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A Additional Experiments and Implementation Details

Here we evaluate some of the implementation choices made in the main paper
and provide additional implementation details.

A.1 Implementation Details

We perform experiments with two different types of backbones models for our
feature encoder Ψ . For the CNN, unless otherwise specified, we extract features
from images resized to 384×384, and use the 1024 dimensional features from the
conv3 layer of a ResNet-50 [5]. We use a ResNet-50 trained on Imagenet [12]
as our supervised baseline, and MoCov3 [3] as our unsupervised CNN. For the
Transformer, 8×8 patches from 224×224 images with stride 8 are used as input
(similar to [1]) and we extract 736 dimensional features from 9th layer. We also
investigate supervised and self-supervised trained backbones. The supervised and
self-supervised CNNs are from [5] and [3] and the Transformer models are from
[9] and [2] respectively. During training, we upsample feature maps to 64×64 via
bilinear interpolation. For our projection head ρ, a single 1×1 2D convolution is
trained and the dimension of the features is reduced to 256. During training, as in
[4], we freeze the feature encoder Ψ . The projection head is trained for 50 epochs
using Adam [7] optimizer with learning rate of 0.001. Unless stated otherwise, we
report results using the standard PCK metric with α = 0.1 for direct comparison
to other methods. For EQ, DVE and LEAD we set the temperature τ to 0.05
and 0.14 for CL as in described in their papers, and set τ1 to 0.2 and τ2 to
0.4 for ASYM. We provide an evaluation of different temperature values in the
supplementary material.

A.2 Impact of the Temperature Value

In Table A1, we explore the impact of the temperature for the different un-
supervised losses. While the performance of LEAD, ASYM, and DVE do not
change significantly with different temperature choices, the performance of CL
is impacted drastically, i.e. when using the recommended value of 0.14 from their
paper, we obtain a PCK of 30.8 for Spair-71K in Table 2 in the main paper. As
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Table A1: Temperature ablation experiment for unsupervised losses on Spair-
71K. Here we use the ‘Sup. pre-trained - CNN’ encoder from main paper. With
the exception of ASYM, all methods use τ1 as their τ and do not use τ2 at all.

Metric τ1 τ2 DVE CL LEAD ASYM

PCK

0.02 0.04 16.5 9.2 31.9 31.7
0.05 0.1 16.3 8.2 31.7 32.1
0.1 0.2 16.0 17.2 31.9 33.0
0.2 0.4 15.7 26.6 31.4 34.0
0.4 0.8 9.2 15.8 30.1 29.5

PCK†

0.02 0.04 12.9 7.5 25.5 25.4
0.05 0.1 12.4 6.6 25.4 25.8
0.1 0.2 12.4 13.8 25.4 26.6
0.2 0.4 12.1 20.0 25.1 27.2
0.4 0.8 6.9 11.2 23.8 23.1

noted in the main paper, for EQ, DVE, and LEAD we set the temperate τ to
0.05 and use 0.14 for CL based on the recommendations in the original papers.
We use the same temperature values for all datasets.

A.3 Impact of Design Choices for ASYM

As our new proposed ASYM loss is an adaptation of LEAD, here we present ex-
periments ablating our design choices. ASYM differs from LEAD in two respects:
(i) ASYM uses different temperature values for the correlation maps for the orig-
inal features and the projected features, and (ii) ASYM uses a mean square error
(MSE), as opposed to cross entropy (CE) which is used in LEAD. As can be
seen in Table A2, the MSE loss performs worse for LEAD while it improves per-
formance of ASYM. However, the main difference in overall performance is not
a result of the choice of penalty function (i.e. MSE versus CE), but the usage
of different temperature parameters. In Table A2 we can see that changing the
temperature for LEAD has no significant impact on the final performance.

Due to changes in the formulation, the objectives that ASYM and LEAD
optimize also differ. For a given pair of points and their similarity score, LEAD
reduces the dimensionality of the embeddings for these points while maintain-
ing the same similarity scores as the input feature space. This is achieved by
capturing both what is common and not common between the pair of points.
Using higher or lower temperature values does not change the feature distances
in the LEAD. However, in our ASYM objective, for a point pair which has a high
similarity score, the projection needs to make these points even closer in order
to match with the same similarity score from the input features as the projected
embeddings use a higher temperature value. A visualization of the result of this
can be observed in Fig. A1. As expected, for a given keypoint and a target image
LEAD produces a very similar similarity map compared to the one calculated
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Table A2: Loss and temperature ablation for ASYM and LEAD on Spair-71K.
For both methods, Mean Square Error (MSE) and Cross-Entropy (CE) losses
are used. ASYM using CE with the same temperature value for both τ1 and τ2
is equivalent to LEAD.

