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Abstract. Self-supervised, category-agnostic segmentation of real-world
images is a challenging open problem in computer vision. Here, we show
how to learn static grouping priors from motion self-supervision by build-
ing on the cognitive science concept of a Spelke Object: a set of phys-
ical stu↵ that moves together. We introduce the Excitatory-Inhibitory
Segment Extraction Network (EISEN), which learns to extract pair-
wise a�nity graphs for static scenes from motion-based training signals.
EISEN then produces segments from a�nities using a novel graph prop-
agation and competition network. During training, objects that undergo
correlated motion (such as robot arms and the objects they move) are de-
coupled by a bootstrapping process: EISEN explains away the motion of
objects it has already learned to segment. We show that EISEN achieves
a substantial improvement in the state of the art for self-supervised image
segmentation on challenging synthetic and real-world robotics datasets.

1 Introduction

Most approaches to image segmentation rely heavily on supervised data that is
challenging to obtain and are largely trained in a category-specific way [31, 14, 17,
6]. Thus, even state of the art segmentation networks struggle with recognizing
untrained object categories and complex configurations [10]. A self-supervised,
category-agnostic segmentation algorithm would be of great value.

But how can a learning signal for such an algorithm be obtained? The cog-
nitive science of perception in babies provides a clue, via the concept of a Spelke
object [33]: a collection of physical stu↵ that moves together under the appli-
cation of everyday physical actions. Perception of Spelke objects is category-
agnostic and acquired by infants without supervision [33]. In this work we build

2 More formally, two pieces of stu↵ are considered to be in the same Spelke object if
and only if, under the application of any sequence of actions that causes sustained
motion of one of the pieces of stu↵, the magnitude of the motion that the other piece
of stu↵ experiences relative to the first piece is approximately zero compared to the
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Fig. 1: Unsupervised Segmentation of Spelke Objects. Two standard object
segmentation architectures, Mask-RCNN and Panoptic DeepLab, largely fail to learn
to detect Spelke objects in the Bridge dataset without dense, categorical supervision.
In contrast, our approach (EISEN) can detect these objects, without any supervision,
via motion-based bootstrapping: learning to predict what moves together, then using
top-down inference to segregate arm from object motion.

a neural network that learns from motion signals to segment Spelke objects in
still images (Fig. 1). To achieve this goal, we make two basic innovations.

First, we design a pairwise a�nity-based grouping architecture that is op-
timized for learning from motion signals. Most modern segmentation networks
are based on pixelwise background-foreground categorization [17, 6]. However,
Spelke objects are fundamentally relational, in that they represent whether pairs
of scene elements are likely to move together. Moreover, this physical connectiv-
ity must be learned from real-world video data in which motion is comparatively
sparse, as only one or a few Spelke objects is typically moving at a time (Fig.
2, top). Standard pixelwise classification problems that attempt to approximate
these pairwise statistics (such as the “Spelke-object-or-not” task) induce large
numbers of false negatives for temporarily non-moving objects. Directly learning
pairwise a�nities avoids these problems.

To convert a�nities into actual segmentations, we implement a fully di↵er-
entiable grouping network inspired by the neuroscience concepts of recurrent
label propagation and border ownership cells [28, 41]. This network consists of
(i) a quasi-local, recurrent a�nity Propagation step that creates (soft) segment
identities across pixels in an image and (ii) a winner-take-all Competition step
that assigns a unique group label to each segment. We find through ablation
studies that this specific grouping mechanism yields high-quality segments from
a�nities.

