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1 Training

Hyperparameters. Following [3], we set λS
seg = λT

seg = 1, and λS
ent = λT

ent = 0.4.
To set the other hyperparameters, we divide the training set of Cityscapes [2]
into two subsets. Specifically, we divide images in the training set into two
subsets of sizes 2380/595, and use them for training/cross-validation splits.
We find all hyperparameters on the case of GTA5 [4] → Cityscapes [2]. For
the hyperparameters λFC and λBC , we perform a grid search over λFC , λBC

∈ {0.1, 0.3, 0.5, 0.7}. For the momentum parameter λ and the threshold value T ,
we use a grid search over λ ∈ {0.99, 0.999, 0.9999}, and T ∈ {0.5, 0.6, 0.7, 0.8, 0.9},
respectively. The results are shown in Fig. 1. We set λFC = 0.5, λBC = 0.5,
λ = 0.999, and T = 0.7. We fix hyperparameters, and train our model on all
cases including GTA5 [4] → Cityscapes [2] and SYNTHIA [5] → Cityscapes [2].

Weighted sampling. Although a pair-wise training scheme in our framework
is useful for aligning cross-domain features, it may lead to a class imbalance
problem due to low co-occurrence rates of rare object classes, when source and
target images are sampled randomly. To mitigate this issue, we use a weighted
sampling strategy that samples more images from rare object categories in a
source domain. Specifically, we calculate the occurrence ratios for all labels in
the source domain before training, and then compute sampling probabilities P
for all labels by inverting the occurrence ratios as follows:

P (c) =
1∑C

c=1 p(c)
−1

p(c)−1, (1)

where we denote by P (c) and p(c) a sampling probability and an occurrence ratio
of the c-th class, respectively. We divide the number of images containing the
c-th category by the total number of images in a source dataset to obtain p(c). C
is the number of classes. For sampling a source-target pair in training time, we
first sample a category from the sampling probability distribution P , and then
pick a source image that contains the category in its ground-truth label.
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Self-distillation. Following [6, 7], we additionally apply a self-distillation
technique to our final model. Specifically, we train the model using the method
of [1], and use it as an initial model for the student model. We then apply
a knowledge distillation, transferring the knowledge of our final model to the
student which is pre-trained in a self-supervised manner. The loss for a distillation
stage is as follows:

LKD = Lbase +KL(qt||qs), (2)

where qt, and qs denote the outputs of the teacher and student models, respectively.
KL(·||·) computes KL divergence of two predictions.

2 More experimental results

Accuracy-density plots. Static pseudo labels can be densified by lowering a
threshold, but the label accuracy decreases accordingly. We provide an accuracy-
density plot for static/dynamic pseudo labels in Fig. 2. We can see that dynamic
pseudo labels are denser than static ones, while providing higher accuracies. We
can establish more correct correspondences between source and target domains
by using the calibration process. The approach of [8] neglects the biases between
source and target domains. Different from [8], ours compensate for the class-wise
domain biases and generate more accurate and denser labels than [8].

Domain biases. We estimate domain biases when obtaining dynamic pseudo
labels. In Fig. 3, we visualize the magnitude of class-wise domain biases during
training. The estimated domain biases gradually decrease during training, in-
dicating that we successfully perform class-wise alignment between source and
target domains.

Quality of pseudo labels and mIoU performance. We show the relationships
between the quality of pseudo labels and mIoU performance in Table 1. By using
static labels for contrastive learning, we obtain the mIoU performance of 53.5%
for GTA5 → Cityscapes. And using dynamic ones for our learning leads to the
mIoU improvements of 2%. By combining two labels, we generate hybrid labels,
and using them leads to the mIoU performance of 57.1%. Using denser and more
accurate labels contributes to the improvements of mIoU performance.

Dynamic pseudo labels. In Fig. 4, we visualize how dynamic pseudo labels
change with iterations. We show the results at iteration 10k, 50k, 100k, respec-
tively. Dynamic pseudo labels are sparse and include vegetation, sky, and road
classes at iteration 10k. At iteration 50k, our pseudo labels become denser and
include additional classes of car and building. At iteration 100k, our pseudo labels
become more dense and accurate than labels at iteration 50k, guiding better
class-wise alignment.
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(a) λFC . (b) λBC . (c) λ. (d) T .

Fig. 1: (a-d) Quantitative comparisons for the hyperparameters, λFC , λBC , λ,
and T . We measure mIoU for all cases.

