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Abstract. Few-shot semantic segmentation aims at learning to segment
a novel object class with only a few annotated examples. Most exist-
ing methods consider a setting where base classes are sampled from the
same domain as the novel classes. However, in many applications, col-
lecting sufficient training data for meta-learning is infeasible or impossi-
ble. In this paper, we extend few-shot semantic segmentation to a new
task, called Cross-Domain Few-Shot Semantic Segmentation (CD-FSS),
which aims to generalize the meta-knowledge from domains with suffi-
cient training labels to low-resource domains. Moreover, a new bench-
mark for the CD-FSS task is established and characterized by a task
difficulty measurement. We evaluate both representative few-shot seg-
mentation methods and transfer learning based methods on the proposed
benchmark and find that current few-shot segmentation methods fail to
address CD-FSS. To tackle the challenging CD-FSS problem, we propose
a novel Pyramid-Anchor-Transformation based few-shot segmentation
network (PATNet), in which domain-specific features are transformed
into domain-agnostic ones for downstream segmentation modules to fast
adapt to unseen domains. Our model outperforms the state-of-the-art
few-shot segmentation method in CD-FSS by 8.49% and 10.61% aver-
age accuracies in 1-shot and 5-shot, respectively. Code and datasets are
available at https://github.com/slei109/PATNet

Keywords: Few-Shot Learning, Cross-Domain Transfer Learning, Se-
mantic Segmentation

1 Introduction

Deep neural networks for semantic segmentation, such as FCN [26], DeepLab [5]
and PSPNet [52], typically require large-scale annotations for training, which is
costly to obtain. To reduce such burden on data annotation, Few-Shot Semantic
Segmentation (FSS) task has been proposed [33], which aims to learn a model
that can perform segmentation on novel classes with only a few pixel-level an-
notated images. Although significant progress has been made in the FSS task
[34,45,46,49,50], it is hard to apply existing methods to cross-domain scenarios.
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Fig. 1. Differences between the cross-domain few-shot segmentation and existing tasks.
Xs and Xt denote the data distribution in the source and target domain, respectively.
Ys represents the source label space and Yt represents the target label space.

Since the methods still require a large number of base class samples for training,
it is infeasible for low-resource domains where few training annotations can be
obtained. For instance, it is too expensive to collect sufficient satellite images
for meta-training purposes, remaining a large obstacle to applying the few-shot
segmentation methods directly into the satellite image domain. To tackle the
issue, we extend FSS to a new Cross-Domain Few-Shot Segmentation (CD-FSS)
task that aims at generalizing the meta-knowledge from domains with sufficient
training labels (e.g. PASCAL VOC [13]) to low-resource domains.

The conceptual comparisons between the existing tasks and our CD-FSS task
are shown in Fig. 1. First, most works on cross-domain semantic segmentation
(or domain adaptation for semantic segmentation) focus on the problem setting
where the target domain data can be accessed during training and share the
same label space as the source domain. For example, in the first row of Fig.
1, street photo-realistic synthetic images are usually used as training data for
real-world urban scene understanding tasks. In contrast, we study the CD-FSS
problem, where the source and target domains have completely disjoint label
space and cannot access target domain data during the training stage. Second,
the classic few-shot semantic segmentation only focuses on segmenting novel
classes sampled from the same domain in the training stage. In other words,
the input data distributions from source and target domains are the same while
the label spaces are disjoint in the training and testing stages. In contrast, both
data distributions and label spaces in the testing stage are different from the
training stage in the CD-FSS task.

In this paper, we establish a new benchmark for the CD-FSS task to evaluate
the cross-domain generalization ability of segmentation models under different
domain gaps. It consists of four different domains characterized by domain shifts
of different size: FSS-1000 [23], Deepglobe [11], ISIC2018 [10,42], and Chest X-
ray datasets [4,21]. These datasets cover daily objects images, satellite images,
dermoscopic images of skin lesions, and X-ray images, respectively. The selected
datasets have class diversity and reflect the real-world scenario for few-shot se-
mantic segmentation.
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Furthermore, both representative few-shot segmentation methods and trans-
fer learning based methods are evaluated on the proposed benchmark. Experi-
ment results show that: 1) the performances of existing few-shot semantic seg-
mentation methods degrade significantly under large domain shifts. Those meth-
ods even underperform the simple transfer learning baselines when the target
domain is drastically different from the source domain; 2) meta-learning ap-
proaches are more effective than all transfer learning baselines in the setting of
limited domain differences.

