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1 COCO-additional.

To examine OOD filtering in a large-scale scenario, we consider COCO-additional
which aims to improve the fully-supervised object detector with the additional
large-scale dataset (e.g., COCO2017-unlabeled). As presented in Table 3, UT
(with data augmentation from SoftTeacher [20]) can achieve 44.06 mAP, and
using the proposed OOD filtering can further improve UT and achieve 45.14 mAP
and shows state-of-the-art result against the existing SS-OD works [18,22,9,17,20]
on COCO-additional. This demonstrates that removing OOD objects from the
large-scale unlabeled data can still improve the existing SSOD framework. How-
ever, it is worth noting that our proposed OOD filtering mechanism is not
restricted to UT, and we believe that is also complementary to other SSOD
methods [15,18,22,9,17,20].

2 Qualitative Results with the OOD filtering

Fig. 1. Comparison between the pseudo-labels with and without DINO-based
OOD filtering (OF-DINO).

To show the effectiveness of the OOD filtering, we show the pseudo-labels
generated with and without OOD filtering in Figure 1. Without the OOD
filtering, some OOD objects (e.g., fish) are predicted as inlier (e.g., bird) with
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high confidence. Such an issue is alleviated by the OOD filtering, which effectively
suppresses the OOD objects in pseudo-labels and thus improves the accuracy of
the object detector.

3 Experiment results when using ViT-B as OOD detector

To understand how the ViT-B pretrained on ImageNet21k performs on OSSOD
tasks, we examine the ViT-B model on the experiment setups presented in the
main paper. Specifically, we consider different degrees of supervision in Table 1,
different numbers of ID objects in Table 2, large-scale SSOD setting (e.g., COCO-
additional) in Table 3, large-scale OSSOD setting (e.g., COCO-OpenImage) in
Table 4. We observe using the ViT-B model can consistently lead to better results
in all experiment scenarios, while, as we mentioned in the main paper, ViT-B
requires large-scale supervised pre-training dataset (ImageNet21k), which is not
suitable for our label-efficient settings. However, it does demonstrate that the
method can scale with larger-scale pre-trained models, including when using
in-the-wild unlabeled data (e.g. OpenImages).

Table 1. Mean average precision of COCO-open under different degrees of supervi-
sion. We first pre-select 20 COCO classes as ID classes and 60 COCO classes as OOD
classes, and 1/2/4k images are randomly selected from the purely-ID set as the labeled
set. The remaining images from pure-ID, pure-OOD, and mixed sets are used as the
unlabeled set. We run each method 3 times and report the standard deviation.

Num. of Labeled Images 1,000 2,000 4,000

Label-only 10.20± 0.34 11.84± 0.33 16.35± 0.28

UT 11.77±0.38 (+1.57) 13.87±0.68 (+2.03) 18.23±0.47 (+1.88)

UT + OF-DINO 16.80±0.53 (+6.60) 18.10±0.71 (+6.26) 22.56±0.51 (+6.21)

UT + OF-ViT 17.10±0.46 (+6.90) 19.32±0.53 (+7.48) 23.01±0.67 (+6.66)

Table 2. Mean average precision of COCO-Open when varying the number of ID
objects. We first randomly sample 20/40/60 COCO classes as ID classes and remaining
COCO classes as OOD classes, and 4k images are randomly selected from the purely-ID
set as the labeled set. The remaining images from pure-ID, pure-OOD, and mixed sets
are used as the unlabeled set. We run each method 3 times and report the standard
deviation.

