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Abstract. 3D instance segmentation is a fundamental task for scene understand-
ing, with a variety of applications in robotics and AR/VR. Many proposal-free
methods have been proposed recently for this task, with remarkable results and
high efficiency. However, these methods heavily rely on instance centroid regres-
sion and do not explicitly detect object boundaries, thus may mistakenly group
nearby objects into the same clusters in some scenarios. In this paper, we de-
fine a novel concept of “regional purity” as the percentage of neighboring points
belonging to the same instance within a fixed-radius 3D space. Intuitively, it in-
dicates the likelihood of a point belonging to the boundary area. To evaluate the
feasibility of predicting regional purity, we design a strategy to build a random
scene toy dataset based on existing training data. Besides, using toy data is a
“free” way of data augmentation on learning regional purity, which eliminates
the burdens of additional real data. We propose Regional Purity Guided Network
(RPGN), which has separate branches for predicting semantic class, regional pu-
rity, offset, and size. Predicted regional purity information is utilized to guide our
clustering algorithm. Experimental results demonstrate that using regional purity
can simultaneously prevent under-segmentation and over-segmentation problems
during clustering.

Keywords: 3D Instance Segmentation, Point Cloud Representation Learning,
Clustering Algorithm

1 Introduction

Semantic scene understanding is a crucial component for many real-world computer vi-
sion applications, such as indoor robots, autonomous driving, drones, AR/VR devices,
etc. Although processing visual information for scene understanding is an instinctive
ability for humans, it remains a fairly challenging task for robots. Many robotic appli-
cations cannot fully handle various situations due to the lack of semantic understanding
of the target objects in the working environment. In recent times, with the rapid devel-
opment of deep learning techniques, computer vision has achieved remarkable success
in 2D image tasks. Different from 2D data captured from a conventional camera, 3D
data are usually collected by Lidar sensor or RGB-D based 3D scanner. Point cloud
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Fig. 1: Example of regional purity. Green point indicates high regional purity, since all
its surrounding points belong to the same instance. Red point indicates low regional
purity, since some of its neighboring points are from a different instance.

data involves a bunch of discrete points with their XYZ coordinates. Compared with
images, 3D data retains the original geometric information and does not suffer from
depth information loss during projection.

Existing approaches on 3D instance segmentation task can be classified into two
categories, proposal-based methods [9, 17, 27, 39, 40] and proposal-free methods [8,
13, 18, 19, 21, 24, 26, 28, 36, 37]. Proposal-based methods perform object detection
task first and predict a point-level mask for each proposed box. Whereas, proposal-free
methods start solving the problem based on semantic segmentation result and discrimi-
nate points into clusters via post-processing steps [5]. Generally, proposal-free methods
have relatively lower objectness since they do not perform computationally expensive
object detection task.

Majority of the methods with good performance, including [13, 19, 21, 29, 30, 19]
follows a same way of predicting instance centers and group nearby points into pro-
posals or clusters. Although this has been proven to be very effective, there are some
situations that are fairly challenging to predict accurate centroid from a single point.
Specifically, points near object boundary or belonging to objects with distorted shapes
are difficult to be predicted precisely. These points with inaccurate center prediction
may potentially cause two nearby objects with the same semantic class to be wrongly
grouped into the same cluster. Can we find an efficient way to tackle such problems
without even performing object detection task? The answer is yes.

In this paper, we look at this problem from a different point of view and aim to
find a more robust way to deal with these hard cases. Our work focus on approxi-
mating boundary area via predicting regional purity. On ground-truth, we explore the
surrounding space for each point and calculate the percentage of the points with the
same instance label. As shown in Figure 1, if most neighbor points belong to the same
instance, this point is said to have high regional purity and vice versa. We build a ran-
dom scene toy dataset and let our network learn to predict regional purity on it. Based
on the predicted results, we can know which points are more likely to be in the bound-
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ary area between objects and need to be cautious when grouping them. Comparing with
bounding box detection, our approximated boundary areas own more adaptive shapes
and are not constrained by rigid rectangular boxes. Meanwhile, our regional prediction
is a direct output from one branch after the backbone network, thus does not bring much
computational burden during processing.

To sum up, the key contributions of our work are following:

– We define a novel concept of regional purity, which encodes instance-aware con-
textual information of the surrounding region. Regional purity information can be
employed to guide the clustering algorithm and provide good objectness for 3D
instance segmentation.