A major challenge in CD-FSS is that the feature space learned from the
source domain cannot be applied to the target domain. Concretely, existing
methods learn a support-query matching/comparing model in a single domain
and their basic assumption is that the pretrained encoder is powerful enough
to embed the image into distinguishable features. However, the backbone only
pretrained in the source domain fails in the target domain due to the different
data distribution. To address this problem, we propose a novel Pyramid Anchor-
based Transformation Module (PATM) to transform the domain-specific features
into domain-agnostic ones. Thus, the downstream model can be well adapted to
the novel domains by matching domain-agnostic features of support and query
sets to make the segmentation. To further refine the predicted mask of the query
image, we also propose a Task-adaptive Fine-tuning Inference (TFI) strategy for
fast adaptation to unseen domain. In the testing phase, only PATM is updated
with the prototype similarity between support images and query predictions to
avoid over-fitting in few-shot scenarios. In this way, the predicted mask is refined
with the calibrated features produced by the fine-tuned PATM.

Our main contributions are summarized as follows:

– We extend few-shot semantic segmentation to a new task, called Cross-
Domain Few-Shot Semantic Segmentation (CD-FSS), which aims to segment
a novel object class in unseen domains with only a few annotated examples.

– A practical evaluation benchmark for CD-FSS is established, consisting of
four different domains. We also measure the task difficulty for each domain
according to 1) domain shift and 2) discrimination between foreground and
background classes.

– We propose a Pyramid Anchor-based Transformation Module (PATM) to
transform the domain-specific features into domain-agnostic ones. Down-
stream segmentation modules can be adapted to unseen domains by learning
with domain-agnostic features. A novel Task-adaptive Fine-tuning Inference
(TFI) strategy is proposed to refine the prediction in unseen domains.

– We investigate a practical evaluation of few-shot segmentation methods and
transfer learning based methods in the proposed benchmark. Results show
that current few-shot segmentation methods fail to address CD-FSS and are
even inferior to the transfer learning baseline methods when a large domain
gap exists. In contrast, Our model outperforms the state-of-the-art few-shot
segmentation method in CD-FSS by 8.49% and 10.61% average accuracies
in 1-shot and 5-shot, respectively.
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2 Related Work

The prior works related to this paper are summarized below in domain adap-
tation for semantic segmentation, cross-domain few-shot learning and few-shot
semantic segmentation.

Domain adaptation for semantic segmentation. Recent works in do-
main adaptation for semantic segmentation are mainly divided into two direc-
tions. One group of studies aims to learn domain-invariant representations of
instances by domain adversarial training [8,9,12,41]. Hoffman et al. [20] combine
global and local alignment methods with adversarial training. Similar ideas are
also explored using different techniques, such as distillation loss [9], output space
alignment [40], class-balanced self-training [54], conservative loss [53], etc. The
other group is learning from a pre-defined curriculum [31,51].

However, these methods operate in the setting where the target domain data
can be accessed during training to drive the model adaptation and compensate
for the domain shift. In addition, most existing works exploit photo-realistic
synthetic data. Thus, the source and target domain share the same label space
and still retain a high degree of visual similarity. In contrast, we study the cross-
domain few-shot semantic segmentation problem, where the source and target
domains have completely disjoint label space and cannot require target domain
data during the training stage. The goal of this work is to learn a task-adaptive
few-shot semantic segmentation model under large domain shifts.

Few-shot learning. Few-shot learning aims to learn a new concept rep-
resentation from only a few annotated examples. Most existing works can be
categorized into metric learning methods [44,37,35], gradient-based meta learn-
ers [29,14], and graph neural network [15,24] based methods. Yoon et al. [47]
introduce a reference vector set to construct a linear transformer that performed
task-specific null-space projection for classification, which is the theoretical basis
of our method. In cross-domain few-shot learning [39,7,43], both data distribu-
tion and the label space in the meta-testing stage are different from the meta-
training stage. Tseng et al. [43] propose feature-wise transformation layers to
improve the generalization of metric-based few-shot classification approaches to
unseen domains. Guo et al. [16] propose a harder cross-domain few-shot bench-
mark (BSCD-FSL), where there is a large shift between base and novel class
domains. It covers several target domains with varying similarities to natural
images. Our proposed benchmark can be seen as an extension of BSCD-FSL
in the few-shot segmentation task to evaluate the cross-domain generalization
ability of few-shot segmentation models under different domain shifts.

