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1 Implementation Details

Pretraining. The settings are almost the same as MAE [9]. We use AdamW for
optimization and train the CAE for 300 epochs with batch size 768. We set the
learning rate as 8e-4, with cosine learning rate decay and a 60 epoch warmup,
and set the weight decay as 0.05. We employ the drop path with the ratio of
0.25 only on the encoder. The momentum coefficient is set as 0.96 and with a
cosine schedule to 0.99, and EMA is conducted per pre-training epoch. We set
the mask ratio as 0.75 with only 49 tokens fed into the student branch. The
masked tokens are divided into 3 folds where each fold contains 49 tokens, and
all folds are fed into a shared weighted teacher branch.

Fine-tuning on ImageNet. We follow the fine-tuning setting almost the
same as MAE [9] to use layer-wise learning rate decay, weight decay, and AdamW.
The batch size is 2048, and the weight decay is 0.05. For ViT-B, we train 100
epochs with base learning rate 5e-4, layer-wise decay rate 0.65, drop path rate
0.1, and warmup epoch 10. For ViT-L, we train 50 epochs with base learning
rate le-3, layer-wise decay rate 0.75, drop path rate 0.2, and warmup epoch 5.

Object Detection and Instance Segmentation on COCO. We utilize
the same setting as CAE [5] that uses multi-scale training and resizes the image
with the size of the short side between 480 and 800 and the long side no larger
than 1333. The batch size is 32, the learning rate is 3e-4, and the layer-wise
decay rate is 0.75. We train the network with the 1x schedule: 12 epochs with
the learning rate decayed by 10x at epochs 9 and 11. We do not use multi-scale
testing. The Mask R-CNN implementation follows MMDetection [4].

Semantic Segmentation on ADE20K. We utilize the same setting as
CAE [5]. We use AdamW as the optimizer. The batch size is 16 and the layer-
wise decay rate is 0.65. The input resolution is 512 x 512. We use the learning
rates as 4e-4 for all the results in our experiments. We conduct fine-tuning for
160 K steps, and we do not use multi-scale testing.

* Correspondence to Qi Tian. 'Equal contribution.
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Table S-1. Image classification results on the ILSVRC-2012 ImageNet dataset with
top-1 accuracy. “Epochs” refers to the number of pre-training epochs. MoCo v3 adopts
multi-crop augmentation with 2 global crops of 224 x 224 for pre-training.

Method Epochs Crops Accuracy
Methods using ViT-L:

Train from Scratch 300 — 82.6
MoCo v3 300 2 84.1
BEiT 1600 1 85.2
iBOT 250 1 85.0
MAE 400 1 84.3
MAE 1600 1 85.9
MaskFeat 1600 1 85.7
SdAE 300 1 85.7

2 More Results for Larger Models and Longer
Pre-training Epochs

SAAE can also perform well with only 300 epochs pre-training on a larger model
scale such as ViT-L. We study the fine-tuning on the ILSVRC-2012 ImageNet
dataset [10] with 1k classes and 1.3M images. For a fair comparison, we directly
follow most of the hyperparameters of MAE [9] in our fine-tuning experiments.
All reported experimental results are only fine-tuning for 50 epochs.

As shown in Table S-1, compared with the models trained by random ini-
tialization (train from scratch), our pre-trained SAAE significantly improves the
performance. Specifically, vision transformers trained from scratch only achieve
82.6% top-1 accuracy with ViT-L. While our SAAE achieves 85.7%, demonstrat-
ing the effectiveness of pre-training with unlabeled data.

Compared with previous self-supervised methods for vision transformers, our
proposed SAAE surpasses them on ImageNet fine-tuning by a large margin.
For ViT-L, our SAAE outperforms MoCo v3 by 1.6% top-1 accuracy with the
same number of training epochs and our SAAE outperforms MAE by 1.4% top-1
accuracy with the less number of training epochs. Besides, our SAAE outperforms
BEIiT by 0.5% top-1 accuracy, while BEIT requires an additional pre-trained
codebook and longer training epochs. In addition, our SAAE outperforms iBOT
by 0.7% top-1 accuracy. Moreover, compared to the 1600 epoch pre-trained ViT-
L of MAE and MaskFeat, which requires very large computational costs, our
SAAE can achieve comparable performance.

