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1 Definition of hIoU

Following previous works [5, 3], harmonic mean IoU (hIoU) is defined among the
seen classes and unseen classes as:

hIoU =
2 ∗mIoUseen ∗mIoUunseen

mIoUseen +mIoUunseen
. (1)

2 Sliding Window Testing in Fully Convolutional
Network

We study the different inference methods in this section for Fully Convolutional
Network(FCN). For a fair comparison, we use ResNet-101 in FCN and ViT-
B/16 in CLIP, same as our two-stage framework. Table. 11 shows the results.
The FCN without sliding window test achieved 11.7 hIoU and 10.4 mIoU-unseen.
In comparison, employing the window test improved the performance by +9.2
on hIoU and +5.6 on mIoU-unseen. This significant difference in performance
is caused by the inconsistent image size between pre-training and testing of
the CLIP model. Although the sliding window test can strengthen the FCN
approach, it is still worse than our two-stage approach by -16.8 on hIoU and
-20.3 on mIoU unseen, indicating that our two-stage framework is more suitable
for the CLIP model.

Table 11. Performance of FCN approach on COCO Stuff dataset under the zero-shot
setting. SW: Sliding Window Testing, each image is splited into several 224 × 224
patches.

Method hIoU pACC mIoU-unseen

FCN [2] 11.7 54.9 10.4
FCN + SW [2] 20.9 50.8 16.0

Ours 37.7 60.3 36.3
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Fig. 3. Pipeline of image prompt engineering. The pink dotted box is the minimum
bounding box of the foreground region. The pink solid box is the expanded bounding
box of the dotted box by the ratio r. The prompted image is the input of the CLIP
image encoder.

3 Prompt Engineering for Image and Text

3.1 Prompt Engineering for Image

As the CLIP model is trained with low-resolution realistic images, given a mask
proposal Mp, and the input image I, it is a problem how to extract the visual
representation of the proposal with the CLIP model through the proper way,
which we call image prompt engineering. The whole process is shown in Figure. 3.
We crop the image with the bounding boxes of Mp and expand the bounding
boxes by a ratio r to involve more context information. And then, we fill the
background pixels with 0 values in the proposal with some patterns. We studied
four choices for such patterns: a) Keep the background pixels unchanged; b) Fill
the background pixels with manually designed values; c) Fill the background
pixels with learnable values; d) Fill the background patches with mask token,
presented in Figure. 4. The results are shown in Table. 12. The value filled in
the background area can greatly affect the segmentation performance. Though
our exploration to learn proper image prompts failed to achieve improvement
like text [1, 6], it is still an interesting problem for future research.

Table 12. Study the effects of background filling. Filling background with learnable
pixel prompts or mask token is very unstable and usually leads to negative impact.

Prompt hIoU
mIoU

seen unseen

Preserving 9.3 8.9 9.5
Zero 17.2 16.3 18.2
Mean Values 18.3 17.3 19.5
Pixel Prompts Failed - -
Mask Token Failed - -
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Fig. 4. Choices for background filling. a) Preserving the context pixels; b) Filling the
background pixels with zero; c) Filling the background pixels with the mean values
of the dataset [4]; d) Filling the background pixels with learnable pixel prompts. The
prompts are tuned on seen classes; e) Filling the background patches with mask token.
The mask token is tuned on seen classes.

3.2 Prompt Engineering for Text

We compare two prompt tuning methods described in Sec. 4.2. The results are
shown in Table. 14. The learnable prompt outperforms the manually searched
prompt by +9.9 hIoU, clearly showing the power of the learnable prompt. In
addition, although the learnable prompt is only trained on seen classes, we no-
tice that it achieves similar improvement on seen classes and unseen classes
(+9.6 mIoU-seen and +10.2 mIoU-unseen), indicating the learnable prompt has
a strong generalization ability to the unseen class.

We further study how prompt length and training data size affect the per-
formance of learnable prompts by training on seen classes and testing on unseen
classes. Table. 13 shows that using 32 samples for each category reaches the best
performance, in either prompt length of 16 or 32, and more training samples will
degrade the performance. We speculate that more samples may lead to the over-
fitting issue, which is also reported by other prompt learning attempts [6].
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Table 13. Study the effect of prompt length and sample number of each category for
prompt learning.

Prompt Len #Sample Unseen Acc

16

16 28.9
32 30.0
64 29.5
all 25.5

32

16 32.1
32 32.8
64 31.0
all 27.6

Table 14. Manually designed prompt v.s. Learnable prompt.

Prompt hIoU
mIoU

seen unseen

Manual 18.3 17.3 19.5
Learnable 28.2 26.8 29.7

4 Detailed Study on MaskFormer and CLIP

The ablations have been studied in Table. 3 and Table. 4. We re-organize the
results as shown in Table. 15. We can conclude: 1) MaskFormer outperforms
FCN by +26.8 hIoU (2-th row vs 5-th row); 2) CLIP pre-training outperforms
ImageNet pre-training by +24.7 hIoU (3-rd row vs 4-th row); 3) Our method
outperforms SPNet by +24.4 hIoU with the same pre-training data (1-st row vs
3-rd row).

Table 15. Study the effects of MaskFormer and CLIP.

Method
Image Pre-train

hIoU
mIoU

Encoder Data Seen Unseen

SPNet[45] R-101 ImageNet 25.1 73.3 15.0

FCN VIT/B-16 CLIP-VL 50.7 85.5 36.0

MaskFormer
R-101 ImageNet 49.5 71.1 38.0
R-101 CLIP-VL 74.2 84.6 66.1

VIT/B-16 CLIP-VL 77.5 83.5 72.5

5 The Randomness of the Data split

In the experiments under the zero-shot setting, we use the official unseen/seen
split as [5] for a fair comparison. The thing/stuff ratio is 0.88 for seen and 0.87
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Table 16. Results of different seen/unseen splits on COCO Stuff. 0* denotes the split
used in previous work [5].

Split
Thing/Stuff Ratio

hIoU
mIoUunseen

Seen Unseen All Thing Stuff ∆

0* 0.88 0.87 37.8 36.3 44.3 29.5 14.9

1 0.95 0.36 31.9 25.6 44.8 18.6 26.2
2 0.93 0.50 30.9 24.3 41.5 15.6 25.9
3 0.86 1.14 36.6 32.9 38.8 26.2 12.6
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Fig. 5. Qualitative results on Pascal Context dataset under cross-dataset setting. From
left to right are the original input images, the ground truth semantic segmentation
maps and the predictions. The white areas in the ground truth maps is ignored during
annotating.

for unseen classes. To study the impacts of different splits, we conduct studies
on randomly generated seen/unseen splits in Table. 16. We find a more balanced
unseen thing/stuff ratio yields higher hIoU.

6 Visualization of Results under Cross-dataset Setting

We illustrate more qualitative results in Figure. 5, 6 under the cross-dataset
setting.
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Fig. 6. Qualitative results on ADE20k dataset under cross-dataset setting. The original
input images, the ground truth semantic segmentation maps, and the predictions are
left to right. The white areas in the ground truth maps is ignored during annotating.
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