Few-shot semantic segmentation. In contrast to the domain adaptation
for semantic segmentation, few-shot semantic segmentation has no access to
the target domain during training stage. It aims at segmenting novel semantic
objects in an image with only a few densely annotated examples. Based on the
optimized module in the meta-training process, existing works can be divided
into two groups, metric-based and relation-based methods. Specifically, metric-
based methods (e.g. PANet [45] and AMP [34]) adopt non-parametric decoder
and aim to train the encoder to construct a consistent metric space. In contrast,
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relation-based methods (e.g. CaNet [49], RPMM [46], PGNet [48], PFENet [38]
and HSNet [27]) freeze the pre-trained encoder during training process and train
a decoder to compare the support and query samples. In other words, metric-
based methods focus on separating foreground and background classes in each
task, while relation-based methods focus on recognizing the foreground classes
based on the pre-trained features. RePRI [3] foregoes meta-learning and adopts
a transductive inference with a feature extraction trained on the base classes.
However, these methods only focus on segmenting novel classes sampled from the
same domain. They fail to generalize to unseen domains due to large discrepancy
of the feature distribution across domains.

3 Benchmark

The proposed benchmark for CD-FSS consists of four datasets characterized by
domain shifts of different sizes. The proposed benchmark includes images and
pixel-level annotations from FSS-1000 [23], Deepglobe [11], ISIC2018 [10,42], and
Chest X-ray datasets [4,21]. These datasets cover daily objects images, satellite
images, dermoscopic images of skin lesions, and X-ray images, respectively. The
selected datasets have class diversity and reflect the real-world scenario for few-
shot semantic segmentation tasks. To provide a better overview, in Table 1, the
task difficulty for each domain is measured from two aspects: 1) domain shift
(cross the datasets) and 2) class distinction in a single image (within the dataset).
Fréchet Inception Distance (FID) [19] is adopted to measure the domain shift [1]
of these four datasets with respect to the PASCAL [13]. Since the discrimination
between classes in a single image has an important impact on the segmentation
task, we measure the similarity between foreground and background classes using
KL-divergence. For more details, please refer to the supplementary material.

Table 1. Conceptual difference between
PASCAL and the four cross-domain
datasets. The domain shift and class dis-
tinction in a single image is measured by
FID and DisFB, respectively.

Dataset
perspective
distortion

natural
content

color
depth

FID DisFB

Deepglobe × × 3 213.58 0.143
ISIC × × 3 275.28 0.187
Chest X-ray × × 1 316.56 0.126
FSS-1000 ✓ ✓ 3 238.41 0.112

Fig. 2. Example of segmentation in
the benchmark.

FSS-1000 [23] is a natural image dataset for few-shot segmentation, consist-
ing of 1,000 object classes and each class has 10 samples. The official split for
semantic segmentation is used in our experiment. We report the results on the
official testing set, which contains 240 classes and 2,400 testing images.

Deepglobe [11] is a satellite image dataset. Each image is densely annotated
at pixel-level with 7 categories: areas of urban, agriculture, rangeland, forest,
water, barren, and unknown. As the ground-truth label is only available in the
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training set, thus we adopt the official training set to report the results, which
contains 803 images. The images have a fixed spatial resolution of 2448 × 2448
pixels. To increase the number of testing images and reduce the size of images,
we cut each image into 6 pieces. As the categories labeled in this dataset have no
regular shape, the cutting operation has little effect on the segmentation. After
filtering the single class images and the ‘unknown’ class, we get 5,666 images to
report the results and each image has 408 × 408 pixels.

ISIC2018 [10,42] is a dataset on lesion images, consisting of skin cancer
screening samples. Every lesion image contains exactly one primary lesion. As
the ground-truth label is only available in the training set, thus we report the
results on the official training set, containing 2,596 images. The images have a
spatial resolution around 1022 × 767. As a common practice we down-size the
images to 512 × 512 pixels.

Chest X-ray [4,21] is an X-ray image dataset for Tuberculosis. It includes
566 images with a resolution of 4020 × 4892, which are collected from 58 cases
with a manifestation of Tuberculosis and 80 normal cases. Due to the large size
of image, we down-size the images to 1024 × 1024 pixels as a common practice.

4 Problem Setting

The cross-domain few-shot semantic segmentation (CD-FSS) problem can be
formalized as follows. We have a source domain (Xs,Ys) and a target domain
(Xt,Yt), where X� is the input data distribution and Y� is the label space. In
CD-FSS, the input data distribution in source domains Xs is different from
target domains and the label space in source domains has no overlap with target
domains Xt, i.e., Xs ̸= Xt, Ys ∩ Yt = ∅.