A second innovation is an iterative scheme for network training. In real-world
video, most objects are inanimate, and thus only seen in motion when caused to

magnitude of overall motion. Natural action groups arise from the set of all force
applications exertable by specific physical actuator, such as (e.g.) a pair of human
hands or a robotic gripper.
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Fig. 2: Two Challenges of Learning Spelke Objects. (Top Row) Motion in real-
world video is sparse. Thus, pairwise inferences about whether two points are moving
together (e.g. the yellow points on the robot arm) or are not moving together (e.g. any
yellow-cyan pairing) are valid. However, pointwise motion-based inferences of whether
a point is in a Spelke object or not will have many false negatives (e.g. points in the cyan
object). (Bottom row) Inanimate objects (e.g. magenta lid) only move when moved
by something else (e.g. the robotic arm), requiring explaining away of the apparent
motion correlation (e.g. yellow-magenta pairs in the bottom row).

move by some other animate object, such as a human hand or robotic gripper
(Fig 2, bottom). This correlated motion must therefore be dissociated to learn
to segment the mover from the moved object. Cognitive science again gives a
clue to how this may be done: babies first learn to localize hands and arms,
then later come to understand external objects [38]. We implement this concept
as a confidence-thresholded bootstrapping procedure: motion signals that are
already well-segmented by one iteration of network training are explained away,
leaving unexplained motions to be treated as independent sources for supervising
the next network iteration. For example, in natural video datasets with robotic
grippers, the gripper arm will naturally arise as a high-confidence segment first,
allowing for the object in the gripper to be recognized as a separate object via
explaining-away. The outputs of this explaining away train the next network
iteration to recognize inanimate-but-occasionally-moved objects in still images,
even when they not themselves being moved.

We train this architecture on optical flow from unlabeled real-world video
datasets, producing a network that estimates high-quality Spelke-object segmen-
tations on still images drawn from such videos. We call the resulting network the
Excitatory-Inhibitory Segment Extraction Network (EISEN). We show EISEN
to be robust even when the objects and configurations in the training videos
and test images are distinct. In what follows, we review the literature on related
works, describe the EISEN architecture and training methods in detail, show
results on both complex synthetic datasets and real-world videos, and analyze
algorithmic properties and ablations.
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2 Related Work

Segmentation as bottom-up perceptual grouping. The Gestalt psycholo-
gists discovered principles according to which humans group together elements
of a scene, such as feature similarity, boundary closure, and correlated motion
(“common fate”) [36]. This inspired classical computer vision e↵orts to solve
segmentation as a bottom-up graph clustering problem [31, 26]. Although these
approaches achieved partial success, they have proved di�cult to adapt to the
enormous variety of objects encountered in real-world scenes like robotics en-
vironments. Thus, today’s most successful algorithms instead aim to segment
objects by learning category-specific cues on large, labeled datasets [17, 6, 42].

Unsupervised and category-agnostic segmentation. Several recent ap-
proaches have tried to dispense with supervision by drawing on advances in self-
supervised object categorization. DINO, LOST, and Token-Cut perform “object
discovery” by manipulating the attention maps of self-supervised Vision Trans-
formers, which can be considered as maps of a�nity between an image patch and
the rest of the scene [5, 32, 39]. PiCIE learns to group pixels in an unsupervised
way by encouraging particular invariances and equivariances across image trans-
formations. While these early results are encouraging, they apply more naturally
to semantic segmentation than to grouping individual Spelke objects (instance
segmentation): to date, they are mostly limited either to detecting a single object
per image or to grouping together all the objects of each category. The GLOM
proposal [19] sketches out an unsupervised approach for constructing “islands”
of features to represent object parts or wholes, which is similar to our grouping
mechanism; but it does not provide a specific algorithmic implementation. We
find the architectural particulars of EISEN are essential for successful object
segmentation in real-world images (see Ablations).

Object discovery from motion. A number of unsupervised object dis-
covery methods can segment relatively simple synthetic objects but struggle on
realistic scenes [15, 24, 8, 20]. When applied to the task of video object segmenta-
tion, Slot Attention-based architectures can segment realistic moving objects [21,
40], but none of these methods uses motion to learn to segment the majority of
objects that are static at any given time. Several approaches discover objects via
motion signals, making a similar argument to ours for motion revealing physical
structure [30, 8, 1, 34, 37, 7, 29]. However, they have been limited to segmenting
a narrow range of objects or scenes.