Num. of ID/OOD objects 20/60 40/40 60/20

Label-only 16.89±2.6 15.98±0.49 16.64±0.59

UT 18.37±1.67 (+1.48) 20.28±0.85 (+4.29) 23.09±0.25 (+6.45)

UT + OF-DINO 23.43±2.19 (+6.54) 22.91±0.28 (+6.93) 24.89±0.34 (+8.25)

UT + OF-ViT 25.20±2.00 (+8.31) 25.10±1.01 (+9.12) 26.11±0.40 (+9.47)
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Table 3. Comparison to other SSOD
methods in COCO-additional.

mAP

Supervised 40.90

Proposal Learning [17] 38.40
CSD [9] 38.82

STAC [15] 39.21
Instant-Teaching [22] 40.20

MOCOv2 + Instagram-1B [18] 41.10
Humble Teacher [18] 42.37

SoftTeacher [20] 44.05
Unbiased Teacher* [13] 44.06

Unbiased Teacher* + OF-DINO 45.14

Unbiased Teacher* + OF-ViT 45.16

Table 4. Experimental results of COCO-
OpenImage.

OpenImage GT labels mAP

COCO 40.90
COCO + OpenImage ✓ 42.91

Unbiased Teacher [13] 41.81
Unbiased Teacher + OF-DINO 43.14

Unbiased Teacher + OF-ViT 43.48

4 Experiments on STAC

Table 5. Generalization of our findings to other methods, namely STAC [15]
performance comparison between closed-set SSOD and open-set SSOD. For
closed-set SSOD, we randomly select 1%/2% from the training set (i.e., 1172/2234
labeled images). For the open-set SSOD, we randomly samples 20 classes as ID classes
and the remaining classes as OOD classes; hence the differences in performance of
“Labeled only”. We then sample the same amount of labeled images in both cases for a
fair comparison.

closed-set SSOD open-set SSOD

Percentage of labeled images 1% 2% 1% 2%
Num. of labeled images 1,172 2,344 1,172 2,344

Labeled only 9.05 12.70 11.20 12.18
STAC [15] 13.97 18.25 13.22 15.34

∆ +4.92 +5.55 +2.02 +3.16

In addition to Unbiased Teacher [13] experimented with in the main paper,
we also consider another SSOD method, STAC [15], to show that our findings are
general. As shown in Table 5, we observe STAC also suffers from open-set issues
when experimenting on OSSOD tasks. Compared with the traditional closed-set
SSOD task, the performance gain of STAC is smaller in open-set conditions.

To address the open-set issues, we also apply our proposed OOD detection
method on STAC. As presented in Table 6, when the OOD detector (DINO) is
applied, we can improve STAC from 18.60 mAP to 19.80 mAP. This shows that
our proposed OOD filtering method is not restricted to any particular SSOD
method and can potentially improve other SSOD methods.

Furthermore, similar to Unbiased Teacher [13], other existing SSOD meth-
ods [18,22,21,20] also applied confidence thresholding to select pseudo-labels, so
they are also prone to suffer from the semantic expansion issue as we described
in the main paper.
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Table 6. OOD filtering improves STAC on COCO-Open. We randomly sample
40 COCO classes as ID classes and remaining COCO classes as OOD classes, and 4k
images are randomly selected from the purely-ID set as the labeled set. The remaining
images from pure-ID, pure-OOD, and mixed sets are used as the unlabeled set.

Label-only STAC STAC + OF-DINO

mAP 16.54 18.60 (+2.06) 19.80 (+3.26)

5 Complete Comparison of OOD Detection

Table 7. Evaluation of OOD detection for object detection tasks. We sample 20 classes
from COCO as in-distribution (ID) objects, and 4000 pure-ID images are selected as
labeled images. All methods are evaluated on COCO2017-val. Value before the slashes
indicates ignoring background patches when computing AUROC and FPR, and value
after the slashes regradining background patches as OOD objects when computing
AUROC and FPR.