Method τ1 τ2 MSE CE

LEAD
0.05 - 31.5 31.7
0.1 - 30.6 31.9
0.2 - 29.9 31.4
0.4 - 27.4 30.3

ASYM
0.05 0.1 32.1 32.0
0.1 0.2 33.0 32.8
0.2 0.4 34.0 32.0

(a) Source (b) Target (c) None (d) LEAD (e) ASYM

Fig.A1: Feature matching scores for different methods for the keypoint on on
the birds head (indicated in blue) from the source images in (a) to the target in
(b). By design, LEAD matches the distribution from the original feature space
shown in (c). We can see that our ASYM method results in a much more sharper
distribution around the correct location compared to LEAD.

with the original features. In contrast, ASYM produces a more ‘peaked’ similar-
ity map, since matching points from original features become closer in the new
embedding space.

We also compare how the similarity scores change after unsupervised projec-
tion. For a source keypoint, we calculate the cosine similarity scores for all pixel
embeddings in the target image. If a point is within the threshold area of a target
keypoint we refer to these points as ‘correct’ matches, otherwise they are classed
as ‘wrong’ matches. We visualize the histogram of these scores for all datasets in
Fig. A2. As can be seen from the distributions, LEAD results in histograms that
are very similar to original input features (i.e. None). However, ASYM reduces
the overlap between the correct and wrong distributions. As expected, if the
similarity scores for correct matches are not larger than wrong matches, ASYM
cannot improve the embeddings significantly, as seen in the Awa dataset.
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Fig.A2: Histograms for cosine similarity scores of embeddings for (a) None, (b)
LEAD, and (c) ASYM. Each row is a different dataset.
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A.4 Impact of Encoder Feature Layer

In Table A3 we experiment with using features from different feature layers
from a CNN (Resnet50 [5]) trained using supervision on Imagenet. The third
convolution layer performs best on all datasets, and so we use features from it
in all of our experiments for CNNs. For Transformer backbones [9, 2], we used
the 9th layer as the initial features, as they were shown to perform best in [1].

Table A3: Evaluation of using pre-trained features from different layers for the
Resnet50 trained with Imagenet. The results here for conv3 correspond to the
no projection model (i.e. ‘None) from Table 2 (a) in the main paper.

Layer Spair-71K SDogs CUB AFLW Awa

conv1 7.3 5.1 7.9 11.6 5.6
conv2 12.9 8.6 13.3 27.2 9.1
conv3 31.8 34.9 51.3 57.4 28.8
conv4 15.8 10.3 14.0 31.3 9.3

A.5 Impact of Input Image Resolution

In Fig. A3, we explore the impact of different input image resolutions, using
pre-trained embeddings without any projection (i.e. None), for CNN and Trans-
former backbones. We used CNNs are from [5] and [3] as the supervised and
unsupervised CNN, [9] and [2] as the supervised and unsupervised Transformer.
Transformers scale well as the number of tokens increases, while the performance
of the CNNs saturates as the image resolution is increased. We argue that this
is due to not-adaptive nature of the receptive field sizes of CNNs which may
overfit to the trained image resolution. As CNNs best performed using an input
resolution of 384x384, we use that resolution for in our experiments. While 8x8
patches with stride 4 is the best performing version for transformers, due to
computational constraints, we used 8x8 patches with stride 8 as the transformer
input in our experiments.

B Additional Results and Analysis

Here we present additional results and more detailed analysis for each of the
datasets of interest.

B.1 Detailed Error Analysis for Additional Datasets

We present the detailed error analysis and report scores using our PCK† met-
ric in Table A4 for each dataset not shown in the main paper. Similar to the
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Fig.A3: Semantic correspondence performance of CNNs and Transformers with
different input sizes on Spair-71K with no projection. Pre-trained features from
models trained on Imagenet with (a) supervised or (b) unsupervised losses are
used. Image resolution is fixed to 224x224 for the Transformers. Note that the
effective resolution of feature maps from CNNs and Transformers are not com-
parable for each vertical position in the plots.

Spair-71k results from the main paper, the most common error type is ‘miss’
among all datasets. Our ASYM approach generally reduces misses compared to
other unsupervised losses. With the exception of the AFLW dataset, there is a
noticeable difference between PCK† and PCK scores. For AFLW, the keypoints
that correspond to each other are well defined and far apart from each other as
the faces are large. As a result, there are far fewer swaps, and so PCK† scores
are close to their PCK counterparts. In contrast, for CUB, most of the points
are distributed close to the head region of the birds which leads to a lot of swaps
and a drop in scores for our new proposed metric. This highlights the impor-
tance of using a proper metric for evaluating the semantic correspondence task.
Matching a keypoint from the beak of a bird to the eye of another bird is not
a correct semantic match, but with the current PCK metric it would be labeled
as correct if it was within the distance threshold.