We hypothesize that generalization to realistic, complex scenes benefits greatly
from a�nity-based grouping and learning. In this respect, our work is heavily
inspired by PSGNet, an unsupervised a�nity-based network that learns to seg-
ment scenes from both object motion and other grouping principles [2]. We
make two critical advances on that work: (1) replacing its problematic (and
non-di↵erentiable) Label Propagation algorithm with a neural network; and (2)
introducing a bootstrapping procedure that uses top-down inference to explain
raw motion observations in terms of confidently grouped objects. In combina-
tion, these novel contributions allow EISEN to accurately perform a challenging
task: the static segmentation of real-world objects without supervision.
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Fig. 3: The EISEN architecture and training process. (Top: Architecture)

The EISEN architecture consists of (i) an A�nity Predictor module which extracts a
pairwise a�nity graph for each scene, and (ii) the KProp-Competition module, which
converts the a�nity graph into an actual segmentation. The a�nity predictor is trained
to predict thresholded optical flow estimates computed via the RAFT algorithm, with
positive samples corresponding to pairs of moving points (green a�nity graph edges),
and negative samples corresponding to moving-nonmoving point pairs (red edges).
Edges are computed for all pairs of close-by points and a sampling of further-separated
point pairs. Segments are extracted from the a�nity graph via a two-stage mechanism
consisting of Kaleidoscopic Propagation and inter-node Competition (see text and Fig.
4 for more details). (Bottom: Iterative Training) Di↵erences between RAFT optical
flow estimates and high-confidence segments from static stage-N EISEN outputs are
“explained away” by positing the existence of new Spelke objects, which are then used
to supervised the stage-(N + 1) EISEN model.

3 Methods

3.1 The EISEN Architecture

EISEN performs unsupervised, category-agnostic segmentation of static scenes:
it takes in a single H ⇥W ⇥ 3 RGB image and outputs a segmentation map
of shape H

0 ⇥W
0. EISEN and baseline models are trained on the optical flow

predictions of a RAFT network [35] pretrained on Sintel [3]. RAFT takes in a
pair of frames, so EISEN requires videos for training but not inference.

Overall concept. The basic idea behind EISEN is to construct a high-
dimensional feature representation of a scene (of shape H

0 ⇥W
0 ⇥ Q) that is

almost trivial to segment. In this desired representation, all the feature vectors
qij that belong to the same object are aligned (i.e., have cosine similarity ⇡ 1)
and all feature vectors that belong to distinct objects are nearly orthogonal
(cosine similarity ⇡ 0). A spatial slice of this feature map looks like a set of flat
object segment “plateaus,” so we call it the plateau map representation. Object
segments can be extracted from a plateau map by finding clusters of vectors
pointing in similar directions.
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The plateau map is inherently relational: both building and extracting seg-
ments from it are straightforward given accurate pairwise a�nities between scene
elements. EISEN therefore consists of three modules applied sequentially to a
convolutional feature extractor backbone (Figure 3):

1. A�nity Prediction, which computes pairwise a�nities between features;
2. Kaleidoscopic Propagation (KProp), a graph RNN that aligns the vectors of

a plateau map by passing messages on the extracted a�nity graph;
3. Competition, an RNN that imposes winner-take-all dynamics on the plateau

map to extract object segments and suppress redundant activity.

All three modules are di↵erentiable, but only A�nity Prediction has trainable
parameters. We use the ResNet50-DeepLab backbone in Panoptic-DeepLab[6],
which produces output features of shape H/4⇥W/4⇥ 128.