Suppose that the model is trained on the source domain, CD-FSS aims to
use the trained model to perform segmentation on the novel classes in the target
domain with only a few annotated images per class. The training set Dtrain is
constructed from (Xs,Ys) and the testing set Dtest is constructed from (Xt,Yt).
We align training and testing with the episodic paradigm [44] to handle the
few-shot scenario. Specifically, given a N -way K-shot learning task, both the
training set Dtrain and testing set Dtest consist of several episodes. Each episode
is constructed by 1) a support set S = {(Isi ,Ms

i )}
N×K
i=1 and 2) a query set

Q = {(Iqi ,M
q
i )}

Q
i=1, where I is an image, M is a corresponding mask and Q is

the number of query samples. Note that the model is trained on Dtrain from the
source domain and has no access to the target domain data. During the testing
(or meta-testing) process, the model is presented with a support set and a query
set from the target domain is used to evaluate the model performance.

5 Model

The main challenge in CD-FSS is to reduce the performance degradation brought
by domain shifts. Previous works focus on learning a support-query matching
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Fig. 3. Overview of our method in a 1-way 1-shot example. After obtaining the pyramid
features of support and query images, PATM is introduced to transform the domain-
specific hypercorrelations into domain-agnostic ones by producing linear transforma-
tion matrices. Then, the transformed features are fed into Domain-agnostic Correlation
Learning part for the final query segmentation mask prediction. In the testing phase,
the anchor layers are fine-tuned with the foreground prototype similarity between sup-
port and query predictions. Yellow parts are trainable and blue parts are frozen.

model and their basic assumption is that the pretrained encoder is powerful
enough to embed the image into distinguishable features for the downstream
matching model. However, the backbone only pretrained in the source domain
fails in the target domain, especially under the large domain gap, like daily life
object images to X-ray images. To address the problem, our model learns to
transform the domain-specific features into domain-agnostic ones. In this way,
the downstream model can be well adapted to the novel domain by matching
domain-agnostic features of support and query sets to make the segmentation.

As shown in Fig. 3, our method consists of three major parts, feature ex-
traction backbone, domain-adaptive hypercorrelation construction and domain-
agnostic correlation learning. Given support and query images, we first extract
all the intermediate features with feature extractor. Then, we introduce a partic-
ularly novel module in the Domain-adaptive Hypercorrelation Construction part,
dubbed Pyramid Anchor-based Transformation Module (PATM), to transform
the domain-specific features into domain-agnostic ones. Next, we compute multi-
level correlation maps with all transformed feature maps to feed into Domain-
agnostic Correlation Learning part. Two off-the-shelf modules, 4D convolutional
pyramid encoder and 2D convolutional context decoder [27], are adopted to
produce the prediction mask in a coarse-to-fine manner with efficient 4D convo-
lutions. In the testing phase, we also propose a Task-adaptive Fine-tuning Infer-
ence (TFI) strategy to encourage the model to fast adapt to the target domain
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by fine-tuning PATM with Lkl loss, which measures the foreground prototype
similarity between support and query predictions.

5.1 Pyramid Anchor-based Transformation Module

The core idea of Pyramid Anchor-based Transformation Module (PATM) aims
at learning pyramid anchor layers to transform the domain-specific features into
domain-agnostic ones. Intuitively, if we can find a transformer to transform the
domain-specific features into a domain-agnostic metric space, it will reduce the
detrimental effects brought by the domain drift. Since the domain-agnostic met-
ric space is constant, it will be much easier for the downstream segmentation
modules to make predictions in such a stable space.

Ideally, features belonging to the same class will produce similar results when
they are transformed in the same way. Thus, if we transform the support features
to the corresponding anchor points in the domain-agnostic space, then by using
the same transformation, we can also make query features belonging to the
same class transform close to the anchor points in the domain-agnostic space.
Inspired by TAFT module [32], we adopt a linear transformation matrix as the
transformation mapper since it introduces fewer learnable parameters. As shown
in Fig. 3, we use the anchor layer and the prototype set of the support image
to compute the transformation matrix. Let A represent the weight matrix of
the anchor layer and P denote the prototype matrix of the support image. We
construct the transformation matrix W by finding a matrix such that WP = A.