B.2 Example Images and Qualitative Results

Random instance pairs from each dataset are depicted in Fig. A4. Spair-71K
contains examples of different classes, spanning man-made objects to animal
classes. StanfordDogs (SDogs) contains different breeds of dogs in challenging
poses with varying appearance. CUB contains bird species. AFLW contains hu-
man faces which occupy most of the frame. Unlike CUB and SDogs which only
contains images from one species, Awa includes different vertebrate animal cat-
egories which enables us to assess inter-category correspondence performance.

We also present some qualitative results for the different unsupervised losses,
for all datasets, in Fig A5 and Fig A6. While ASYM generally improves the pre-
dictions compared to other unsupervised losses, it still lags behind supervised
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Table A4: Evaluation of error types across four different datasets. In addition
to PCK, we also report scores for our PCK† metric. Results for Spair-71 are
presented in Table 3 in the main paper.

(a) SDogs

Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK† ↑

EQ 55.9 21.4 25.9 21.2 18.2
DVE 57.7 21.8 24.8 20.5 17.5
CL 40.9 17.9 27.3 37.0 31.9
LEAD 38.0 16.2 31.2 35.1 30.8
ASYM 33.1 16.3 31.4 40.4 35.5

Supervised 23.7 16.7 29.0 53.2 47.3

(b) CUB

Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK† ↑

EQ 44.0 24.8 35.2 28.1 20.9
DVE 44.3 24.6 35.7 27.7 20.0
CL 24.8 20.1 34.6 54.5 40.7
LEAD 28.1 17.4 31.8 51.5 40.1
ASYM 21.7 16.9 29.8 60.8 48.5

Supervised 14.3 15.2 25.4 72.7 60.2

(c) AFLW

Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK† ↑

EQ 38.0 26.0 14.2 48.5 47.8
DVE 24.9 21.2 17.3 58.7 57.8
CL 18.0 11.4 15.2 67.3 66.8
LEAD 13.6 10.7 28.8 58.0 57.5
ASYM 11.7 7.9 25.2 63.6 63.1

Supervised 7.0 4.7 12.7 80.8 80.4

(d) AWA

Method Miss↓ Jitter↓ Swap↓ PCK↑ PCK† ↑

EQ 52.0 19.6 38.7 15.6 10.3
DVE 52.1 19.2 37.8 15.4 10.1
CL 38.4 16.8 41.5 31.7 20.1
LEAD 37.1 16.3 44.0 29.1 18.9
ASYM 32.2 16.7 45.6 34.1 22.1

Supervised 23.4 18.3 46.3 46.1 30.3

Spair SDogs CUB AFLW Awa

Fig.A4: Examples from each of the datasets with the keypoint annotations that
we consider in our paper. The pop row illustrates a source instance and the
bottom a target instance.
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projection which makes use of ground truth matches for training. AFLW gen-
erally contains easy examples with a small percentage of background pixels and
only minor changes in pose which makes the task easier. While the PCK scores
for AFLW and CUB are close to each other, as can be seen from qualitative
results, this can be explained by how PCK evaluates matches which does not
necessarily reflect the difficult of the dataset in some cases.

(a) Source (b) ASYM (c) CL (d) DVE (e) Sup

Fig.A5: Qualitative matching results. Each row is a different dataset: Spair,
SDogs, CUB, AFLW, and Awa, from top to bottom. The left most image for
each row is a source example, and the remaining images visualize matches from
different unsupervised methods, where ’o’ indicates a ground truth location and
’x’ indicates a prediction. Overall, while ASYM cannot match with the perfor-
mance of Supervised projection, it is better than other unsupervised methods.
For instance, in the AFLW example, only our proposed ASYM and supervised
baseline able to precisely find correspondences for the all keypoints.
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(a) Source (b) ASYM (c) CL (d) DVE (e) Sup

Fig.A6: More qualitative matching results. Each row is a different dataset: Spair,
SDogs, CUB, AFLW, and Awa, from top to bottom. The left most image for
each row is a source example, and the remaining images visualize matches from
different unsupervised methods, where ’o’ indicates a ground truth location and
’x’ indicates a prediction. For the Awa-Pose dataset example in the bottom row,
all of the methods struggle as visual diversity is high between instances and the
target example is in a different pose.
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(a) Source (b) ASYM (c) CL (d) DVE (e) Sup