A�nity Prediction. This module computes a�nities A(i, j, i0, j0) between
pairs of extracted feature vectors fij , fi0j0 . Each feature vector is embedded in
RD with linear key and query functions, and the a�nities are given by standard
softmax self-attention plus row-wise normalization:

Ã
ij

i0j0 = Softmax

✓
1p
D
(Wkfij)(Wqfi0j0)

T

◆
, A

ij

i0j0 = Ã
ij

i0j0 / max
{i0,j0}

Ã
ij

i0j0 . (1)

To save memory, we typically compute a�nities only within a 25⇥25 grid around
each feature vector plus a random sample of long-range “global” a�nities.

Kaleidoscopic Propagation. The KProp graph RNN (Figure 4) is a smooth
relaxation of the discrete Label Propagation (LProp) algorithm [16]. Besides be-
ing nondi↵erentiable, LProp su↵ers from a “label clashing” problem: once a
cluster forms, the discreteness of labels makes it hard for another cluster to
merge with it. This is pernicious when applied to image graphs, as the equilib-
rium clusters are more like superpixels than object masks [2]. KProp is adapted
to the specific demands of image segmentation through the following changes:

– Instead of integers, each node is labeled with a continuous vector qij 2 RQ;
the full hidden state at iteration s is hs 2 RN⇥Q.

– The nondi↵erentiable message passing in LProp is replaced with two smooth
operations: each node sends (1) excitatory messages to its high-a�nity neigh-
bors, which encourages groups of connected nodes to align; and (2) inhibitory
messages to its low-a�nity neighbors, which orthogonalizes disconnected
node pairs. These messages cause clusters of nodes to merge, split, and shift
in a pattern reminiscent of a kaleidoscope, giving the algorithm its name.

– At each iteration, node vectors are rectified and `
2 normalized. Although

softmax normalization produces (soft) one-hot labels, it reinstates “label
clashing” by making the Q plateau map channels compete. `2 normalization
instead allows connected nodes to converge on an intermediate value.

During propagation, the a�nity matrix is broken into two matrices, A+
, A

�, for
excitatory and inhibitory message passing, respectively. These are simply the
original a�nity matrix with all values above (resp., below) 0.5 set to zero, then
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Fig. 4: Kaleidoscopic Propagation and Competition. (Top Row: KProp) For
each node in an input a�nity graph, a random normalized Q-dimensional vector is al-
located (blue and black arrows). The KProp module is a graph RNN that implements
high-dimensional quasi-local dynamics, with a�nities A corresponding to excitatory
connections and inverted a�nities 1�A corresponding to inhibitory connections. These
dynamics are repeated a fixed number iterations, quickly coming to equilibrium at a
“plateau map” in which candidate segments correspond to nearly-orthogonal domains
in the Q-dimensional vector field each of which is nearly-flat. (Bottom Row: Com-

petition) Plateau maps are converted into segmentations by having “object nodes”
compete for ownership of points within the plateau map. A set of putative object nodes
are initialized with randomly located basepoints (red highlighted nodes). Each object
node corresponds to an object mask consisting of plateau map locations with high
Q-vector correlation to the vector at the basepoint. Pairs of object nodes with over-
lapping masks compete, with the overall-more-aligned node winning and suppressing
alternates. Reinitialization then occurs only over non-covered territory. After a small
number of iterations, the process equilibrates with the masks containing segment esti-
mates, and the object nodes describing the scene graph.

normalized by the sum of each row. The plateau map h0 is randomly initialized
and for each of S iterations is updated by

h
+
s
= hs +A

+
hs, (2)

h
�
s
= h

+
s
�A

�
h
+
s
, (3)

hs+1 = Norm(ReLu(h�
s
)), (4)

where Norm does `
2 normalization. We find that convergence is faster if only

one random node passes messages at the first iteration.
Competition. Vector clusters in the final plateau map are generic points

on the (Q � 1)-sphere, not the (soft) one-hot labels desired of a segmentation
map. The Competition module resolves this by identifying well-formed clusters,
converting them to discrete object nodes, and suppressing redundant activity
(Figure 4 bottom.) First, K object pointers {pk} 2 R2 are randomly placed
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at (h,w) locations on the plateau map and assigned object vectors p
k 2 RQ

according to their positions; an object segment m
k 2 RH⇥W for each vector is

then given by its cosine similarity with the full plateau map:

p
k = (pk

h
, p

k

w
), p

k = hS(p
k

h
, p

k

w
), m

k = hS · pk
. (5)

