λti.

4 Experiments

Datasets. We validate our method on four datasets: The proprietary Aorta
dataset contains 3D CT scans of 28 patients from an institutional database
of patients with thoracic and/or abdominal aortic aneurysm. The IVUS (In-
traVascular Ultrasound) [1] is a 2D dataset of human coronary arteries and
contains lumen and media-adventitia labels. The Multi-Atlas BTCV [24] is a
multi-organ segmentation challenge, containing 3D CT scans of the cervix and
abdomen. We use the abdomen dataset and segment four classes, namely, spleen,
left kidney, liver, and stomach which appear in close proximity. We have clini-
cally verified that the exclusion constraint holds among these four classes. The
SegTHOR [23] 2019 challenge contains 3D CT scans of thoracic organs at risk
(OAR). In this dataset, the OARs are the heart, trachea, aorta and esophagus.
The exclusion constraint holds among three classes, that is, the trachea, the
aorta, and the esophagus do not touch each other. We do not take the heart
class into consideration.

The containment constraint holds for the Aorta and IVUS datasets, while
the exclusion constraint holds for the remaining two. Fig. 3 gives an overview of
the classes in each dataset and the topological interactions among them.
Baselines and Implementation Details. We use the PyTorch framework, a
single NVIDIA Tesla V100-SXM2 GPU (32G Memory) and a Dual Intel Xeon Sil-
ver 4216 CPU@2.1Ghz (16 cores) for all the experiments. The comparison base-
lines consist of the UNet [33,7], FCN [30], nnUNet [21], TopoCRF [2], MIDL [32],
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(a) Input (b) nnUNet (c) ≈Ep. 70 (d) ≈Ep. 140 (e) ≈Ep. 200 (f) GT

Fig. 6: Epoch (Ep.) progression of the proposed method. Critical pixel map iden-
tified by the module is marked in red.

and NonAdj [13]. We use the publicly available codes for UNet, FCN, nnUNet,
and NonAdj. For TopoCRF and MIDL, we implemented it by ourselves in Py-
Torch. Specifically, for TopoCRF, MIDL, NonAdj and our proposed method,
we fine-tune the models pre-trained by nnUNet. To support our claim that our
method can be incorporated into any backbone, we train our module on FCN
and UNet backbones as well. More details and additional results are included in
the Supplementary Material.

The connectivity kernel K, in 2D, is a 3× 3 kernel filled with 1’s to enforce
8-connectivity. Similarly in 3D, K is a 3× 3× 3 kernel filled with 1’s to enforce
26-connectivity. We also perform an ablation study on the connectivity kernel
in the Supplementary Material.
Evaluation Metrics. Dice score [40], Hausdorff distance (HD) [20], and aver-
age symmetric surface distance (ASSD) [17] are used as the performance metrics.
We introduce a new metric called the % violations. The % violations is calcu-
lated by the number of pixels violating the constraint as a fraction of the total
number of foreground class pixels/voxels. We report the % violations for all the
pixels/voxels together instead of separately per class. For all metrics, we report
the means and standard deviations. We also perform the unpaired t-test [37]
to determine the statistical significance of the improvement. The statistically
significant better performances are highlighted with bold in all the tables. The
t-test [37] used to determine the statistical significance of the improvement has
a confidence interval of 95%. The best, while not statistically significant, perfor-
mances are highlighted with italics.

4.1 Results

Tab. 1 shows the quantitative results for the containment constraint on the Aorta
and IVUS datasets, while Tab. 2 shows the quantitative results for the exclusion
constraint on the Multi-Atlas (Abdominal) and SegTHOR datasets. In Fig. 7, we
show the qualitative comparison of different methods. The comprehensive quan-
titative and qualitative results of our method on the UNet and FCN backbones,
along with different connectivity kernels can be found in the Supplementary Ma-
terial. In general, we observe that learning the topological constraint leads to
better feature representation and thus better segmentations both qualitatively
and quantitatively. We discuss the results for both interactions below.
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(a) Input (b) nnUNet (c) CRF (d) MIDL (e) NonAdj (f) Ours (g) GT

Fig. 7: Qualitative results compared with the baselines. Top three rows deal
with the containment constraint, while bottom two rows deal with the exclusion
constraint. Aorta: rows 1-2, IVUS: row 3, Multi-Atlas: row 4, SegTHOR: row 5.
The second row is the 3D view of the first row. It is hard to visualize the input
3D volumetric image and so we leave it blank in the second row. Colors for the
classes correspond to the ones used in Fig. 3.