– We propose a pretraining pipeline for learning regional purity and design rules to
generate random toy scenes by extracting samples from existing training data.

– Our proposed method achieves state-of-the-art performance and the fastest process-
ing speed among all the methods.

2 Related Work

To handle unstructured point cloud data [2], existing proposed feature learning methods
can be classified into point-based methods [23, 31, 32, 35, 38, 43] and projection-based
methods [10, 12, 16, 22] . Inspired by the success of convolution on images, projection-
based methods transform original data into regular format and then implement with
convolution operation. On the other hand, point-based methods directly work on irreg-
ular point cloud with different ways of feature extraction.

Similarity Group Proposal Network (SGPN) [36] is a pioneering work that directly
tackles instance segmentation task with deep learning technique on 3D point cloud data.
It learns point feature using PointNet++ [32] backbone and merges group proposals
from similarity matrix for instance segmentation. Submanifold sparse convolution [12]
has been proven to be a very effective backbone network for 3D semantic segmenta-
tion, which transforms sparse point cloud into voxels and performs convolution only on
non-empty voxels. Liu et al. [26] proposed MASC, a U-net architecture with subman-
ifold sparse convolution [12]. It predicts semantic scores for every voxel and the affin-
ity between neighbouring voxels at different scales. Wang et al. [37] introduced Asso-
ciatively Segmenting Instance and Semantics(ASIS), which has two separate branches
for semantic segmentation and instance segmentation that can mutually support each
other. JSIS3D [28] uses multi-value Conditional Random Field (CRF) for joint opti-
mization. MTML [21] introduced directional loss and discriminative loss for feature
embedding into 3D instance segmentation. Since then, center based methods dominate
this area. PointGroup [19] finds the void space between objects and leverage dual set
of proposals to boost performance. Occuseg [13] introduces occupancy signal to guide
graph-based clustering algorithm. Overall, these proposal-free methods do not require
region proposal network which makes them less computational expensive. Proposal-
based methods including GSPN[36], 3D-SIS[17] and 3D-BoNet[39] explicitly detect
object boundaries and perform binary mask prediction on top of the detection result.
The recent 3D-MPA [9] makes dense center predictions on all points and aggregate the
features between proposals via graph convolutional network for mask prediction.



4 S. Dong et al.

Fig. 2: Pipeline of the proposed pretraining scheme for learning regional purity. First,
we extract samples from training set of point cloud data and use our montage assembly
method to generate random scenes. Then, we pretrain our backbone network on toy
dataset and fine tune on real dataset. Our network has four branches for point feature
prediction and a clustering algorithm to output final result.

3 Method

In this work, the predominant objective is to evaluate if our defined regional purity sig-
nal can be well learned and predicted. Therefore we start by building a toy dataset with
clean data. Following that, the next question is to show how those useful information
can be utilized.

As shown in Fig. 2, we proposed a pipeline of the training scheme, consisting of
pre-training stage and fine-tuning stage. Our random scene toy dataset serves two main
purposes: 1) to evaluate the feasibility of predicting regional purity; and 2) to introduce
“free” additional data for data augmentation.

3.1 Random Scene Toy Dataset

For the network to learn regional purity in a generalized way, we need a large amount
of data that contains different combined cases of nearby objects. However, scenes in
public dataset usually only have limited high-quality data for learning regional purity.
Moreover, many objects are not close enough to each other, which makes the unbal-
ance problem between high purity class and low purity class even worse. Excessive
background points are not helpful for learning regional purity but inevitably lead to
additional computational costs. To tackle these issues, we design a novel strategy of
building a toy dataset by sample extraction and montage assembly. The created toy
dataset contains foreground points only and keeps objects highly compacted.

Sample Extraction As the preparation step, we select and crop those points belonging
to a particular instance from the training set. Since cropped point clouds can be at dif-
ferent positions in the original coordinate system, its coordinates need to be normalized
by shifting the origin of the coordinate system to its mean center. To make the object on
the floor, we then shift all points upwards until no negative Z values exist. The semantic
labels are kept but instance labels will be reassigned in the next steps.
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Fig. 3: Illustration of random toy scene generation. Extracted toy samples are flexibly
joined into new scenes via a template-based montage assembly method.