Specifically, for an 1-way 1-shot task, once the intermediate feature maps
in L layers of the support image, {Fs

l }Ll=1, are obtained, we can calculate the
foreground prototype of each feature map Fs

l ∈ RCl×Hl×Wl with the support

mask Ms ∈ {0, 1}H×W via masked average pooling, i.e. ps
f,l =

∑
i F

s
l,iζl(M

s)i∑
i ζl(M

s)i
,

where ps
f,l ∈ RCl and i is 2D spatial positions of the feature map. ζl(·) de-

notes a function that bilinearly interpolates input tensor to the spatial size
of the feature map Fs

l at intermediate layer l by expanding along channel di-
mension, ζl : RH×W → RCl×Hl×Wl . Similarly, the background prototype ps

b,l

for Fs
l can be obtained in the same way and the prototype matrix Ps

l is de-

fined as [
ps

f,l

∥ps
f,l∥

,
ps

b,l

∥ps
b,l∥

]. Accordingly, the anchor weight matrix Al is defined as

[
af,l

∥af,l∥ ,
ab,l

∥ab,l∥ ], where a�,l ∈ RCl . In general, Ps
l is a non-square matrix and we

can calculate its generalized inverse [2] with Ps+
l = {PsT

l Ps
l }−1PsT

l . Thus, the
transformation matrix at intermediate layer l is computed as Wl = AlP

s+
l ,

where Wl ∈ RCl×Cl .
For the subsequent hypercorrleation construction, a pair of transformed query

and masked support features F̂s
l at each layer forms a 4D correlation tensor

Cl ∈ RHl×Wl×Hl×Wl using cosine similarity:

Cl(i, j) = ReLU

(
WlF

q
l (i) ·WlF̂

s
l (j)

∥ WlF
q
l (i) ∥∥ WlF̂s

l (j) ∥

)
(1)

where i and j denote 2D spatial positions of Fq
l and F̂s

l , respectively.
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Support set Ground truth PATNet w/o PATM PATNetQuery image PATNet w/o TFI

Fig. 4. Visual comparison results of several 1-shot tasks. For each task, the first three
columns show the ground truth of support and query sets. The next two columns
represent the prediction mask without anchor layers and the prediction mask without
fine-tuning, respectively. The last column shows the final predicted segmentation after
fine-tuning with Lkl. Best viewed in colors.

To avoid adding too many learnable parameters, we set three anchor layers
for low-, medium- and high-level feature maps respectively. Note that only three
anchor layers are introduced for different feature dimensions. Even though fea-
ture maps with the same dimension share one anchor layer, each of them still
can obtain its unique transformation matrix with its own prototype set.

5.2 Task-adaptive Fine-tuning Inference

To further refine the prediction mask of query images, we propose a Task-
adaptive Fine-tuning Inference (TFI) strategy for fast adaptation to unseen do-
mains in the testing phase. The motivation is that if the model can predict a
good segmentation mask for the query image, the foreground class prototype of
the segmented query image should be similar to that of the support set. Differ-
ent from optimizing all parameters in the model, we only fine-tune the anchor
layers to avoid overfitting in few-shot scenarios. Fig. 3 shows the pipeline of the
strategy. In the testing phase, during step 1, only anchor layers are updated
accordingly using the proposed Lkl, which measures the similarity between the
foreground class prototype of support and query sets. In step 2, all layers in the
model are frozen and make the final prediction for query images. In this way,
the model is encouraged to fast adapt to the target domain and the predicted
mask is refined with calibrated features produced by fine-tuned anchor layers.

Formally, given a sequence of L intermediate feature maps of the query image
{Fq

l }Ll=1 and its predicted probability map M̂, we compute the foreground class

prototype of the query image at layer l with the probability map M̂l = ζl(M̂)
by applying the soft masked average pooling method. Thus, the loss function
Lkl for fine-tuning the model can be computed as follows:

Lkl =

L∑
l=1

DKL(p
s
f,l||p̂

q
f,l), where p̂q

f,l =

∑
i F

q
l,iM̂l,i1[M̂l,i ⩾ τ ]∑

i M̂l,i

(2)
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Here,DKL(·) denotes the Kullback-Leibler divergence loss function and i denotes
2D spatial positions of the feature map. 1(·) is an indicator function to extract

the binary predicted mask from M̂l, outputting value 1 if the argument is true
or 0 otherwise. Pixels will be predicted as the foreground class if their values are
larger than threshold τ . We set τ = 0.5 in our experiments.