Quantitative and Qualitative Results for Containment Constraint.
From Tab. 1, we observe that the proposed method improves the quality of seg-
mentations by improving all the metrics significantly. In Fig. 7, we see that the
networks trained with the proposed method have considerably fewer topological
violations compared to the other baseline networks. In the top two rows of the
figure, we see that the proposed method fixes the topological interaction errors
by enforcing the lumen always be enclosed by the wall. By enforcing this con-
straint, our method is able to reconstruct the broken lumen and wall structures,
thereby significantly improving the segmentation quality. In the third row, we
show results on the IVUS dataset. Due to artifacts in the input (like shadow),
nnUNet erroneously classifies extraneous lumen regions beyond the media. Due
to the smoothness loss component in TopoCRF, the boundaries of its segmen-
tations are a lot smoother compared to nnUNet, however, it also fails to correct
the lumen prediction. MIDL performs similarly as TopoCRF, and while NonAdj
performs better than both of them, it still fails in several places. By enforcing
the containment constraint, our method is able to learn better features and gets
rid of such extraneous lumen regions.
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Table 1: Quantitative comparison for containment constraint
Class Model Dice↑ HD↓ ASSD↓ % Violations↓

Aorta dataset
L
u
m

en
UNet [7] 0.900 ± 0.016 64.392 ± 16.874 9.315 ± 1.749 13.994 ± 1.809
FCN [30] 0.894 ± 0.013 57.974 ± 19.756 9.77 ± 1.421 15.675 ± 2.409

nnUNet [21] 0.906 ± 0.020 36.368 ± 12.559 4.563 ± 0.675 5.424 ± 2.461
Topo-CRF [2] 0.897 ± 0.057 40.162 ± 18.687 5.952 ± 0.999 8.358 ± 2.151

MIDL [32] 0.912 ± 0.008 32.157 ± 16.270 6.405 ± 0.524 6.377 ± 1.661
NonAdj [13] 0.916 ± 0.030 32.465 ± 18.848 4.771 ± 1.129 4.932 ± 1.479

Ours 0.922 ± 0.009 25.959 ± 13.574 3.920 ± 0.765 3.526 ± 1.244

W
al

l

UNet [7] 0.677 ± 0.015 71.109 ± 24.653 12.497 ± 1.372 /
FCN [30] 0.651 ± 0.015 66.059 ± 17.188 12.339 ± 0.959 /

nnUNet [21] 0.741 ± 0.026 42.486 ± 15.139 8.005 ± 0.811 /
Topo-CRF [2] 0.739 ± 0.010 46.873 ± 17.636 7.914 ± 0.877 /

MIDL [32] 0.742 ± 0.028 43.132 ± 15.624 6.420 ± 1.242 /
NonAdj [13] 0.748 ± 0.017 38.197 ± 19.598 4.887 ± 0.702 /

Ours 0.758 ± 0.017 31.137 ± 17.772 5.799 ± 0.737 /
IVUS dataset

L
u
m

en

UNet [33] 0.786 ± 0.144 6.643 ± 1.936 30.944 ± 11.631 5.970 ± 2.141
FCN [30] 0.824 ± 0.071 5.319 ± 1.519 22.551 ± 7.882 3.766 ± 1.444

nnUNet [21] 0.893 ± 0.066 3.464 ± 0.917 11.152 ± 3.954 2.708 ± 1.032
Topo-CRF [2] 0.887 ± 0.096 4.138 ± 1.454 10.497 ± 2.487 2.371 ± 0.960