As shown in Table S-2, although the cost of SAAE de facto surpasses MAE
per epoch, it can speed up convergence and achieve comparable performance
in fewer epochs. It is also more efficient than SimMIM that adopts the mask
token for the encoder. For longer pre-training epochs, SAAE is faced with a little
bit performance degradation on ImageNet fine-tuning. We speculate that this is
due to the fact that the Vit-base capacity is relatively close to the performance
upper bound of the MIM tasks. However, SAAE shows continuous performance
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Table S-2. Longer pre-training epochs results with overall computational costs and
memory cost compared with MAE, SimMIM and CAE on ViT-Base using NVIDIA
V100 GPUs. Ft: Image classification on the ImageNet dataset with top-1 accuracy
under fine-tuning 100 epochs. Det: object detection on the COCO dataset, and AP? is
reported. Seg: semantic segmentation on the ADE20K dataset, and mloU is reported.

Method  Epoch  Train Time GPU Mem Ft Det Seg
MAE 300 45.0h 14.93G 82.9 45.4 45.8
CAE 300 - - 83.3 48.0 477
SdAE 300 60.8h 16.02G 84.1 48.9 48.6
SimMIM 800 188.6h 20.32G 83.8 46.5 469
MAE 800 140.1h 14.93G 83.4 47.8 47.3
CAE 800 - - 83.6 49.2 488
MAE 1600 278.5h 14.93G 83.6 48.4 48.1
SdAE 800 174.1h 16.02G 84.0 49.7 49.0
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Fig.S-1. Comparison of other recently proposed generative-based self-supervised
learning methods. (a) iBOT heavily relies on contrastive loss. (b) data2vec fails to
consider the redundancy existing in the mask and visible tokens. (c) SplitMask fails to
consider using a two-branch distillation structure and still needs an extra tokenizer.

enhancement with longer training epochs on ADE20K semantic segmentation
and COCO object detection, which also surpasses other methods by a consider-
able margin.

3 Comparison of iBOT, data2vec, and SplitMask

Except for the comparison of typical generative-based self-supervised learning
methods in Fig. S-1 such as BeiT [2], PeCo [7], MAE [9] and CAE [5], we also
provide the comparison of several recently proposed works in Fig. S-1.

iBOT [11] is more likely a contrastive learning/instance discrimination-based
method. iBOT needs careful parameter setting of multi-crop augmentation,
which uses 10 local crops with local scale being (0.05,0.32) and global scale be-
ing (0.32,1.0). In addition, iBOT heavily depends on the contrastive loss. MIM
without the class token contrastive loss leads to undesirable results of 9.5% kNN
accuracy and 29.8% linear accuracy on iBOT, indicating that iBOT benefits
more from contrastive structure than MIM to extract the visual semantics.
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Ablation on the depth of decoder transformer
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Fig. S-2. Ablation studies on the depth of the decoder transformer.

Data2vec [1] also uses an EMA parameterization of the two-branch teacher-
student distillation structure. However, data2vec does not consider the spatial
redundancy existing in the network structure. Not only visible unmasked patches
but also learned mask embedding tokens are fed into the student branch. Fur-
thermore, the whole input image will be fed into the teacher branch, ignoring
the reconstruction loss computed only on masked tokens, which will also in-
crease computational costs. In addition, data2vec conducts an EMA update per
iteration. The MIM output and reconstruction target will be very similar if the
momentum coefficient is not extremely small. So the network is sharply sensitive
to the momentum coefficient. So, data2vec needs precisely tuning on this coeffi-
cient where in ViT-L they need to first set momentum coefficient as 0.9998 for
the first 800 epochs and then reset the learning rate schedule and the teacher
weights to the student and continue for another 800 epochs with momentum
coefficient as 0.9999.

SplitMask [8] considers the redundancy of split tokens. However, SplitMask
still needs an additional tokenizer to produce discrete latent representations
to conduct MIM. Moreover, SplitMask does not consider using a two-branch
network to distill the representation between split tokens but adds a pooling
module to calculate the contrastive loss between global representations.