6 Experiment

6.1 Evaluation Setup

Datasets. We use PASCAL VOC 2012 [13] with SBD [17] augmentation as
training domain and then evaluate the trained models on the proposed bench-
mark introduced in Section 3.

Baseline. To evaluate the performance of existing few-shot semantic seg-
mentation models on CD-FSS, we adopt eight representative few-shot segmen-
tation models: AMP [34], CaNet [49], PANet [45], RPMMs [46], PGNet [48],
PFENet [38], RePRI [3] and HSNet [27]. We use the publicly available codes
and follow the default training configuration of these models. For CaNet [49]
method, we iteratively optimize the predicted results for 4 times after the ini-
tial prediction at inference time, which is same as their recommended settings.
For a fair comparison, we also adopt ResNet-50 [18] as a feature extractor in
PANet [45] to be our baseline model, denoted as PANet*. An alternative way to
tackle CD-FSS is based on transfer learning, where an initial model is trained
on the source dataset in a standard supervised learning way and reused on the
novel datasets. We adapt the FCN [26] and DeeplabV3 [6] to serve as baselines by
fine-tuning their last k layers on the support set, denoted as “Ft-last-k·”. For ex-
ample, “Ft-last-1FCN” represents the performance of fine-tuning the last-1 (fc-8)
fully connected layers of FCN-32s pretrained on PASCAL VOC. In addition, the
trained segmentation networks followed by the base classifier are also evaluated
on the benchmark. The base classifier is trained to map dense features from the
support set to their corresponding labels and uses it to generate the predicted
mask in the query set. We experimented with various classifiers including 1-
NN and logistic regression. For more details, please refer to the supplementary
materials.

Training and testing strategy. We meta-train all methods on all the
classes of PASCAL VOC with SBD augmentation and meta-test the trained
models on each dataset of the proposed benchmark. For each evaluation, we
average the mean-IoU of 5 runs [44] with different random seeds. Each run
contains 1200 tasks for all datasets except FSS-1000. FSS-1000 has 2400 tasks
in each run, which is the same as the setting in [23,27].

6.2 Evaluation Metric

Mean intersection over-union (mIoU), which is defined as the mean IoUs of
all image categories, was employed as the metric for performance evaluation.
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For each category, the IoU is calculated by IoU = TP
TP+FP+FN , where TP, FP

and FN respectively denote the number of true positive, false positive and false
negative pixels of the predicted segmentation masks.

6.3 Implementation Details

We adopt VGG-16 [36] and ResNet-50 [18] as feature extractors, which are ini-
tialized with weights pre-trained on ILSVRC [30] and kept frozen during training,
following previous works [25,45,49,27]. For the VGG backbone, we use feature
maps from conv4 x to conv5 x, and after the last max-pooling layer. The channel
dimensions of the three anchor layers are set to 512. For the ResNet backbone,
we use feature maps from conv3 x, conv4 x and conv5 x. The channel dimen-
sions of the three anchor layers are set to 512, 1024 and 2048, respectively. To
reduce the memory consumption and speed up training process, we set spatial
sizes of both support and query images to 400 × 400. We implement the model
in PyTorch [28] and utilize the Adam [22] optimizer with a learning rate of 1e-3.
At inference, all images are resized to a fixed 400 × 400 resolution. An Adam op-
timizer is used to fine-tune PATM, with a learning rate of 1e-3 for Deepglobe and
ISIC, 5e-5 for Chest X-ray and FSS-1000. For each task, a total of 50 iterations
are performed. More details can be found in the supplementary material.

6.4 Baseline Performance Analysis

Meta-learning based results. Table 2 shows the results using mIoU, in terms
of different datasets, methods, and shot levels in the benchmark. The results re-
veal that the performance of existing few-shot semantic segmentation methods
degrades significantly under domain shifts, especially under large domain gaps.
The main reason is that the frozen pretrained encoder cannot generate distin-
guishable features for the downstream decoder when a large domain gap exists.
Furthermore, when the target domain is similar to the source domain, like on
FSS-1000, the relation-based methods generally perform better than the metric-
based methods. But when the domain gap becomes larger (e.g. Deepglobe and
Chest X-ray), the metric-based methods are more effective than the relation-
based methods. For instance, PANet surpasses HSNet by 5.87% (1-shot) and
14.95% (5-shot) on Chest X-ray, but underperforms HSNet by 8.38% (1-shot)
and 9.31% (5-shot) on FSS-1000. This indicates that if the target domain is dras-
tically different from the source domain, it may be more effective to make the
encoder obtain the meta-transfer ability than the decoder. Finally, we observed
that all the methods achieved the best performance on the FSS-1000 dataset
among the four selected datasets because the data distribution of the FSS-1000
is most similar to the source dataset (PASCAL VOC) compared to the other
datasets.