MIDL [32] 0.891 ± 0.073 4.226 ± 1.390 10.641 ± 2.322 2.394 ± 0.918
NonAdj [13] 0.897 ± 0.081 3.140 ± 1.154 9.628 ± 3.221 2.173 ± 0.994

Ours 0.949 ± 0.070 2.046 ± 1.079 6.057 ± 2.746 0.157 ± 0.808

M
ed

ia

UNet [33] 0.651 ± 0.130 7.391 ± 1.072 21.984 ± 6.634 /
FCN [30] 0.782 ± 0.144 6.806 ± 1.147 13.863 ± 4.511 /

nnUNet [21] 0.856 ± 0.090 5.646 ± 1.228 6.491 ± 2.314 /
Topo-CRF [2] 0.843 ± 0.106 5.409 ± 1.166 5.929 ± 1.785 /

MIDL [32] 0.841 ± 0.121 5.461 ± 1.214 6.071 ± 1.837 /
NonAdj [13] 0.848± 0.117 5.983 ± 1.342 6.615 ± 1.937 /

Ours 0.910 ± 0.089 3.873 ± 0.933 3.171 ± 1.871 /

For both the Aorta and IVUS datasets, by identifying the critical pixels, our
method improves the learning capability of the network through the epochs. In
Fig. 6, we show how our method improves the network predictions through the
epochs on an IVUS data sample. Our results demonstrate that our proposed
method is able to significantly improve the segmentation quality without the
need for any additional post-processing.

Quantitative and Qualitative Results for Exclusion Constraint. For the
Multi-Atlas dataset, our method brings in the greatest improvement for the
stomach and liver classes. As can be seen in fourth row of Fig. 7, it is correctly
able to separate these two classes while the other methods fail to do so. This
correlates with the quantitative metrics as well. In the case of the spleen and
kidney classes, nnUNet itself predicts separation between these two classes. Our
method improves the dice score slightly, but significantly improves other metrics
like HD and ASSD. For the SegTHOR dataset, our method brings in the greatest
improvement for the esophagus and trachea classes which tend to come in contact
at several points across their lengths. In the final row of Fig. 7, we show that
our proposed method is able to impose the exclusion constraint among the three
classes. For the aorta class, nnUNet is largely able to separate it from the other
classes, and so our method’s performance on this class is comparable to nnUNet.
We include results for the aorta and heart classes in the Supplementary Material.
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Table 2: Quantitative comparison for exclusion constraint
Class Model Dice↑ HD↓ ASSD↓ % Violations↓

Multi-Atlas dataset
S
p
le

en
UNet [7] 0.919 ± 0.041 47.037 ± 17.365 4.323 ± 0.367 1.857 ± 0.123
FCN [30] 0.909 ± 0.037 134.915 ± 65.623 17.646 ± 10.604 3.041 ± 0.181

nnUNet [21] 0.950 ± 0.041 6.084 ± 1.078 0.573 ± 0.131 0.819 ± 0.064
Topo-CRF [2] 0.947 ± 0.028 6.403 ± 1.039 1.844 ± 0.517 0.934 ± 0.032

MIDL [32] 0.944 ± 0.015 5.597 ± 1.374 0.565 ± 0.124 0.725 ± 0.151
NonAdj [13] 0.952 ± 0.058 5.621 ± 1.065 0.513 ± 0.175 0.521 ± 0.082

Ours 0.960 ± 0.009 5.340 ± 1.049 0.484 ± 0.109 0.464 ± 0.043

K
id

n
ey

UNet [7] 0.908 ± 0.079 61.602 ± 13.168 9.992 ± 2.461 /
FCN [30] 0.892 ± 0.018 187.472 ± 36.096 11.583 ± 2.396 /

nnUNet [21] 0.931 ± 0.018 27.252 ± 5.406 5.352 ± 0.199 /
Topo-CRF [2] 0.928 ± 0.059 30.209 ± 5.317 6.308 ± 0.905 /