Montage Assembly To create more cases of the boundary area, we use a template-
based assembling method. Specifically, nine samples from extraction stages will be
randomly selected and stitched into a toy scene. The template is designed on the bird-
view of objects. Instance samples are added to the template sequentially. Oversized
objects can cause the next object to be shifted aside. Afterward, we shift all surrounding
objects towards the center object by a Gaussian random distance. These hard cases can
benefit network training. All objects are augmented with random rotation. The whole
scene is also randomly adjusted and one object is randomly dropped out, to prevent any
potential possibility of over-fitting. In summary, our assembly method creates random
scene toy dataset with high coverage and few overlaps, meanwhile keeping the data size
consistent.

Regional Purity Label For automatically generating ground-truth regional purity la-
bels, we use k-d tree which organizes points in a space partitioning data structure. This
allows fast retrieval of neighboring points in 3D space. Given a seed point q, we search
and find all points within a fixed radius r. Its receptive space can be expressed as:

N (q, r) = {p ∈ P | ∥p− q∥< r}, (1)

where r is the radius of the receptive space and p is taken from the set of points P of
the entire point cloud scene.

Here, we define the following rules for regional purity label generation. We consider
id1 as high purity, id2 as low purity and id0 as medium purity.

regional purity label =


1 M

N ≥ θ1

2 M
N ≤ θ2

0 otherwise

, (2)

where M is the number of points with the same instance label as the seed point, N
is the number of total found points. We empirically set θ1 to be 95% and θ2 to be 80%.
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3.2 Network Architecture

Our network uses a shared U-net backbone and several branches for joint task learning.
Proposed clustering algorithm considers predicted information and directly outputs in-
stance segmentation result.

3.3 Multi-task Learning

As a necessary preliminary step, the major role of backbone network is to extract the
contextual and geometric information from input data. Subsequently, we apply linear
transformation for different branches to predict semantic labels, regional purity labels,
offsets and size labels. The training of our network is supervised by following the joint
loss function,

Ljoint = Lsem + Lpurity + Loffset + Lsize. (3)

Semantic Segmentation Branch Based on point feature vectors, semantic score can
be predicted for N classes. The training process is supervised by a conventional cross
entropy loss [11] Lsem.

Regional Purity Branch As mentioned in the previous section, we assigned regional
purity labels to be either 0, 1, or 2 on ground-truth. Normal data distribution may include
much more label id 1 than id 2. To deal with the class imbalance issue, we propose a
joint loss with three terms for regional purity,

Lpurity = LCE + Ldice + 0.1 ∗ Ldist. (4)

For learning regional purity, Cross-Entropy loss with softmax activation is applied
for three equally weighted categories,

LCE = − 1

N

N∑
i=1

HCE(yi, ci). (5)

where N is the number of points, i is the index of point, ci is the one-hot-encoding of
the ground-truth regional purity label of point i and HCE is the cross-entropy function.

Accuracy in class imbalance tasks can be misleading sometimes. F1 score, as known
as Dice coefficient [34, 3], is a more reliable measure. It represents the harmonic mean
of precision and recall.

Dice =
2 | A ∩B |
| A | + | B |

=
2TP

2TP + FP + FN
. (6)

This metric is directly adapted in dice loss function [4, 20, 33]. Here, we add different
weight coefficients for FP (false positives) and FN (false negatives). For predicting
low purity label, a false positive prediction will surfer more punishment than a false
negative prediction. In other words, we think precision is more important than recall
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in this task. Comparing with predicting nothing, wrong prediction hurts performance
more. This loss term is formulated as:

Ldice = 1− 1 + pp̂

1 + pp̂+ αp(1− p̂) + β(1− p)p̂
. (7)

where α is the coefficient for FP (false positives) and β is the coefficient for FN
(false negatives). The sum of these two factors must be 1. If both are set to 0.5, it is just
same as regular Dice loss. A value of 1 is added at both numerator and denominator of
the fraction to smooth the loss.

A distance map [15] is derived on ground-truth by searching the distance to the
nearest low purity point for each point. The purpose of using distance penalty term is
to treat false positive point differently. For example, a point wrongly predicted as low
purity point but just nearby other positive points is much tolerable, but predicting a
low purity point at the center of an object is beyond reasonable limits. Using distance
penalty term, it guides the network to focus towards the target area at boundary regions.
This term is defined as:

Ldist =
1

M

M∑
i=1

(1 + Φ)⊙ LCE , (8)

Here, M is the number of predicted low purity points, Φ is the distance map created, i
is the index of Φ. This is an additional term to the Cross-Entropy loss.