3.1 Ablations on the Depth of Decoder

The decoder of the autoencoder, which maps the latent representation back to
the reconstruction space, plays an essential role in the masked image modeling
task. In the language MLM, the decoder predicts missing words that contain rich
semantic information so that the decoder can be trivial (an MLP) in BERT [6].
However, in MAE [9], the decoder reconstructs the image pixels, which recon-
structs the latent representations into the low-level pixel space. Thus, MAE
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Fig. S-3. Attention maps visualization of MAE and SAAE. The first column and forth
column place the original images. The second column and fifth column are the visu-
alization of different heads from the last layer with different colors. The third column
and sixth column are the visualization of mean of all attention heads.

requires a relatively powerful decoder. In comparison, our student network maps
the latent representations to the high-level semantic features so that the decoder
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can be lighter. That is another potential advantage of SAAE. As shown in Fig. S-
2, the experiment shows that the depth of the decoder has little impact on the
performance. Specifically, even with two layers of the decoder transformer, our
SAAE achieves 82.76% top-1 accuracy and 45.2 mAP on COCO object detection,
which only suffers 0.07% and 0.5 mAP performance degradation compared with
eight layers of the decoder transformer.

4 Visualization

To analyze, we visualize the self-attention map with 300-epoch pre-trained ViT-
B/16 of both MAE and SdAE. We choose the class token as the query and
visualize attention maps from different heads of the last layer with different
colors, following iBOT [11]. As shown in Fig. S-3, we indicate that SAAE shows
the capability to learn high-level semantic features to separate different parts
of objects. Compared with MAE, SAAE is able to learn more meaningful high
semantic information.

Specifically, in the figure, we observe SAAE can distinguish the bird from
the tree or distinguish the eyes and ears of the Iberian wolf. Moreover, SAAE
can also focus on the discriminative details of the object (e.g., the skeleton of a
hot air balloon and sailboat rope) without using the contrastive loss. For more
complex scenes like spiders on the surface of complex texture SAAE is still able
to distinguish subjects. This is because SAAE does not need to reconstruct every
pixel, so it did not pay attention to useless details.

With only a simple normalized feature MSE loss, we can achieve similar
behaviors with intricately designed instance discrimination methods such as
DINO [3].

References

1. Baevski, A., Hsu, W.N., Xu, Q., Babu, A., Gu, J., Auli, M.: Data2vec: A gen-
eral framework for self-supervised learning in speech, vision and language. arXiv
preprint arXiv:2202.03555 (2022)

2. Bao, H., Dong, L., Wei, F.: Beit: Bert pre-training of image transformers. arXiv:
Computer Vision and Pattern Recognition (2021)

3. Caron, M., Touvron, H., Misra, 1., Jégou, H., Mairal, J., Bojanowski, P., Joulin, A.:
Emerging properties in self-supervised vision transformers. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 9650-9660 (2021)

4. Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,
Xu, J., Zhang, Z., Cheng, D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu, R.,
Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy, C.C., Lin, D.: MMDetection:
Open mmlab detection toolbox and benchmark. arXiv preprint arXiv:1906.07155
(2019)

5. Chen, X., Ding, M., Wang, X., Xin, Y., Mo, S., Wang, Y., Han, S., Luo, P., Zeng, G.,
Wang, J.: Context autoencoder for self-supervised representation learning (2022)

6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: North American Chapter of
the Association for Computational Linguistics (2018)



10.

11.

SAAE: Self-distillated Masked Autoencoder Supplementary Material 7

Dong, X., Bao, J., Zhang, T., Chen, D., Zhang, W., Yuan, L., Chen, D., Wen,
F., Yu, N.: Peco: Perceptual codebook for bert pre-training of vision transformers
(2022)

El-Nouby, A., Izacard, G., Touvron, H., Laptev, I., Jegou, H., Grave, E.: Are large-
scale datasets necessary for self-supervised pre-training? arXiv e-prints (2021)
He, K., Chen, X., Xie, S., Li, Y., Dollar, P., Girshick, R.: Masked autoencoders are
scalable vision learners. arXiv preprint arXiv:2111.06377 (2021)

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. International journal of computer vision 115(3), 211-252 (2015)
Zhou, J., Wei, C., Wang, H., Shen, W., Xie, C., Yuille, A., Kong, T.: ibot: Image
bert pre-training with online tokenizer (2022)