MIDL [32] 0.935 ± 0.071 25.208 ± 5.440 4.885 ± 0.421 /
NonAdj [13] 0.934 ± 0.012 24.182 ± 5.561 4.692 ± 0.657 /

Ours 0.936 ± 0.026 20.013 ± 2.785 4.298 ± 0.798 /

L
iv

er

UNet [7] 0.912 ± 0.016 64.556 ± 13.894 2.324 ± 0.513 /
FCN [30] 0.885 ± 0.034 183.870 ± 49.796 29.061 ± 13.484 /

nnUNet [21] 0.951 ± 0.008 38.931 ± 12.161 1.922 ± 0.506 /
Topo-CRF [2] 0.949 ± 0.006 46.449 ± 14.188 2.072 ± 0.313 /

MIDL [32] 0.955 ± 0.005 34.276 ± 11.253 1.344 ± 0.431 /
NonAdj [13] 0.957 ± 0.003 33.671 ± 13.543 1.185 ± 0.372 /

Ours 0.962 ± 0.005 30.341 ± 9.111 0.985 ± 0.386 /

S
to

m
ac

h

UNet [7] 0.846 ± 0.084 76.000 ± 24.352 5.023 ± 1.508 /
FCN [30] 0.708 ± 0.156 172.855 ± 43.735 11.328 ± 3.178 /

nnUNet [21] 0.895 ± 0.015 45.767 ± 7.960 2.720 ± 0.430 /
Topo-CRF [2] 0.888 ± 0.015 46.877 ± 9.861 3.675 ± 0.358 /

MIDL [32] 0.899 ± 0.012 40.282 ± 6.437 2.567 ± 0.431 /
NonAdj [13] 0.907 ± 0.028 41.749 ± 8.630 2.184 ± 0.325 /

Ours 0.910 ± 0.018 35.514 ± 10.295 1.644 ± 0.311 /
SegTHOR dataset

E
so

p
h
ag

u
s

UNet [7] 0.827 ± 0.038 11.357 ± 2.709 1.186 ± 0.113 3.212 ± 0.720
FCN [30] 0.800 ± 0.031 10.770 ± 2.085 1.303 ± 0.128 3.616 ± 0.709

nnUNet [21] 0.841 ± 0.014 8.018 ± 2.085 0.950 ± 0.070 1.947 ± 0.525
Topo-CRF [2] 0.839 ± 0.029 8.602 ± 2.363 0.991 ± 0.081 2.070 ± 0.687

MIDL [32] 0.840 ± 0.020 7.266 ± 2.132 0.921 ± 0.136 1.271 ± 0.912
NonAdj [13] 0.843 ± 0.020 6.293 ± 2.703 0.897 ± 0.078 1.215 ± 0.211

Ours 0.858 ± 0.019 5.582 ± 2.250 0.798 ± 0.042 0.749 ± 0.428

T
ra

ch
ea

UNet [7] 0.897 ± 0.027 10.656 ± 4.047 0.728 ± 0.146 /
FCN [30] 0.891 ± 0.031 11.789 ± 5.291 0.953 ± 0.221 /

nnUNet [21] 0.910 ± 0.018 9.423 ± 2.393 0.478 ± 0.152 /
Topo-CRF [2] 0.909 ± 0.022 10.435 ± 2.334 0.473 ± 0.167 /

MIDL [32] 0.914 ± 0.027 7.929 ± 2.305 0.456 ± 0.143 /
NonAdj [13] 0.913 ± 0.028 7.866 ± 2.343 0.440 ± 0.113 /