Offset Branch Following previous work [19], we use L1 loss to regress object centroid
for all points on instances. Offset labels are three dimensional vectors which generated
on ground-truth.

Lo reg =
1∑
i mi

∑
i

||oi − (ĉi − pi)||·mi, (9)

where m is a binary mask to filter out background points.
Directly regressing instance center is a challenging task. Here, an additional direc-

tion loss term is introduced to guide the network based on cosine similarity.

Lo dir = 1− 1∑
i mi

∑
i

oi
||oi||2

· ĉi − pi
||ĉi − pi||2

·mi, (10)

Note that we add a constant of 1 to avoid negative loss value, since the range of
cosine similarity is between -1 and 1. The combined offset loss can be written as

Loffset = Lo reg + Lo dir. (11)

Size Branch For the network to learn instance-level contextual feature, we also intro-
duce a size branch for auxiliary purposes. Based on the length of diagonal of bird view
2D bounding box, instance size is classified into six categories and the fixed interval
between classes is 0.4m.
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3.4 Regional Purity Guided Clustering Algorithm
In this section, we employ predicted regional purity to guide a standard breath-first
search algorithm. Figure 4 shows a typical grouping process towards some ungrouped
points (in grey). In (a), a new cluster starts from a random initial seed point (in blue).
The seed point will search and find target points in space. If target points satisfy its
criteria, they are grouped into the cluster and becoming the seed points in next grouping
iteration.

Fig. 4: Illustration of clustering algorithm grouping strategy

In our method, points are not treated equally. On point-level, before grouping of
each pair, we check the regional purity prediction of the seed point and target point
(represented by the outline color of points in (d)(e)(f)). Based on that, strategy selector
makes decision to go for high confidence grouping strategy or low confidence grouping
strategy, other cases will block and skip. The core idea is to better group the inner part
of objects with high purity while isolating instances by utilizing low purity points.

High purity pairs are more likely at inner part of objects and their offset prediction
is relatively reliable. Thus we use high confidence strategy by shifting their coordinates
to their predicted object centers. Real point cloud data are often holey and inconsistent,
which can potentially cause an over-segmentation problem. To reduce the impact, we
also make the grouping criteria more tolerable by introducing additional radius ∆r1.

Low confidence grouping strategy is defined towards low purity points. At boundary
area, offset prediction is often not reliable, if we use shift coordinates may cause two
clusters to be mistakenly merged. To make the grouping more robust, we use the cosine
similarity of the direction between their offset vectors as an additional criteria. Here
only medium purity points can be used as seed points, because they are geometrically
closer to low purity points and comparing the offset vector directions between nearby
points has more reference value.
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Algorithm 1 Clustering algorithm. N is the number of points. M is the number of
clusters found by the algorithm.
Input: clustering radius r;

clustering additional radius ∆r1 and ∆r2;
cluster point number threshold Nθ;
cosine similarity threshold ϕ;
coordinates X = {x1, x2, ..., xN} ∈ RN×3

offset D = {d1, d2, ..., dN} ∈ RN×3; and
semantic labels S = {s1, ..., sN} ∈ RN .
regional purity labels P = {p1, ..., pN} ∈ RN .

Output: clusters C = {C1, ..., CM}.
1: initialize an array v (visited) of length N with all zeros
2: initialize an empty cluster set C
3: for i = 1 to N do
4: if si is a background class then
5: vi = 1

6: for i = 1 to N do
7: if vi == 0 then
8: if pi == 1 then
9: initialize an empty queue Q

10: initialize an empty cluster C
11: vi = 1; Q.enqueue(i); add i to C

12: while Q is not empty do
13: k = Q.dequeue()
14: for j ∈ [1, N ] do
15: if sj == sk and vj == 0 then
16: ▶high confidence grouping strategy
17: if pi == 1 and pj ! = 2 then
18: r′ ← r +∆r1
19: xj ′ ← xj + dj
20: xk′ ← xk + dk
21: if ||xj ′ − xk′||2< r′ then
22: vj = 1
23: Q.enqueue(j);add j to C

24: ▶low confidence grouping strategy
25: if pi == 0 and pj == 2 then
26: r′ = r +∆r2
27: if ||xj ′ − xk′||2< r′ then
28: cosθ(dj , dk) =

dj
∥dj∥

∗ dk
∥dk∥

29: if cosθ < ϕ then
30: vj = 1
31: Q.enqueue(j);add j to C

32: if number of points in C >Nθ then
33: add C to C
34: return C
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Our algorithm only takes one set of points as input. Since each point can only be
visited once, there will be no overlapping clusters. Thus non-maximum-suppression
(NMS) [14] is not needed as a post-processing step.