Model Methods OoD Scores γood AUROC ↑ FPR50↓ FPR75↓ FPR95↓

Online OOD Detector

(Faster-RCNN branch)

Vanilla

MSP [5] 67.0 / 71.0 22.5 / 15.5 58.4 / 52.4 92.3 / 91.1

Energy [12] 75.5 / 68.2 13.2 / 22.8 36.8 / 49.0 83.6 / 87.8

Entropy 75.9 / 68.4 12.2 / 22.3 38.5 / 51.1 83.1 / 87.7

Mahalanobis [10] 50.2 / 61.6 51.5 / 32.8 83.0 / 65.7 98.1 / 93.7

Euclidean 56.3 / 61.5 40.2 / 31.8 74.3 / 66.9 96.1 / 94.1

OE [6] MSP 67.0 / 73.3 25.3 / 15.2 55.0 / 45.9 89.1 / 85.6

One-vs-all [14] MSP 73.0 / 76.0 13.4 / 10.7 45.7 / 40.2 90.0 / 84.8

GODIN [7] Cosine h(x) 77.8 / 73.5 12.5 / 14.6 33.8 / 45.0 77.4 / 84.5

GSD [19] Feat. angle 78.7 / 71.3 11.8 / 19.3 32.1 / 48.8 73.9 / 83.4

Offline OOD Detector

(DINO)
Ours

Inv. abstaining conf. 83.6 / 86.0 8.5 / 5.9 22.4 / 18.7 61.7 / 57.9

Energy 89.6 / 85.9 4.0 / 7.0 12.2 / 18.8 47.5 / 56.8

Entropy 88.9 / 84.7 3.5 / 7.3 12.6 / 20.3 51.1 / 59.9

Mahalanobis [10] 81.8 / 75.7 11.7 / 17.6 25.6 / 35.9 57.6 / 68.9

Euclidean 90.8 / 86.1 3.6 / 7.3 10.7 / 18.5 38.6 / 51.6

Offline OOD Detector

(ViT)
Ours

Inv. abstaining conf. 87.5 / 88.2 4.5 / 4.0 15.3 / 14.7 54.7 / 51.5

Energy 93.3 / 88.5 2.1 / 5.9 6.0 / 14.5 32.4 / 45.3

Entropy 93.2 / 88.1 1.5 / 5.8 5.9 / 15.1 33.9 / 46.3

Feat. angle 93.2 / 87.6 2.1 / 7.2 6.1 / 15.5 33.4 / 46.0.

To compare OOD detection methods, we list a more complete comparison as
presented in Table 7. We list other observations as follows:
Mahalanobis Distance under limited amount of data setting With limited
amount of training data (i.e., 4k ID images), Mahalanobis distance becomes
unreliable compared with other OOD metrics, and this is contrary to the prior
works on OOD detection [4,10], where a large amount of data is used for training
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Fig. 2. Comparison of OOD metrics of OF-DINO under different number of ID classes,
and we present (a) AUROC and (b) FPR@TNR75 to evaluate the performance of the
OOD detection. Among different OOD metrics, inverse abstaining confidence (IAC)
suffers less when the number of ID classes increases. Note that 20/40/60 classes from the
COCO2017-train are selected as ID classes (and the remaining classes as OOD classes),
and 4k images of pure-ID set are selected as the labeled set.

the OOD detectors. As computing Mahalanobis distance requires the covariance
matrix and the class-wise mean vectors, and estimating the covariance matrix
for high-dimension features is difficult and inaccurate, this is even more difficult
when the data is scarce (especially when the number of instances is closer to or
even less than the number of feature dimensions). This is also why we observe
that Euclidean distance, which is equivalent to the Mahalanbois distance with the
identity convariance matrix, leads to even better results than the Mahalanobis
distance.

Another weakness of Mahalanobis distance is that it requires one to obtain
class-wise mean and co-variance features by deriving the features for all ID images
in the labeled set, so it is computationally slow (also pointed out in MOS [8])
and thus less preferable for large-scale open-set semi-supervised learning, which
requires detecting OOD samples in each training iteration.
Inverse abstaining confidence under different number of ID/OOD
classes. Compared with other offline OOD detection metrics, using inverse
abstaining confidence is more robust when varying the number of ID classes. To
be more specific, as shown in Table 7, the Energy score and Shannon entropy
perform on par or even better than the inverse abstaining confidence in the
case of using 20 ID classes. However, as shown in Figure 2, when we increase
the number of ID classes, the inverse abstaining confidence degrades much less
than the Energy score and Shannon entropy. Such a property makes the inverse
abstaining confidence more suitable for different OSSOD scenarios.