Transfer learning based results. We observe that the base classifier meth-
ods significantly outperform simple fine-tuning methods on CD-FSS. The main
reason is that limited samples in support set are insufficient for the deep seg-
mentation networks to be adapted to a novel distribution. Furthermore, when
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Table 2. Mean-IoU of 1-way 1-shot and 5-shot results of meta-learning and transfer
learning methods on the CD-FSS benchmark. Note that all methods are trained
on PASCAL VOC and tested on CD-FSS. Bold denotes the best performance
among all methods and underlined shows the best performance in each method group.
* denotes the model implemented by ourselves.

Methods Backbone
Deepglobe ISIC Chest X-ray FSS-1000 Average

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Transfer Learning Methods

Ft-last-1FCN Vgg-16 29.80 32.25 15.17 19.75 33.63 48.08 32.51 53.62 27.78 38.43
Ft-last-2FCN Vgg-16 32.90 35.34 17.52 21.65 36.35 53.85 32.15 57.44 29.82 42.07
Ft-last-3FCN Vgg-16 32.91 35.54 17.91 25.58 45.61 56.05 33.32 60.86 32.34 44.51
1NNFCN Vgg-16 32.42 38.63 15.68 23.66 46.26 52.70 41.51 46.64 33.97 40.41
LinearFCN Vgg-16 33.56 38.75 15.51 30.65 37.69 50.07 41.09 49.16 31.96 42.16

Ft-last-1Deeplab Res-50 28.11 28.65 11.08 16.57 30.43 35.54 25.14 35.86 23.69 29.41
Ft-last-2Deeplab Res-50 24.09 36.74 10.22 17.56 31.16 51.57 20.68 42.50 21.29 37.10
1NNDeeplab Res-50 32.28 35.96 21.44 26.04 47.76 57.93 45.81 55.95 36.82 43.97
LinearDeeplab Res-50 32.95 39.69 19.42 30.04 43.52 60.29 40.50 58.36 34.10 47.10

Few-Shot Segmentation Methods

AMP [34] Vgg-16 37.61 40.61 28.42 30.41 51.23 53.04 57.18 59.24 43.61 45.83
PGNet [48] Res-50 10.73 12.36 21.86 21.25 33.95 27.96 62.42 62.74 32.24 31.08
PANet* [45] Res-50 36.55 45.43 25.29 33.99 57.75 69.31 69.15 71.68 47.19 55.10
CaNet [49] Res-50 22.32 23.07 25.16 28.22 28.35 28.62 70.67 72.03 36.63 37.99
RPMMs [46] Res-50 12.99 13.47 18.02 20.04 30.11 30.82 65.12 67.06 31.56 32.85
PFENet [38] Res-50 16.88 18.01 23.50 23.83 27.22 27.57 70.87 70.52 34.62 34.98
RePRI [3] Res-50 25.03 27.41 23.27 26.23 65.08 65.48 70.96 74.23 46.09 48.34
HSNet [27] Res-50 29.65 35.08 31.20 35.10 51.88 54.36 77.53 80.99 47.57 51.38

PATNet Vgg-16 28.74 34.83 33.07 45.83 57.83 60.55 71.60 76.17 47.81 54.35
PATNet Res-50 37.89 42.97 41.16 53.58 66.61 70.20 78.59 81.23 56.06 61.99

the target domain is similar to the source domain (e.g. FSS-1000), those meta-
learning based methods outperform transfer learning based methods with a large
margin. In contrast, the base classifier methods surprisingly achieve compara-
ble performance when a large domain shift gap exists. For example, the pre-
trained Deeplab with a simple linear classifier achieves 39.69% on Deepglobe for
5-shot, outperforming most few-shot segmentation methods. It is worth noting
that RePRI [3] is also a kind of transfer learning method designed for few-shot
segmentation tasks. It performs well on Chest X-ray and FSS-1000, but fails on
Deepglobe and ISIC. This indicates that it is inefficient only to fine-tune the clas-
sifier during inference. Generating distinguishable features for the downstream
segmentation modules is a key to reducing the performance degradation brought
by domain shifts.