Ours 0.929 ± 0.020 7.280 ± 2.109 0.316 ± 0.186 /

4.2 Ablation Studies

To further demonstrate the efficacy of the proposed method, we conduct several
ablation studies. The following ablation studies have been performed on the
IVUS dataset (containment constraint). We perform identical ablation studies
on the Multi-Atlas dataset (exclusion constraint) in the Supplementary Material.
Ablation Study for Loss Functions. Our additional topological interaction
loss Lti is a general term, and can adopt any existing pixel-wise loss function.
We conduct an ablation study using three different loss functions for Lpixel, the
cross-entropy loss (CE), the mean-squared-error loss (MSE), and the dice loss.
The results are tabulated in the top half of Tab. 3, where the None entry denotes
nnUNet trained without Lti. Using CE for Lpixel gives the best performance.
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Table 3: Ablation study for Lpixel and λti (IVUS)
Class Lpixel Dice↑ HD↓ ASSD↓ % Violations↓

L
u
m

e
n None 0.893 ± 0.066 3.464 ± 0.917 11.152 ± 3.954 2.708 ± 1.032

MSE 0.915 ± 0.073 3.162 ± 0.937 9.963 ± 3.086 0.835 ± 0.907
DICE 0.937 ± 0.067 2.385 ± 1.065 6.520 ± 2.845 0.320 ± 0.811
CE 0.949 ± 0.070 2.046 ± 1.079 6.057 ± 2.746 0.157 ± 0.808

M
e
d
ia

None 0.856 ± 0.090 5.646 ± 1.228 6.491 ± 2.314 /
MSE 0.893 ± 0.087 4.042 ± 0.986 3.874 ± 1.912 /
DICE 0.896 ± 0.088 3.964 ± 1.112 3.445 ± 1.681 /
CE 0.910 ± 0.089 3.873 ± 0.933 3.171 ± 1.871 /

Class λti Dice↑ HD↓ ASSD↓ % Violations↓

L
u
m

e
n

0 0.893 ± 0.066 3.464 ± 0.917 11.152 ± 3.954 2.708 ± 1.032
5.0e-5 0.913 ± 0.071 3.249 ± 0.998 9.338 ± 3.649 0.964 ± 0.893
1.0e-4 0.949 ± 0.070 2.046 ± 1.079 6.057 ± 2.746 0.157 ± 0.808
1.5e-4 0.941 ± 0.069 2.124 ± 1.062 6.426 ± 2.976 0.187 ± 0.814
2.0e-4 0.938 ± 0.070 2.428 ± 1.041 6.558 ± 2.780 0.252 ± 0.830

M
e
d
ia

0 0.856 ± 0.090 5.646 ± 1.228 6.491 ± 2.314 /
5.0e-5 0.877 ± 0.088 5.099 ± 0.997 5.024 ± 2.100 /
1.0e-4 0.910 ± 0.089 3.873 ± 0.933 3.171 ± 1.871 /
1.5e-4 0.905 ± 0.088 3.889 ± 0.919 3.257 ± 1.877 /
2.0e-4 0.885 ± 0.089 4.319 ± 1.059 4.364 ± 1.943 /

However, using any of the choices for Lpixel results in improvement across all
metrics compared to the vanilla nnUNet. Thus Lti is a generic term which works
towards its intended purpose of correcting topological errors irrespective of the
choice of Lpixel.
Ablation Study for Loss Weights. Since the topological loss is the main
contribution of this paper, we conduct another ablation study in terms of its
weight λti. We run the experiments with different weights for the additional
topological interaction loss and report the results in the bottom half of Tab. 3.
When λti=1e-4, the proposed method achieves the best performance. However,
a reasonable range of λti always results in improvement. This demonstrates the
efficacy and robustness of the proposed method.

5 Conclusion

We introduce a new convolution-based module for multi-class image segmenta-
tion that focuses on topological interactions. The module consists of an efficient
algorithm to identify critical pixels which induce topological errors. We also in-
troduce an additional topologically constrained loss function. By incorporating
the module as well as the loss function into the training of deep neural networks,
we enforce the network to learn better feature representations, resulting in im-
proved segmentation quality. Results suggest that the method is generalizable
to both 2D and 3D settings, and across modalities such as US and CT.
Acknowledgements. We thank the anonymous reviewers for their constructive
feedback. The reported research was partly supported by grants NSF IIS-1909038
and NIH 1R21CA258493-01A1.
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