6 Comparison between COCO-OpenImage and
COCO-additional

In the main paper, we considered two large-scale unlabeled sets, OpenImagev5
and COCO2017-unlabeled, to improve the object detection trained on the labeled
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(b)
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Fig. 3. (a) Distribution of object categories and (b) number of objects in
COCO2017-train and OpenImagev5.

COCO2017-labeled. Our OOD filtering framework improves the supervised object
detector from 40.90 mAP to 43.14 mAP by using OpenImagev5 as an unlabeled set
and achieves 45.14 mAP when the COCO2017-unlabeled is used as an unlabeled
set.

As OpenImagev5 has more unlabeled images than COCO2017-unlabeled (1.7M
vs. 120k), we are curious why the model using the OpenImagev5 as an unlabeled
set cannot outperform the model using the COCO-unlabeled as an unlabeled set.

We attribute this trend to the following factors:
(i) Mismatch in class distribution. We first compare the class distribution

of both datasets, and we find these two datasets have very different object
distributions as shown in Figure 3a. The mismatch in the class distribution in the
unlabeled set is prone to affect the frequency or confidence of objects predicted
for the evaluation set, and this potentially leads to performance degradation in
the evaluation set.

(ii) Some COCO objects are rare in OpenImage. When OpenImagev5
is used as an unlabeled set to train the object detector in a semi-supervised
manner, we observe, as shown in Table 8, the performance on some objects
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Table 8. Performance degradation of minor objects in semi-supervised learn-
ing. We apply Unbiased Teacher with the proposed OOD filtering (DINO) and use the
OpenImagev5 as an unlabeled set, and detection performance of some rare objects are
degraded due to the scarcity of these objects in OpenImagev5. Note that OpenImagev5
contains 1.7M images, and COCO2017-train has 117k images.

Objects
Supervised-only

Labeled: COCO2017-train

-

UT+OF-DINO
Labeled: COCO2017-train

Unlabeled: OpenImagev5

mAP difference
Number of boxes in

COCO2017-train

Number of boxes in

OpenImagev5

sheep 51.81 51.49 -0.33 1529 1188

carrot 22.52 22.34 -0.18 1683 594

hair drier 2.59 1.53 -1.06 189 27

zebra 66.63 65.99 -0.63 1916 621

snowboard 35.48 33.90 -1.57 1654 574

knife 19.60 19.45 -0.15 4326 726

banana 23.56 23.08 -0.48 2243 723

orange 32.29 31.38 -0.91 1699 900

hot dog 32.23 31.20 -1.03 1222 362

toaster 40.40 34.28 -6.13 217 60

giraffe 68.41 68.04 -0.37 2546 920

tennis racket 49.31 49.10 -0.22 3394 1047

microwave 54.14 53.75 -0.40 1547 432

are even lower than the supervised model due to the scarcity of these objects.
Specifically, even though OpenImagev5 has more images than COCO2017-train,
the number of some COCO objects in entire OpenImage are even fewer than the
objects in COCO2017-train, as shown in Figure 3b. This suggests the objects
are very rare and infrequently appear, and such a property potentially limits the
further improvement by using OpenImagev5. Note that COCO2017-unlabeled
follows the same class distribution as COCO2017-labeled (described in COCO
official page), and both datasets have similar amount of images (120k vs. 117k).

7 Label Correspondence between COCO and OpenImage

To construct the baseline trained with ground-truth labels from OpenImage, we
manually label the correspondence between 80 classes in MS-COCO and 601 classes
in OpenImage. We provide the object correspondence in Table 9. Among 601
classes in OpenImage, 139 GOI classes have matching COCO classes, and the
remaining 462 classes do not correspond to any COCO classes. We thus remove
the labels of these classes in the training of the supervised baseline.