Fig.A7: More qualitative matching results. Each row is a different dataset: Spair,
SDogs, CUB, AFLW, and Awa, from top to bottom. The left most image for
each row is a source example, and the remaining images visualize matches from
different unsupervised methods, where ’o’ indicates a ground truth location and
’x’ indicates a prediction. While most methods perform reasonably good on the
AFLW dataset instance, the predictions for the highly articulated objects (e.g.
animals), even the supervised baseline cannot obtain satisfactory results.
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B.3 Visualizing Learned Feature Embeddings

We present 2d t-SNE [11] visualizations of the keypoint embeddings for the
AFLW, CUB, and SDogs datasets in Fig A8. Since Spair contains different classes
wherein the keypoints are not semantically consistent across classes, we did not
present t-SNE visualization of Spair. Moreover, the Awa dataset contains more
than 30 keypoints which makes visualizing them difficult, thus we exclude that as
well. To create these plots, we first extracted embeddings from only the keypoint
locations. These are 1024 dimensional for the None projection and 256 for other
unsupervised methods. We then project these embeddings to 2D using t-SNE,
and finally plot them. Each color represents a different keypoint type, which is
different depending on the dataset.

LEAD and ASYM look similar to original feature space. One interesting
thing is that, CL manages to separate overlapping embeddings when compared
to the ‘no projection’ baseline on the AFLW dataset. This is reflected by their
superior PCK scores for this dataset. However, for CUB there are cases where it
splits clusters of a keypoints which were a single prominent cluster in the origi-
nal embeddings space. This perhaps indicates that applying CL can sometimes
destroy invariances that were captured in the pre-trained features, thus leading
to undesirable changes in the embedding space.

None DVE CL LEAD ASYM Supervised

A
F
L
W

C
U
B

S
D
o
g
s

Fig.A8: t-SNE visualization the embeddings learned by different unsupervised
losses. Each row is a different dataset, and the colors indicate the ground truth
identity of different keypoints.

B.4 Keypoint Regression Evaluation

As noted in the main paper, the two common types of evaluation paradigms for
semantic correspondence estimation are: (i) landmark/keypoint regression and
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(ii) feature matching. We chose to use feature matching for our results as is does
not require additional supervision. However, for completeness here we evaluate
embeddings from different unsupervised methods using the regression protocol
on two face datasets; MAFL [16] and AFLWM [8]. AFLWM contains crops from
the MTFL[15] dataset, which contains 2,995 examples for testing and 10,122
for training. This is the same dataset that we consider in our main paper as
AFLW, as it was referred as AFLWM in some papers [13, 4, 6] we present here
as AFLWM as well. We report percentage of inter-ocular distance similar to
previous work. Please note that lower is better in this metric.

We follow same approach as in [13, 4, 6], i.e. we freeze the embedder Φ and
train an additional regression head on top of these features. We use the unsuper-
vised CNN trained on Imagenet for the feature encoder Ψ , and the unsupervised
losses are finetuned on the AFLW dataset for both datasets to obtain embed-
dings which are input to the regression head. The results can be seen in Table A5.

Table A5: Keypoint regression results with percentage of inter-ocular distance.
The rows marked as ‘Original’ are numbers taken from the original papers and
differ in the network architecture and in some cases the amount of supervision
used. Note that AFLW is referred to as AFLWM in some of the works below.
The numerical scores represent the percentage of inter-ocular distance, where
lower scores are better.

Implementation Method Feat.dim. MAFL AFLW

Original
DVE 64 2.86 7.53
CL 256 2.64 7.17
LEAD 256 2.87 6.51

Ours

DVE 256 3.07 8.57
CL 256 2.96 7.73
LEAD 256 2.80 7.97
ASYM 256 2.94 7.98

We also compared the results taken directly from the original papers. While
our re-implementation obtains reasonable scores, they are slightly worse than
the original reported numbers. This can be explained by the fact that we use a
basic encoder which produce dense feature maps in a lower spatial dimension.
Compared to CL [4], we use single layer features before projection, as opposed
to higher dimensional hypercolumn features. Unlike the original LEAD [6] im-
plementation, our projection operation is a single layer 1x1 2D convolution com-
pared to a fully convolutional decoder which produces higher resolution features
used in their paper. Unlike DVE [13], we do not preform end-to-end finetuning.
Also, for consistency with our other results the unsupervised losses in our imple-
mentations are finetuned on the AFLW dataset instead of CelebA [10], which is
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a larger dataset. While one may expect a large drop in performance due to these
differences, there is in fact only a one pixel drop. This level of error is likely to be
on the order, if not smaller, than human annotation inconsistency. This perhaps
highlights the inadequacy of the regression evaluation as the supervision used
during training makes the evaluation unfair. Furthermore, it again emphasizes
that these types of face datasets are perhaps reaching saturation.

