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1 BFS Based Subgraph Sampling

As shown in the Fig. 1, BFS based sampling method samples subgraph by spread-
ing outward from the center node. Specifically, considering the various size of
different neighbors, we first set a target k(k > 1) for the subgraph sampler S.
Then, for a specific node i, the subgraph sampler S first samples nodes in the
first-order neighborhood. If the target is not reached, it moves to the next-order
neighborhood for subsequent sampling until the target is reached. When the
sampling goal is achieved, we can obtain the nodes of subgraph around node i.
The index of chosen nodes and the nodes embeddings can be denoted as:

ide = S(A k) (1)
Next, derive the connection relationship of the subgraph nodes from the adja-

cency matrix A.
A = Ajgzids (2)

(a) (d)
Fig. 1. BFS based subgraph sampling. For a specific node and its neighborhood nodes
(a), we first sample nodes in the first-order neighborhood (b). If the target is not
reached, move to the next-order neighborhood for subsequent sampling until the target
is reached (c). Finally, we obtain the sampled subgraph (d).
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2 Datasets Details

The description of different datasets can be seen in the Table. 1.

Table 1. Description of different datasets.

Dataset Task Nodes  Edges Features Classes Train/Val/Test

Cora Transductive 2,708 5,429 1,433 7 0.05 / 0.18 / 0.37
Citeseer Transductive 3,327 4,732 3,703 6 0.04 / 0.15 / 0.30
Pubmed Transductive 19,717 44,338 500 3 0.003/0.03/0.05
Reddit Inductive 231,443 11,606,919 602 41 0.66 / 0.10 / 0.24

PPI Inductive 56,944 818,716 50 121 0.79 / 0.11 / 0.10

Transductive learning. We utilize three standard citation networks, Cora,
Citeseer, and Pubmed [10], to predict article subject categories. In all of these
datasets, graphs are constructed by the nodes and edges that nodes correspond
to articles and edges to (undirected) citations. Every node has a bag-of-words
representation and a class label.

Inductive learning on large graphs. For the inductive learning on large
graphs, we use a large scale social network, named Reddit. This dataset contains
231443 nodes and 11606919 edges, which is preprocessed by [3]. In the dataset,
nodes correspond to the posts, and the edge exists if the same user has commend
on the both posts. Node features are composed of the post title, content, and
connect, along with other metrics such as post score and the number of com-
ments. Following the inductive setup of [3,11], we use the posts made in the first
20 days for training, while the remaining for testing.

Inductive learning on multiple graphs. For the inductive learning on
multiple graphs, we use the protein-protein interaction (PPI) networks [13] to
evaluate the effectiveness of the proposed method. The dataset contains multiple
graphs that 20 graphs for training, 2 for validation and 2 for testing. Each
node has 50 features that include positional gene sets, motif gene sets, and
immunological signatures and 121 labels that represent gene ontology.

3 Encoder for Different Datasets

Transductive learning for small graph. We take a two-layer GCN [7] as the
encoder for the transductive learning tasks (Cora, Citesecer and Pubmed). The
architecture of encoder is defined as:

GCNy(X,A)=o(D 7AD 2 XW,) (3)
f(X,A) = GCNy(GCNy (X, A), A) (4)

where X is the features of nodes in graph, A= A + I represrnts the adjacency
matrix with self-loops and I is identity matrix, D = ). A; denotes the degree
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matrix, o is a nonlinear activation function (e.g., relu, prelu) [1] and W; is the
trainable parameter matrix.

Inductive learning for large graph. Since the large scale of Reddit
dataset, we may no longer directly encode the graph by transductive manner
that rely on the fixed and known adjacency matrix. Instead, we employ a three-
layer mean-pooling GraphSAGE [3] with residual connections [5] as encoder,
which is defined as:

MP;(X,A) = o([DT"AX | X]W;) (5)

.f(X7A):MP3(MP2(MP1(X7A)3A)’A) (6)

where D! performs mean-pooling propagation operation, || represents feature
concatenation (center nodes and its neighborhood).

Following [3], we perform neighborhood sampling for central nodes. What
should be noted is that we add a tiny change. After random sampling to deter-
mine the central nodes, we sample the subgraphs for each center nodes. We then
treat all nodes contained in sampled subgraphs as the new center nodes. Then
sampling a new neighborhood for each center nodes, which is used for get the
representations of the center nodes. Specifically, 10, 10 and 25 nodes at the first,
second and third level are sampled, respectively.

Inductive learning for multiple graphs. For PPI dataset, inspired by
the previous successful supervised network architectures, we employ a three-
layer GAT with residual connections [5] as encoder, which is defined as:

MP; = o([XW,; D" AXW;]) (7)

f(X,A)2]@3(]@2(]@1()(,14),14)714) (8>

/ . .
where W, and W, are trainable parameter matrices.