Some of the masks may overlap, and some regions of the plateau map may not
be covered by any mask. We use recurrent winner-take-all dynamics to select
a minimal set of object nodes that fully explains the map. Let J (·, ·) denote
the Jaccard index and let ✓ be a threshold hyperparameter (set at 0.2 in all our
experiments). Competition occurs between each pair of object vectors with masks
satisfying J (mk

,m
k
0
) > ✓; the winner is the vector with greater total mask

weight
P

i,j
m

k. An object that wins every pairwise competition is retained, while
all others are deactivated by setting their masks to zero (Figure 4 bottom.) This
process is repeated for a total of R iterations by re-initializing each deactivated
object (pl,pl

,m
l = 0) on parts of the plateau map that remain uncovered,

U = 1 �
P

k
m

k. Thus the Competition module retains a set of M <= K

nonzero (soft) masks, which are then softmax-normalized along theM dimension
to convert them into a one-hot pixelwise segmentation of the scene.

3.2 Training EISEN via Spelke Object Inference

Because KProp and Competition have no trainable parameters, training EISEN
is tantamount to training the a�nity matrix A. This is done with a single loss
function: the row-wise KL divergence between A and a target connectivity matrix,
C, restricted to the node pairs determined by loss mask, D:

LEISEN =
X

i,j

KLDiv(Dij

i0j0 �A
ij

i0j0 ,D
ij

i0j � Cij

i0j0). (6)

To compute C and D we consider pairs of scene elements (a, b) that project into
image coordinates (i, j) and (i0, j0), respectively. If only one element of the pair is
moving (over long enough time scales), it is likely the two elements do not belong
to the same Spelke object; when neither is moving, there is no information about
their connectivity, so no loss should be computed on this pair. This is the core
physical logic – “Spelke object inference” – by which we train EISEN.

Computing connectivity targets from motion. Let I(·) be a motion
indicator function, here I(a) = (|flowij | > 0), where flow is a map of optical
flow. The logic above dictates setting

Cij

i0j0  0 if (I(a) xor I(b)), (7)

Dij

i0j0  1 if (I(a) or I(b)) else 0. (8)

To learn accurate a�nities there must also pairs with C
ij

i0j0 = 1 that indicate

when two scene elements belong to the same object.5 When a scene contains

5 If scenes are assumed to have at most one independent motion source, these are
simply the pairs with I(a) == I(b) == 1. This often holds in robotics scenes (and
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multiple uncorrelated motion sources, the optical flow map has an appearance
similar to a plateau map (e.g. Figure S2, second column.) This allows the flow
map to be segmented into multiple motion sources as if it were a plateau map
using the Competition algorithm (see Supplement for details.) The positive pairs
in the connectivity target can then be set according to

C̃ij

i0j0  1 if (SM (a) == SM (b)) and(I(a) == I(b) == 1) else 0, (9)

where SM is the estimated map of motion segments. Any elements of the back-
ground are assumed to be static with SM (a) == I(a) == 0 (see Supplement.)