Comparison with ProDA. We compare the quality of pseudo labels for ours
and ProDA in Table 2. ProDA [7] focuses on removing false-positives of pseudo
labels [8] and uses sparse labels. Different from ProDA [7], we are interested in
obtaining more true-positives and generating denser labels using pixel-prototype
correspondences. By exploiting denser labels for the bi-directional contrastive
losses, we achieve mIoU gains of 0.6% and 1.6% for GTA5 → Cityscapes and
SYNTHIA → Cityscapes, respectively, compared to ProDA [7].

Performances on a different backbone. We show in Table 3 the results
obtained using FCNs with VGG16 as a backbone network. We compare the
segmentation performance of a baseline and our model on GTA5 → Cityscapes
and SYNTHIA → Cityscapes. We show mIoU scores for both models on the
validation split of Cityscapes. We can clearly see that our method boosts the
performance of the baseline by significant margins.

Memory and runtime for training and testing. In Table 4, we report a
total amount of memory usage and runtime for a baseline and our model at
training and test times. We report the results for GTA5 → Cityscapes. Compared
with the baseline, our model requires additional memory and time, but only
at training time, which brings significant performance gains. For example, our
method can boost the segmentation performance of the baseline by 7.6% for
GTA5 → Cityscapes. Note that ours do not require extra memory and runtime
at test time.

Segmentation results. We provide more visual results for GTA5 [4] →
Cityscapes [2] in Fig. 5 and SYNTHIA [5] → Cityscapes [2] in Fig. 6. We
compare the results of our model and those of the baseline. We can see that our
model provides better segmentation outputs than the baseline for the classes of
car, road, sidewalk, and rider. Our baseline model uses pseudo labels to perform
the class-aware alignment. However, it does not consider intra-/inter-class varia-
tions of features. Our model learns discriminative features using the contrastive
framework, and yields better segmentation results than the baseline.
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Fig. 2: An accuracy-density plot.
Fig. 3: Magnitude of domain biases
for the classes of car, road, and rider.

Pseudo labels Density(%) Accuracy(%) mIoU(%)
Static [8] 20.1 98.5 53.5

Dyn. (w/o cal.) 22.2 98.6 54.4
Dyn. (w/ cal.) 34.3 98.6 55.5

Hybrid 42.3 98.8 57.1
Table 1: Quantitative comparisons of pseudo labels (in terms of density and
accuracy), and segmentation results (in terms of mIoU scores) using each label.
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Franke, U., Roth, S., Schiele, B.: The cityscapes dataset. In: CVPR Workshop (2015)

3. Li, G., Kang, G., Liu, W., Wei, Y., Yang, Y.: Content-consistent matching for domain
adaptive semantic segmentation. In: ECCV (2020)

4. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth from
computer games. In: ECCV (2016)

5. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset:
A large collection of synthetic images for semantic segmentation of urban scenes. In:
CVPR (2016)

6. Wang, H., Shen, T., Zhang, W., Duan, L.Y., Mei, T.: Classes matter: A fine-grained
adversarial approach to cross-domain semantic segmentation. In: ECCV (2020)

7. Zhang, P., Zhang, B., Zhang, T., Chen, D., Wang, Y., Wen, F.: Prototypical pseudo
label denoising and target structure learning for domain adaptive semantic segmen-
tation. In: CVPR (2021)

8. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic
segmentation via class-balanced self-training. In: ECCV (2018)



Bi-directional Contrastive Learning for DASS 5

(a) Tgt. images. (b) Iter 10k. (c) Iter 50k. (d) Iter 100k. (e) GT labels.

Fig. 4: Visualizations of dynamic pseudo labels. (a) Target images. (b-d) Dynamic
pseudo labels at iteration 10k, 50k, and 100k. (e) Ground-truth labels.

Methods Density(%) Accuracy(%)
ProDA [7] 18.5 99.3

Ours 42.3 98.8
Table 2: Quantitative comparisons of pseudo labels (in terms of density and
accuracy) for our method and ProDA [7].

GTA5 → Cityscapes SYNTHIA → Cityscapes

Baseline 41.1 43.2
Ours 48.5 52.4

Table 3: mIoU scores for a baseline and ours using the FCNs with VGG16 as a
backbone network.

Memory usage
(Train/Test)

Runtime
(Train/Test)

Baseline 24G/5G 24 hours/13 minutes
Ours 30G/5G 32 hours/13 minutes

Table 4: Quantitative comparisons of baseline and our models in terms of memory
usage and runtime.
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(a) Target images. (b) Our baseline. (c) Our model. (d) GT labels.

Fig. 5: Qualitative comparisons on GTA5 → Cityscapes.

(a) Target images. (b) Our baseline. (c) Our model. (d) GT labels.

Fig. 6: Qualitative comparisons on SYNTHIA → Cityscapes.