8 Implementation Details

Our implementation is based on the Detectron2 framework. As our framework
is built on the Unbiased Teacher [13], we follow its implementation details,
including training iterations, threshold, unsupervised loss weight, and other
hyper-parameters for a fair comparison.
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Table 9. Object classes correspondence between MS-COCO and OpenImages. 139 Open-
Images objects have the matching COCO objects, while the remaining 462 OpenImage
objects do not correspond to any COCO object.

COCO-objects OpenImage-objects COCO-objects OpenImage-objects

person Person, Boy, Woman, Man, Girl wine glass Wine glass

bicycle Bicycle cup Coffee cup, Measuring cup, Mug

car Car, Ambulance, Limousine, Taxi fork Fork

motorcycle Motorcycle knife Knife, Kitchen knife

airplane Airplane spoon Spoon, Ladle

bus Bus bowl Mixing bowl, Bowl

train Train banana Banana

truck Truck, Van apple Apple

boat Boat, Barge, Gondola, Canoe sandwich Submarine sandwich, Sandwich

traffic light Traffic light orange Orange

fire hydrant Fire hydrant broccoli Broccoli

stop sign Stop sign carrot Carrot

parking meter Parking meter hot dog Hot dog

bench Bench pizza Pizza

cat Cat cake Cake

dog Dog chair Chair

horse Horse couch Studio couch, Couch, Sofa bed, Loveseat

sheep Sheep potted plant Lavender (Plant), Plant, Houseplant, Flowerpot

cow Cattle, Bull bed Bed

elephant Elephant dining table Kitchen & dining room table, Table, Coffee table

bear Bear, Brown bear, Panda, Polar bear toilet Toilet, Bidet

zebra Zebra tv Computer monitor, Television

giraffe Giraffe laptop Laptop

backpack Backpack mouse Computer mouse

umbrella Umbrella remote Remote control

handbag Handbag keyboard Computer keyboard

tie Tie cell phone Mobile phone

suitcase Suitcase microwave Microwave oven

frisbee Flying disc oven Oven, Gas stove

skis Ski toaster Toaster

snowboard Snowboard sink Sink

donut Doughnut refrigerator Refrigerator

kite Kite book Book

baseball bat Baseball bat clock Wall clock, Clock, Alarm clock, Digital clock, Watch

baseball glove Baseball glove vase Vase

skateboard Skateboard scissors Scissors

surfboard Surfboard teddy bear Teddy bear

tennis racket Tennis racket, Racket hair drier Hair dryer

bottle Beer, Bottle, Wine toothbrush Toothbrush

bird
Bird, Magpie, Woodpecker, Blue jay, Raven, Eagle,

sports ball
Rugby ball, Football, Ball, Cricket ball,

Falcon, Owl, Duck, Canary, Goose, Swan, Parrot, Sparrow Volleyball (Ball), Golf ball, Tennis ball

Model Architecture. We experiment on the Faster-RCNN with FPN [11],
and ResNet-50 pretrained on ImageNet-1K is used as the feature backbone. For
the offline OOD detectors, we consider DINO [1] and VITB [3] as base models.

Training. For the object detectors, we use the SGD optimizer with a mo-
mentum rate 0.9 and a learning rate 0.01, and we use a constant learning
rate scheduler for COCO-Open and learning rate decay for COCO-additional
and COCO-OpenImage. Each batch contains 8 labeled images and 8 unlabeled
images for COCO-Open, and 32 labeled images and 32 unlabeled images for
COCO-OpenImage and COCO-additional. To fine-tune DINO/VITB models, we
randomly select 64 patches from each image and train 10k/20k/40k iterations
for 1k/2k/4k labeled images setups of COCO-Open. For COCO-additional and
COCO-OpenImage, we also randomly select 64 patches from each image and
train for 160k iterations. We follow the prior work [16] to use SGD optimizer
with a learning rate 1e− 3 and 5e− 3 for DINO and VIT models. We apply the
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inverse abstaining confidence as the OOD score due to its robustness to different
number of object categories. As for thresholds for confidence thresholding and
OOD filtering, we use δ = 0.5 for the confidence thresholding and δood = 0.5 for
the OOD filtering.