4 Parameter Settings

The specific network parameter settings for different datasets are shown in the
Table. 2.

Table 2. Parameter settings for different datasets. Ir, o, dim and k stand for learn-
ing rate, nonlinear activation function, dimension of node representations and size of
subgraph. 256 x4: dimension of node representations in each heads and the number of
heads.

Dataset Ir o dim k

Cora 0.0001 relu 1024 15
Citeseer 0.0001 prelu 1024 7
Pubmed 0.0005 prelu 1024 30

PPI  0.0001 relu 256x4 10
Reddit 0.0001 relu 1024 15
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Table 3. Comparative experiments with GraphCL

Cora Citeseer Pubmed
GraphCL-node 814 72.7 78.8
GraphCL-egde 81.3 72.6 78.4
GraphCL-subgraph 81.4 72.7 78.9
GraphCL-mask 81.3 72.6 78.6
BFS (ours) 84.6 73.7 82.1

Table 4. Performance of different contrastive sample proportions on Cora and Citeseer
datasets.

. Cora Citeseer
Algorithm
10% 30% 50% T70% 100% 10% 30% 50% 70% 100%
DGI[I1] 752 784 80.5 81.8 823 672 69.3 706 714 T71.8
GMI [9] 782 795 81.0 82.1 83.0 686 70.2 709 722 730

GraphCL [2] 80.1 81.6 825 832 836 70.1 709 714 720 725
Subg-Con [6] 79.6 81.2 823 83.0 835 703 712 721 729 732
GSC (ours) 829 83.6 84.1 84.6 84.6 71.8 725 734 73.6 73.7

5 More Comparative

GraphCL. Here, we give comparison results with another GraphCL [12] pro-
posed by You et al, as can be seen in Table. 3, "node, egde, subgraph and mask”
represent different perturbation methods, i.e., node dropping, edge perturbation,
attribute masking and subgraph based perturbation.

GOT. The OT is just a regularization term for supervised alignments loss in
GOT [l]. While in our method, OT is firstly employed as the similarity metric
for subgraphs based self-supervised graph contrastive learning.

OT-GNN. The differences with OT-GNN are: (1) OT-GNN [1] treats the graph
as a set of node features only. Our method considers the nodes features and struc-
tures of graph at the same time. (2) OT-GNN relies on the shared parametric
prototypes, while our method generates the unique contrastive sample for each
subgraph.

Insufficient contrastive samples. As is shown in Table. 4, we give the evalu-
ation results with insufficient contrastive samples on Cora and Citeseer datasets.

6 Visualization Results

As shown in Fig. 2, we also visualize the raw features and learned embeddings of
Citeseer with the t-SNE [8] plot for different graph contrastive learning methods,
including DGI, Subg-Con, GMI and GSC (ours).
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(a) Raw features.

(e) GSC (ours).

Fig. 2. Visualization of t-SNE embeddings from raw features, DGI, Sub-Con, GMI,
and GSC (ours) on Citeseer.

Table 5. Ablation studies on different negative sample settings. N and 2N represent
the number of negative samples.

Cora Citeseer Pubmed
Only Sampled (N) 84 713 73.8
Only Generated (N) 83.4 T2.7 73.4
Sampled + Generated (N) 83.2 723 73.5
Sampled + Generated (2N) (ours) 84.6 73.7 82.1

7 Abalation Studies

Different negative sample settings. We compare different negative sample
settings and list the experiment results in Table 5. ”Only Sampled (N)” and
”Only Generated (N)” represent the N negative samples only from the sampled
or generated subgrpahs. ”Sampled + Generated (N)” represents the N negative
samples come from the sampled or generated subgrpahs. ”Sampled 4+ Gener-
ated (2N)” means the 2N negative samples come from both the sampled and
generated subgrpahs. As can be seen, the settings in our method achieves the
best results. This indicates that we need to push away both the sampled and
generated negative samples to ensure the effectiveness of encoder and generator.

Ablation studies on different modules of inductive datasets. We also set
up ablation experiments on different modules of inductive datasets (e.g., PPI),
the nodes classification results of Gene + Readout, Perturbation + OT and Gene
+ OT (ours) are 63.5, 68.3 and 69.1 respectively. This indicates that different
modules also play an effective role on inductive dataset.
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Training Time

Based on the sampling and parallel computing of subgraphs, the average epoch
time of GSC is only 0.2 seconds on Cora dataset where OT based contrastive
regularization is 0.12 seconds. Although OT distance consumes a part of the
training time, it can explore more discriminative information from nodes and
structures of graph and accelerate convergence speed.
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