Segmenting correlated motion sources by top-down inference. Näıve
application of Equation (9) cannot handle the case of an agent moving a Spelke
object (as in Figure 2) because agent and object will be moving in concert and
thus will appear as a single “flow plateau.” However, a non-näıve observer might
have already seen the agent alone moving and have learned to segment it via
static cues. If this were so, the agent’s pixels could be “explained away” from the
raw motion signal, isolating the Spelke object as its own target segment (Figure
3, lower panels.) Concretely, let ST be a map of confidently segmented objects
output by a teacher model, T (see Supplement for how EISEN computes confi-
dent segments.) Any scene elements that do not project to confident segments
have ST (a) = 0. Then the final loss mask is modified to include all pairs with at
least one moving or confidently segmented scene element,

D̂ij

i0j0  1 if ((SM (a) + ST (a) > 0) or (SM (b) + ST (b) > 0)) else 0. (10)

Explaining away is performed by overwriting pairs in Equation (9) according to
whether two scene elements belong to the same or di↵erent confident segments,
regardless of whether they belong to the same motion segment :

Ĉij

i0j0  (ST (a) == ST (b)) if (ST (a) + ST (b) > 0) else C̃ij

i0j0 . (11)

Thus the final connectivity target, Ĉ, combines Spelke object inference with the
confident teacher predictions, defaulting to the latter in case of conflict.

Bootstrapping. Since objects that appear moving more often should be
confidently segmented earlier in training, it is natural to bootstrap, using one
(frozen) EISEN model as teacher for another student EISEN (Figure 3.) After
some amount of training, the student is frozen and becomes the teacher for the
next round, as a new student is initialized with the final weights of the prior
round. Although bootstrapping could be continued indefinitely, we find that
EISEN confidently segments the majority of Spelke objects after three rounds.

4 Results

4.1 Datasets, Training, and Evaluation

Full details of datasets, training, and evaluation are in the Supplement. Briefly,
we train EISEN and baseline models on motion signals from three datasets:

is perhaps the norm in a baby’s early visual experience) but not in many standard
datasets (e.g. busy street scenes.) We therefore handle the more general case.
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Table 1: Performance (mIoU) of instance segmentation models on the TDW-

Playroom dataset. Models with full supervision receive masks for all movable objects
in the scene at training time; models with motion supervision receive the optical flow
predicted by RAFT.

Model
Full supervision Motion supervision

val test val test

SSAP 0.802 0.575 0.295 0.235
DETR 0.860 0.647 0.297 0.258
Panoptic DeepLab 0.870 0.608 0.620 0.373
Mask-RCNN 0.713 0.387 0.629 0.467

EISEN 0.788 0.675 0.730 0.638

Playroom, a ThreeDWorld [12] dataset of realistically simulated and rendered
objects (2000 total) that are invisibly pushed; the DAVIS2016 [27] video object
segmentation dataset, which we repurpose to test static segmentation learning
in the presence of background motion; and Bridge [9], a robotics dataset in
which human-controlled robot arms move a variety of objects.

We compare EISEN to the (non-di↵erentiable) a�nity-based SSAP [13], the
Transformer-based DETR [4], the centroid prediction-based Panoptic DeepLab
(PDL) [6], and the region proposal-based Mask-RCNN [17]. All baselines require
pixelwise segmentation supervision, for which we use the same motion signals
as EISEN except for the conversion to pairwise connectivity. Because they were
not designed to handle sparse supervision, we tune baseline object proposal
hyperparameters to maximize recall. All models are evaluated on mIoU between
ground truth and best-matched predicted segments; DETR and Mask-RCNN
are not penalized for low precision.

4.2 Learning to segment from sparse object motion

EISEN outperforms standard architectures at motion-based learning.

Baseline segmentation architectures easily segment the Playroom-val set when
given full supervision of all objects (Table 1, Full supervision.) When supervised
only on RAFT-predicted optical flow, however, these models perform substan-
tially worse (Table 1, Motion supervision) and exhibit characteristic qualitative
failures (Figure 5), such as missing or lumping together objects.