6.5 Experimental Results of PATNet

As shown in Table 2, across all the datasets, our model outperforms both
meta-learning methods and transfer learning based methods with a sizable mar-
gin. Specifically, our 1-shot and 5-shot results respectively achieve 8.49% and
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Fig. 5. Qualitative results of our model in 1-way 1-shot segmentation on CD-FSS. Note
that the model is trained with PASCAL. Support labels are overlaid in blue. Prediction
and ground truth of query images are in plum. Best view in color and zoom in.

10.61% of mean-IoU improvements over HSNet (achieves the best performance
among meta-learning methods on CD-FSS), 21.96% and 14.89% of mean-IoU
improvements over DeeplabV3 combined with a linear classifier (achieves the
best performance among transfer learning based methods on CD-FSS), verifying
its superiority on the CD-FSS task. In particular, our model outperforms recent
methods with a sizable margin under large domain gaps, surpassing HSNet by
14.73% (1-shot) and 15.84% (5-shot) on Chest X-ray, and 9.96% (1-shot) and
18.48% (5-shot) on ISIC. In addition, we present some of the qualitative results
of the proposed model for 1-way 1-shot segmentation in Fig. 5. These results
validate that the proposed method can significantly improve the generalization
ability under large domain gaps while achieving a comparable accuracy in a
similar domain shift.

6.6 Ablation Study

We conduct extensive ablation studies to investigate the impacts of PATM and
TFI strategy. All ablation study experiments are performed with ResNet-50.

Effect of pyramid anchor layers. To study the effect of the number
of pyramid anchor layers in PATM, we compare our method with and with-
out the anchor layers. We also form an explicit transformation module us-
ing a unique anchor layer for each intermediate feature map. From Table 3
we can observe that introducing the anchor layers for feature transformation
improves the segmentation performance with 8.25% and 7.64% gain in 1-shot
and 5-shot, respectively. This suggests that our proposed PATM is able to en-
hance the generalization ability by transforming the domain-specific features
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Table 3. Ablation study on PATM on
CD-FSS. Results are averaged over 4
datasets for 1-shot and 5-shot.

Method
CD-FSS #params

to train1-shot 5-shot
w/o PAT 47.57 51.38 2.574M

explicit PAT 54.16 59.38 2.602M
PATNet 56.06 61.99 2.581M

Table 4. Ablation study on the choice of
fine-tuning anchor layers on Deepglobe.

Fthigh Ftmed Ftlow 1-shot 5-shot
× × × 35.10 40.72
✓ × × 37.52 42.03
× ✓ × 34.56 39.74
× × ✓ 37.89 42.97

into domain-agnostic ones. One may ask why not make each feature map have
its own anchor layer. We compare the results with the explicit transformation
module, introducing the anchor layer for each intermediate feature map (de-
noted as ‘explicit PAT’ in Table 3). Performance degradation from PATNet to
explicit PAT indicates that the light-weight anchor layers are more reliable to
construct the domain transformation matrices in few-shot scenarios. Thus, we
only introduce one anchor layer for each feature dimension and feature maps
with the same dimension share one anchor layer to compute their corresponding
transformation matrices.

Choice of fine-tuning anchor layers. Table 4 provides a quantitative
evaluation of the TFI strategy. We present the results of fine-tuning each anchor
layer: low-, medium- and high-level feature dimensions, respectively. We observe
that fine-tuning the anchor layer of the low feature map achieves the best per-
formance, indicating that the correlation patterns from low intermediate CNN
layers are crucial in effective domain transfer. Qualitative results on how TFI af-
fects the final prediction are provided in Fig. 4. We adopt fine-tuning the anchor
layer for low dimensions to report all the experiment results.

7 Conclusion

In this paper, we extend few-shot semantic segmentation to a new task, called
Cross-Domain Few-Shot Semantic Segmentation (CD-FSS), which aims to learn
a model that can segment the novel classes in unseen domains with only a
few pixel-level annotated images. Moreover, a new benchmark for CD-FSS is
established to evaluate the cross-domain generalization ability of few-shot seg-
mentation models under different domain shifts. Experiments show that SOTA
few-shot segmentation models do not generalize well to categories from different
domains, due to the large discrepancy of the feature distribution across do-
mains. In addition, we propose a novel model, PATNet, to tackle the CD-FSS
problem by transforming domain-specific features into domain-agnostic ones for
downstream segmentation modules to fast adapt to unseen domains. Extensive
experimental results show that our method outperforms the prior art with a siz-
able margin under domain shifts. We believe this work will help the community
understand existing methods in a practical way and dive into further advances
for real-world applications.
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