B.5 Pre-training Source and Cross Dataset Evaluation

Here we present the raw numbers for the pre-training data source and cross
dataset evaluation experiments from main paper. The results can be found in
Table A6 and Table A7, and correspond to the results in Fig. 3 and Fig. 4 in
the main paper.

Table A6: Results for using different sources of pre-training dataset. These num-
bers correspond to those presented in Fig. 3 in the main paper.

(a) Imagenet

Projection(ρ) Spair-71K SDogs CUB AFLW Awa

None 30.7 34.3 47.5 64.3 27.6
NMF 20.6 19.9 44.0 40.8 15.6
PCA 27.4 29.8 50.7 51.0 24.1
Random 26.6 31.5 40.0 60.2 23.3

Supervised 39.5 54.0 73.4 83.8 48.2

EQ[14] 14.3 20.5 26.4 62.8 15.5
DVE[13] 15.0 19.4 28.7 60.6 14.7
CL[4] 29.7 37.9 54.1 77.1 33.4
LEAD[6] 30.5 34.4 48.3 64.9 28.1

ASYM (Ours) 33.2 38.2 54.4 69.7 32.1

(b) iNat2021

Projection(ρ) Spair-71K SDogs CUB AFLW Awa

None 21.6 19.3 44.5 42.0 16.1
NMF 18.8 17.9 45.2 33.6 15.6
PCA 21.7 20.2 45.2 42.2 16.7
Random 17.0 14.5 35.8 37.2 12.3

Supervised 28.1 36.4 70.6 58.6 32.6

EQ[14] 10.7 15.4 26.3 40.8 11.7
DVE[13] 10.6 15.4 25.8 38.5 11.2
CL[4] 19.9 19.9 51.9 44.8 18.1
LEAD[6] 21.1 19.4 44.1 41.9 16.0

ASYM (Ours) 21.8 21.8 51.7 44.4 17.7

(c) CelebA

Projection(ρ) Spair-71K SDogs CUB AFLW Awa

None 11.6 8.8 13.6 50.3 8.0
NMF 10.0 8.5 12.4 47.6 8.0
PCA 11.7 9.0 13.8 51.2 8.3
Random 10.4 8.1 11.8 43.7 7.5

Supervised 14.3 17.4 28.0 65.2 14.4

EQ[14] 8.6 9.5 12.1 54.0 8.1
DVE[13] 9.0 9.4 12.4 48.3 8.1
CL[4] 10.8 10.1 12.8 62.4 8.0
LEAD[6] 11.5 8.8 13.3 50.0 8.0

ASYM (Ours) 11.5 8.9 13.4 60.7 8.0
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Table A7: Cross dataset evaluation results. These results use the ‘Sup. pre-
trained - CNN’ and correspond to the results in Fig. 4 in the main paper.

(a) CL

Test/Train Spair-71K SDogs CUB AFLW Awa

Spair-71K 30.8 31.1 31.4 29.1 31.5
SDogs 36.4 37.0 36.8 35.4 36.9
CUB 49.1 47.5 54.5 45.6 48.3
AFLW 62.7 62.1 62.2 67.3 62.7
Awa 30.6 29.9 30.1 27.0 31.7

(b) ASYM

Test/Train Spair-71K SDogs CUB AFLW Awa

Spair-71K 34.0 30.9 28.3 25.9 30.2
SDogs 38.4 40.4 31.1 30.9 38.3
CUB 56.2 50.5 60.8 42.8 51.1
AFLW 54.4 58.2 48.6 63.6 56.3
Awa 33.5 33.9 26.6 25.4 34.1

(c) DVE

Test/Train Spair-71K SDogs CUB AFLW Awa

Spair-71K 16.3 13.9 15.5 17.3 14.7
SDogs 21.9 20.5 21.3 23.3 20.3
CUB 26.2 24.1 27.7 25.2 23.4
AFLW 41.0 41.2 43.9 58.7 41.4
Awa 16.0 14.2 14.8 17.6 15.4

(d) Supervised

Test/Train Spair-71K SDogs CUB AFLW Awa

Spair-71K 38.7 26.7 24.5 17.4 29.2
SDogs 40.1 53.2 29.0 25.1 42.9
CUB 52.5 40.2 72.7 25.4 47.6
AFLW 57.4 56.6 46.5 80.8 58.7
Awa 35.1 34.9 26.9 18.1 46.1
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