EISEN, which treats object motion as an exclusively relational learning sig-
nal, performs well whether given full or motion-only supervision (Table 1.) More-
over, in contrast to the baselines, EISEN also accurately segments most objects
in test scenes that di↵er from its training distribution in background, object
number, and multi-object occlusion patterns (Figure 5; see Supplement.) These
results suggest that only EISEN learns to detect the class of Spelke objects – the
category-agnostic concept of “physical stu↵ that moves around together.” In-
terestingly, the strongest motion-supervised baseline is Mask-RCNN, which may
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SSAP DETR PDL M-RCNN EISEN GT

Fig. 5: EISEN outperforms baselines at learning to segment from mo-

tion. Segmentation predictions of EISEN and each baseline are shown for ex-
amples from the Playroom val set (top three rows) and test set (bottom two
rows.) Baselines frequently lump, miss, and distort the shapes of objects. EISEN
is able to capture fine details (e.g. the chair and gira↵e legs) and segment closely
spaced objects of similar appearance, (e.g. the zebras.)

implicitly use relational cues in its region proposal and non-maximal suppression
modules to partly exclude false negative static regions of the scene.

4.3 Self-supervised segmentation of real-world scenes.

Learning to segment in the presence of background motion. The Play-

room dataset has realistically complex Spelke objects but unrealistically simple
motion. In particular, its scenes lack background motion and do not show the
agentic mover of an object. Most video frames in the DAVIS2016 dataset [27]
have both object and (camera-induced) background motion, so we use it to test
whether a useful segmentation learning signal can be extracted and used to train
EISEN in this setting. Applying Competition to flow plateau maps often exposes
a large background segment, which can be suppressed to yield a target object
motion segment (Figure 6A; also see Supplement.) When this motion signal is
used to train EISEN, the static segmentation performance on held-out scenes
is 0.52, demonstrating that motion-based self-supervision supports learning of
complex Spelke objects real scenes (Figure 6B.)

Unsupervised segmentation of the Bridge robotics dataset. We train
EISEN for three rounds of bootstrapping to segment Spelke objects in Bridge
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A. Single / Multi-Frame Motion Segments B.Static EISEN Predictions on Novel Scenes

Single frame pair

IoU: 0.53

Multiple frame pairs
IoU: 0.84IoU: 0.71

IoU: 0.78

IoU: 0.23 IoU: 0.93

IoU: 0.88IoU: 0.75

Fig. 6: EISEN learns to segment objects in static, held-out scenes on

DAVIS2016. (A) Confident teacher segments computed from multiple frame pairs
are better than those from a single frame pair. (B) Without any motion information,
EISEN segments objects in single RGB images from held-out scenes.

Table 2: Performance on Bridge after each round of bootstrapping. EISEN
improves at segmentation across three rounds by using its own inference pass to create
better supervision signals. Neither Mask-RCNN nor Panoptic DeepLab perform well
whether bootstrapped or pretrained on COCO.

Model Round 1 Round 2 Round 3 Pretrained

MaskRCNN 0.053 0.081 0.102 0.070
Panoptic DeepLab 0.051 0.056 0.057 0.175
EISEN 0.336 0.453 0.551 -

(see Methods). EISEN’s segmentation of Bridge scenes dramatically improves
with each round (Table 2 and Figure 7). In the first round, the model mainly
learns to segment the robot arm, which is expected because this object is seen
moving more than any other and the untrained EISEN teacher outputs few
confident segments that could overwrite the raw motion training signal. In the
subsequent rounds, top-down inference from the pretrained EISEN teacher mod-
ifies the raw motion signal; the improvement during these rounds suggests that
top-down inference about physical scene structure can extract better learning
signals than what is available from the raw image or motion alone. In contrast
to EISEN, neither Mask-RCNN nor Panoptic DeepLab segment most of the ob-
jects either after applying the same bootstrapping procedure or when pretrained
on COCO with categorical supervision (Table 2 and Figure 1.) EISEN’s combina-
tion of bottom-up grouping with top-down inference thus enables unsupervised
segmentation of Spelke objects in real scenes.