4 Experiment

In this section, we evaluate our method on created toy dataset and public dataset of
ScanNet v2 [7] and S3DIS [1] to show the effectiveness of our approach.

4.1 Evaluation on Random Scene Toy Dataset

Toy scenes are randomly generated by our introduced assembly method and split into
training set and validation set at a ratio of 4:1. The network takes coordinates with RGB
color information of points as input and predicts regional purity at point-level.

Radius 0.2m 0.3m
Purity label high low high low
Precision 97.4 88.5 95.1 89.2

Recall 99.0 86.4 98.7 88.2
F1 score 98.2 87.4 96.9 88.7

IoU 96.5 77.7 93.9 79.6

Table 1: Evaluation of regional pu-
rity prediction at different scales
on toy dataset validation set.

Fig. 5: Visualization of regional purity prediction at
different scales on toy dataset validation set.

We evaluate on two different scales of regional purity on 0.2m and 0.3m searching
radius, with same 95% and 80% criteria for label generation. The results in Table 1 and
Figure 5 show that our network is able to learn the contextual information of defined
regional purity. For regional purity, green color represents high purity with id1, red
color represents low purity with id2, yellow color represents medium purity with id0.

4.2 Evaluation on ScanNet Dataset

To demonstrate the effectiveness of our approach, we conduct experiments on ScanNet
dataset [7]. It is a popular point cloud dataset containing 1513 real-world indoor scenes.
The 3D meshed data are annotated with point-level semantic label and instance label.
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Fig. 6: Result Analysis on ScanNet validation set. From left to right: (1) instance pre-
diction by baseline algorithm without regional purity (2) instance prediction by regional
purity guided clustering algorithm (3) regional purity prediction (red color area repre-
sents low regional purity, green color area represents high regional purity). This shows
that using regional purity information can simultaneously resolve under-segmentation
and over-segmentation problem.

Implementation Details We use Adam solver for optimization with an initial learn-
ing rate of 0.001. At pretraining stage, the network takes 10k randomly generated toy
scenes as input. The backbone network are initially frozen when transferring to real
dataset. After the last two linear layers are well trained, we unfreeze whole network
and continue to train it until convergence. The training takes 4-5 days on a single GPU.

mAP@0.25 bath bed bkshf cab chair cntr curt desk door ofurn pic fridg showr sink sofa tabl toil wind avg

SGPN [36] 90.3 8.1 0.8 23.3 17.5 28.0 10.6 15.0 20.3 17.5 48.0 21.8 14.3 54.2 40.4 15.3 39.3 4.9 26.1
3D-BEVIS [8] 66.7 68.7 41.9 13.7 58.7 18.8 23.5 35.9 21.1 9.3 8.0 31.1 57.1 38.2 75.4 30.0 87.4 35.7 40.1
R-PointNet 50.0 65.5 66.1 66.3 76.5 43.2 21.4 61.2 58.4 49.9 20.4 28.6 42.9 65.5 65.0 53.9 95 49.9 54.4
3D-SIS [17] 100 77.3 61.4 50.3 69.1 20.0 41.2 49.8 54.6 31.1 10.3 60.0 85.7 38.2 79.9 44.5 93.8 37.1 55.8
MASC [26] 71.1 80.2 54.0 75.7 77.7 2.9 57.7 58.8 52.1 60.0 43.6 53.4 69.7 61.6 83.8 52.6 98 53.4 61.5
3D-BoNet [39] 100 88.7 83.6 58.7 64.3 55.0 62.0 72.4 52.2 50.1 24.3 51.2 100 75.1 80.7 66.1 90.9 61.2 68.7
PanopticFusion [27] 100 85.2 65.5 61.6 78.8 33.4 76.3 77.1 45.7 55.5 65.2 51.8 85.7 76.5 73.2 63.1 94.4 57.7 69.3
SSEN [42] 100 92.6 78.1 66.1 84.5 59.6 52.9 76.4 65.3 48.9 46.1 50.0 85.9 76.5 87.2 76.1 100 57.7 72.4
MTML [21] 100 99.2 77.9 60.9 74.6 30.8 86.7 60.1 60.7 53.9 51.9 55.0 100 82.4 86.9 72.9 100 61.6 73.1
3D-MPA [9] 100 93.3 78.5 79.4 83.1 27.9 58.8 69.5 61.6 55.9 55.6 65.0 100 80.9 87.5 69.6 100 60.8 73.7
OccuSeg [13] 100 92.3 78.5 74.5 86.7 55.7 57.8 72.9 67.0 64.4 48.8 57.7 100 79.4 83.0 62.0 100 55.0 74.2
PE [41] 100 90.0 86.0 72.8 86.9 40.0 85.7 77.4 56.8 70.1 60.2 64.6 93.3 84.3 89.0 69.1 99.7 70.9 77.6
PointGroup [19] 100 90.0 79.8 71.5 86.3 49.3 70.6 89.5 56.9 70.1 57.6 63.9 100 88 85.1 71.9 99.7 70.9 77.8
SSTNet [25] 100 84 88.8 71.7 83.5 71.7 68.4 62.7 72.4 65.2 72.7 60 100 91.2 82.2 75.7 100 69.1 78.9
HAIS [6] 100 99.4 82 75.9 85.5 55.4 88.2 82.7 61.5 67.6 63.8 64.6 100 91.2 79.7 76.7 99.4 72.6 80.3