Data augmentation. For COCO-Open, We follow the data augmentation
used in Unbiased Teacher [13], which applies a random horizontal flip for weak
augmentation and randomly adds color jittering, grayscale, Gaussian blur, and
cutout patches [2] for the strong augmentation. For COCO-additional and COCO-
OpenImage, we additionally consider scale jitter used in SoftTeacher [20] to further
improve the performance. Image-level or box-level geometric augmentations, such
as rotation, translation, and Mosaic [22], are not used in our method.

9 Training of our online and offline frameworks

In the main paper, we present our proposed OSSOD framework integrated with
online and offline OOD detectors. We thus present the training details of offline
OOD detectors in Alg. 1 and online OOD detectors in Alg. 2.

Algorithm 1: Learning of an offline OOD Detector and UT [13]
Data: Labeled set: Ds = {xs, ys}; Unlabeled set: Du = {xu}

1 for Iters. of supervised training an object detector do
2 Compute supervised object detector loss Lsup with Ds

3 θsobj ← θsobj −∇θs
obj
Lsup

4 θtobj ← θsobj
5 for Iters. of training an offline OOD detector do
6 Get background proposal boxes ỹt from Teacher object detector
7 Select foreground GT boxes from ys and crop Ifg from xs

8 Select background proposal boxes from ỹt and crop Ibg from xs

9 Compute multi-class cross-entropy loss Lood based on {Ibg, Ifg}
10 θood ← θood −∇θoodLood

11 for Iters. of semi-supervised training of an object detector do
12 Predict ỹu = f(xu; θt)
13 Apply confidence thresholding ŷu ← h(ỹu; δ)
14 Apply OOD filtering ȳu ← h(ŷu; δood)
15 Compute unsupervised object detector loss Lunsup with {Du, ȳu}
16 Compute supervised object detector loss Lsup with Ds

17 Lssod = Lsup + λLunsup

18 θsobj ← θsobj −∇θs
obj
Lssod

19 θtobj ← αθtobj + (1− α)θsobj

Result: Learned weights θtobj/θ
s
obj of Teacher/Student object detector
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Algorithm 2: Learning of an online OOD Detector and UT [13]
Data: Labeled set: Ds = {xs, ys}; Unlabeled set: Du = {xu}

1 Add an OOD detection head on both Teacher and Student object detectors
2 for Iters. of semi-supervised training of an object detector do
3 Predict ỹu = f(xu; θt)
4 Apply confidence thresholding ŷu ← h(ỹu; δ)
5 Apply OOD filtering ȳu ← h(ŷu; δood)
6 Compute unsupervised object detector loss Lunsup with {Du, ȳu}
7 Compute supervised object detector loss Lsup with Ds

8 Compute OOD loss Lood (Refer to definition in original papers)
9 L = Lsup + λLunsup + λoodLood

10 θsobj ← θsobj −∇θs
obj
L

11 θtobj ← αθtobj + (1− α)θsobj

Result: Learned weights θtobj/θ
s
obj of Teacher/Student object detector

Limitations and future works. While addressing OSSOD, we do not address
other issues such as covariate shift and mismatch in object category distributions
between datasets. The offline OOD detector is an individual module from the
object detector, so it requires more computational resources in the training stage.
However, this concern does not exist as we remove the offline OOD detector
and only use the object detector in the inference stage. Our key message is that
combining an offline OOD detection module and an SSOD method is a simple yet
effective solution to address OSSOD tasks. Based on this integrated framework,
there will be more advanced techniques for both SSOD and OOD detection
methods, which can potentially improve the performance on OSSOD tasks.
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