4.4 Ablations of the EISEN architecture

Ablating KProp and Competition. EISEN performance on Playroom is
nearly equal when using all a�nity pairs versus using local and a small sample
of long-range pairs (< 7% of total), though it drops slightly if long-range pairs
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R1 R2 R3 GT

Fig. 7: EISEN improves at segmenting Spelke objects with each round of

bootstrapping. After the first round of bootstrapping (R1), EISEN can segment the
arm but few other objects well. Subsequent rounds (R2 and R3) substantially improve
both the number of objects detected and their segmentation quality.

are omitted (Table 3). This suggests that plateau map alignment is mainly a
local phenomenon and that grouping with EISEN relies heavily on local cues.

In contrast, the architectural components of KProp and Competition are
essential for EISEN’s function. When either excitatory or inhibitory messages
are ablated, or when using Softmax rather than `

2-normalization, performance
drops nearly to zero (Table 3.) Moreover, the Competition module is better at
extracting segments from the final plateau map than simply taking the Argmax
over the channel dimension; this is expected, since the `2-normalization in KProp
does not encourage plateau map clusters to be one-hot vectors.

KProp and Competition are both RNNs, so their function may change with
the number of iterations. Performance saturates only with > 30 KProp iterations
and drops to near zero with a single iteration, implying that sustained message
passing is essential: EISEN cannot operate as a feedforward model. In contrast,
Competition requires only a single iteration on Playroom data (Table 3).

Ablating A�nity Prediction. Finally, we compare EISEN’s a�nities to
other a�nity-like model representations. Object segments can be extracted from
the attention maps of a self-supervised Vision Transformer (DINO [5]) using
KProp and Competition, but their accuracy is well below EISEN’s; prior graph-
based segmentation methods [31, 16, 11] do not detect Playroom objects as well
as KProp-Competition (Table 4; see Supplement.) These experiments imply that
EISEN is a better source of a�nities than the (statically trained) DINO attention
maps and that EISEN’s grouping network best makes use of both sources.
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Table 3: Ablations of EISEN. Altering the architectural components of KProp or
Competition drastically degrades performance, but only a small sample of long-range
a�nities are necessary (Left). Lowering the number of RNN iterations for KProp or
Comp gradually degrades performance (Right).

messages a�nity norm readout mIoU

Ex+Inb Loc+Glob `
2 Comp 0.730

Ex+Inb Loc `
2 Comp 0.700

Ex+Inb Full `
2 Comp 0.732

Ex+Inb Loc+Glob `
2 Argmax 0.676

Ex Loc+Glob `
2 Comp 0.036

Inb Loc+Glob `
2 Comp 0.036

Ex+Inb Loc+Glob softmax Comp 0.036

KProp iters Comp iters mIoU

40 3 0.730
30 3 0.720
20 3 0.697
10 3 0.389
1 3 0.052
40 2 0.730
40 1 0.729

Table 4:Comparison of DINO and EISEN a�nities with di↵erent graph

clustering algorithms. EISEN a�nities are downsampled to the same size as
DINO a�nities for a fair comparison

Model Spectral clustering LabelProp A�nityProp KProp+comp

DINO 0.354 0.135 0.255 0.545
EISEN 0.062 0.084 0.319 0.684

5 Conclusion

We have proposed EISEN, a fully di↵erentiable, graph-based grouping architec-
ture for learning to segment Spelke objects. While our algorithm performs on
par with prior segmentation models when fully supervised (Table 1), its main
strength is an ability to learn without supervision: by applying top-down infer-
ence with its own segmentation predictions, it progressively improves motion-
based training signals. These key architecture and learning innovations are criti-
cal for dealing with the challenges of unsupervised, category-agnostic object seg-
mentation in real-world scenes (Figure 2.) Since EISEN is based on the principle
of grouping things that move together, it cannot necessarily address higher-level
notions of “objectness” that include things rarely seen moving (e.g., houses and
street signs.) It will therefore be important in future work to explore the re-
lationship between motion-based and motion-independent object learning and
identify deeper principles of grouping that extend to both.
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