RPGN (Ours) 100 99.2 78.9 72.3 89.1 65.0 81 83.2 66.5 69.9 65.8 70.0 100 88.1 83.2 77.4 99.7 61.3 80.6

Table 2: 3D instance segmentation results on ScanNet v2 [7] on 18 classes.

The results of 3D instance segmentation on ScanNet [7] are presented in Table 2,
Table 3 and Figure 8, which show our predicted regional purity information can be
leveraged to improve the performance of instance segmentation.
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mAP@0.5 cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn avg

SegCluster 10.4 11.9 15.5 12.8 12.4 10.1 10.1 10.3 0.0 11.7 10.4 11.4 0.0 13.9 17.2 11.5 14.2 10.5 10.8
MRCNN 11.2 10.6 10.6 11.4 10.8 10.3 0.0 0.0 11.1 10.1 0.0 10.0 12.8 0.0 18.9 13.1 11.8 11.6 9.1
SGPN [36] 10.1 16.4 20.2 20.7 14.7 11.1 11.1 0.0 0.0 10.0 10.3 12.8 0.0 0.0 48.7 16.5 0.0 0.0 11.3
3D-SIS [17] 19.7 37.7 40.5 31.9 15.9 18.1 0.0 11.0 0.0 0.0 10.5 11.1 18.5 24.0 45.8 15.8 23.5 12.9 18.7
MTML [21] 14.5 54.0 79.2 48.8 42.7 32.4 32.7 21.9 10.9 0.8 14.2 39.9 42.1 64.3 96.5 36.4 70.8 21.5 40.2
PointGroup [19] 48.1 69.6 87.7 71.5 62.9 42.0 46.2 54.9 37.7 22.4 41.6 44.9 37.2 64.4 98.3 61.1 80.5 53.0 56.9
3D-MPA [9] 51.9 72.2 83.8 66.8 63.0 43.0 44.5 58.4 38.8 31.1 43.2 47.7 61.4 80.6 99.2 50.6 87.1 40.3 59.1

RPGN (Ours) 50.9 76.6 92.1 62.6 70.6 47.2 52.1 59.8 41.7 17.6 45.7 51.9 63.3 91.5 100 42.7 87.1 61.4 61.9
RPGN† (Ours) 57.3 75 92.6 63.6 71.9 49.8 56.4 62.6 46.6 22.1 54.8 51.2 65.3 90.0 100 48.0 83.9 64.3 64.2

Table 3: 3D instance segmentation results on ScanNet v2 [7] validation set with on 18
classes.† represents using refined semantic prediction via label smoothing.

Discussion In Figure 6, we compare the instance segmentation results before and af-
ter adding the regional purity prediction into the algorithm. In case 1, four chairs are
wrongly grouped into one cluster. By using our well predicted regional purity informa-
tion, the clustering algorithm can successfully separate them into different clusters. In
case 2, the table is predicted as two instances due to the inaccuracy in offset prediction.
Since all points on the table have high purity label, we give more tolerance for grouping
them into one piece.

4.3 Evaluation on S3DIS Dataset

To study the generalizability of our pretrained model, we also evaluate our proposed
RPGN model on S3DIS dataset [1]. The dataset has 272 scenes under six large-scale
indoor areas. Different from ScanNet [7], all 13 classes including background are anno-
tated as instances and require prediction. Following previous methods, we use the mean
precision (mPre) and mean recall (mRec) with an IoU threshold of 0.5 as evaluation
metric. We report results on both Area 5 and 6-fold cross validation over six areas in
Table 4. Using pretrained model reduces overfitting on small dataset and dramatically
boost the performance.

Area 5 6-fold
mPrec mRec mPrec mRec

ASIS[37] 55.3 42.4 63.6 47.5
PointGroup[19] 61.9 62.1 69.6 69.2

OccuSeg[13] - - 72.8 60.3
SSTNet[25] 65 64.2 73.5 73.4

HAIS[6] 71.1 65.0 73.2 69.4
RPGN (Ours) 64.0 63.0 84.5 70.5

Table 4: 3D instance segmentation re-
sults on S3DIS dataset [1]

Fig. 7: Instance Segmentation Result on
S3DIS dataset [1].
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5 Ablation Study

To evaluate the effectiveness of each component in proposed method, we conduct abla-
tion studies on the validation set of ScanNet dataset in Table 5.

High Purity Low Purity Offset Direction mAP mAP@0.5
baseline × × × × 0.284 0.508

(a) ✓ × × × 0.294 0.518
(b) ✓ ✓ × × 0.322 0.545
(c) ✓ ✓ ✓ × 0.352 0.572
(d) ✓ ✓ ✓ ✓ 0.359 0.582

Table 5: Ablation results of instance segmentation task for clustering algorithm on Scan-
Net v2 [7] validation set

Ablation on Clustering Algorithm To analysis our proposed clustering algorithm, we
use mentioned baseline algorithm and step-by-step add our components onto it.

In step (a), we utilize high purity points by allowing an additional ∆r1 radius when
grouping other high purity points. We argue that regions with high purity prediction
should be safer to group other nearby points. By bringing additional tolerance, high
purity points can help to step over the gaps inside objects.

In step (b), we define low purity points can only be grouped by medium purity points
within (r + ∆r2) radius on original coordinates and cannot group any other points.
This constrains the grouping direction to be regional purity guided, only from high to
low. Allowing inverse direction grouping can potentially cause different instances to be
connected. Our soft barrier formed by low purity points can help to prevent such cases.

In step (c), predicted offset feature is used for high purity points to be better grouped.
Note that we only shift high purity points to their predicted instance center. We argue
that points with low purity labels can hardly predict accurate offset to their center, since
they are more likely on the boundary. Therefore, grouping low purity points only con-
siders the original coordinates.

In step (d), we add an additional condition to compare the angle of offset vector
between seed point and target point. The grouping is only proceeded if their cosine
similarity is above 0.8. Even though we have low confidence in their predicted instance
centers to be precise, rough directions still have value for assigning low purity points
into the right clusters.

Pretraining vs Training from Scratch We compare two training strategies for the
network to predict regional purity. The proposed pre-training strategy brings an im-
provement of 3.8% mAP on ScanNet v2 [7] validation set.

Dual Set vs Single Set The previous work [19] uses two sets of points for proposal
generation and filter out duplicated cases by a scoring network and Non-Maximum
Suppression (NMS). In this work, we make rational use of predicted information. Our
clustering algorithm can directly generate high-quality proposals and get rid of NMS.
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Fig. 8: Qualitative Results of Instance Segmentation and Regional Purity Prediction on
ScanNet v2 [7] validation set.

Runtime Analysis In Table 6, we compare the processing time on full validation set of
ScanNet (312 scenes) with other methods according to [13, 39]. In general, the inference
time of our network for a single scene with 20k points is around 0.3 seconds.

Total Processing Time
SGPN [36] 49433
ASIS [37] 56757

3D-SIS [17] 38841
GSPN [40] 3963

3D-BoNet [39] 2871
OccuSeg [13] 594

PointGroup [19] 141
HAIS [6] 128

RPGN(Ours) 89

Table 6: Total processing time (in seconds) on the validation set of ScanNet v2 [7]

6 Conclusion

In this paper, we have presented our defined regional purity concept and its learning
strategy with the random scene toy dataset generation and pretraining scheme. Predicted
regional purity can be used to guide the clustering process for 3D instance segmentation.
Without performing object detection tasks, we use regional purity area to approximate
object boundaries in a more flexible and robust form.
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