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Abstract. We investigate the problem of estimating uncertainty for
training data, so that deep neural networks can make use of the results for
learning from limited supervision. However, both prediction probability
and entropy estimate uncertainty from the instantaneous information. In
this paper, we present a novel approach that measures uncertainty from
the vibration of sequential data, e.g., the output probability during the
training procedure. The key observation is that, a training sample that
suffers heavier vibration often offers richer information when it is man-
ually labeled. Motivated by Bayesian theory, we sample the sequences
from the latter part of training. We make use of the Fourier Transfor-
mation to measure the extent of vibration, deriving a powerful tool that
can be used for semi-supervised, active learning, and one-bit supervision.
Experiments on the CIFAR10, CIFAR100, mini-ImageNet and ImageNet
datasets validate the effectiveness of our approach.

Keywords: Uncertainty estimation, semi-supervised learning, active learn-
ing, one-bit supervision

1 Introduction

Recently deep learning [28] has become the main methodology for the computer
vision tasks. However, training deep neural network usually needs tremendous
labeled data which costs amounts of labors. Researchers have proposed some ap-
proaches for learning from limited supervision, including semi-supervised learn-
ing [40, 15, 27] and active learning [32, 17, 10, 38]. All of them aim to utilize the
large amounts of unlabeled data to improve the model training. Hence, obtain-
ing an accurate estimation to the predictive uncertainty for unlabeled data is
quite important. The existing uncertainty estimated methods, e.g., the predic-
tive probabilities [30] and the entropy [52], usually estimate uncertainty using
the instantaneous information, and achieves unsatisfied performance. We aim
to utilize the sequential information from training procedure to obtain a more
accurate estimation.
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In general, a series of predictive probabilities for unlabeled samples can be
obtained by a forward pass after each training epoch, and we use the proba-
bilities of the class predicted by the last epoch model. We consider to estimate
uncertainty by measuring the vibration of this sequence. The description to vi-
bration consists of two keys: (i) where the baseline it fluctuates around, and (ii)
how large are its fluctuations. This inspires us to utilize the Fourier Transfor-
mation (FT) to measure it. The direct component of its results represents the
fluctuation baseline, while the high frequency parts reflect the fluctuation de-
gree. By combining the two parts, an accurate estimation of the uncertainty will
be obtained. To further improve this measure, we equip it with the label flipping
information, in which each element indicates whether the label changed.

To obtain the appropriate sequence from training process, we utilize Bayesian
methods [36, 37] which offer a natural probabilistic representation of uncertainty
in deep learning. By sampling from the latter training epochs we connect the
model optimization with the Bayesian procedure, which offers theory foundation
for our approach. As shown in Figure 1, the instantaneous probabilities might
provide inaccurate estimation to uncertainty, e.g., the images with high proba-
bility and high vibration own wrong predictions. Our approach that considers
both the fluctuation baseline and intensity will alleviate this issue.

We develop methods to apply this uncertainty measure to the tasks of learn-
ing from limited supervision, e.g., semi-supervised learning, active learning and
the recently proposed one-bit supervision [19]. To improve SSL, we use the pro-
posed measure to select reliable pseudo labels, to further improve the semi-
supervised baselines. Also a strategy of class weights is utilized to alleviate the
class imbalance issue. Different from SSL that directly utilizes unlabeled data
to enhance generalization ability, active learning aims to select informative sam-
ples from the unlabeled set to annotate. This is also an appropriate application
scenario for our approach. We select and annotate the highly uncertain samples
to conduct active learning to verify its effectiveness in uncertainty estimation.
Finally, we propose a mix annotation approach to improve one-bit supervision. It
utilized a weakly annotation method to efficiently utilize the supervision informa-
tion, while only negative labels can be obtained for the most uncertain samples.
Hence, we propose to incorporate full-bit annotation with one-bit annotation,
i.e., using the proposed approach to select appropriate samples to conduct this
two kinds of annotation respectively.

We evaluate our approach on CIFAR10, CIFAR100, Mini-ImageNet and Ima-
geNet for this three tasks. Extensive experiments demonstrate that, the proposed
approach enjoys superiority in selecting no matter reliable pseudo labels and in-
formative samples, and most of all, making accurate uncertainty estimation for
unlabeled data.
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baseball pool table
High probability; Low vibration

bison plate rack

High probability; High vibration

maned wolf necklace

Low probability; Low vibration

warm fence maypole

Low probability; High vibration

Fig. 1: The four types of selected samples. The first and fourth columns are the
images, the second and fifth columns are their corresponding scatter diagram
of probabilities sequence, and the third and sixth columns are their magnitude
spectra. The textboxes on the images represent their predictive labels, where the
red text denotes a correct prediction while the black texts denote incorrect ones.
The experiments are conducted on ImageNet trained using ∼ 3% labels

2 Related Work

2.1 Semi-Supervised Learning

Semi-supervised learning [40, 27, 34] often can be categorised into two types ac-
cording to their usages of unlabeled data. The first type assigns pseudo labels [29,
6] to unlabeled data and optimizes them with labeled data together. Iscen et
al. [22] used the transductive label propagation method to obtain more accu-
rate pseudo labels. Hu et al. [20] proposed a pair loss to minimize the distance
between high confidence pseudo labels. The second type utilizes the consistency
regularization [26, 17] to facilitate model training. The methods of encouraging
the consistency are various, e.g., Mean Teacher [48] inputted a sample with dif-
ferent perturbations into two models to make their outputs be similar. WCP [56]
imposed additive noise on network weights and making structural changes. In ad-
dition, some methods aim to combine two types of approaches, e.g., MixMatch [4]
introduced a single loss to seamlessly reduce the entropy while maintaining con-
sistency. ReMixMatch [3] improved it by extra introducing distribution align-
ment and augmentation anchoring.



4 H. Hu, L. Xie et al.

2.2 Active Learning

Active learning aims to reduce labeling cost by selecting informative samples to
annotate. According to the selection criterion it can be classified into two groups.
Firstly, the diversity-based methods [44] select samples that can represent the
whole distribution of the unlabeled pool, e.g., Shi et al. [45] proposed to identify
a small number of samples that best represent the overall data space. Sinha et
al. [46] utilized the variational autoencoder and adversarial network to choose
samples that are not well represented in the labeled set. The second type utilizes
uncertainty [2] to select samples that can decrease the model uncertainty, e.g.,
using the prediction probability [30], the entropy [52], and the target losses [54].
Gao et al. [12] used the consistency-based metric for selecting uncertain samples.
Huang et al. [21] did this by evaluating the discrepancy of outputs of different
optimization steps.

2.3 Uncertainty Estimation Approaches

Bayesian neural networks usually are used to estimate uncertainty, while they are
inefficient and computationally intractable. Then some approximated Bayesian
inference methods [5, 31] were proposed to alleviate this. Gal et al. [11] proposed
to estimate uncertainty by interpreting dropout neural networks as variational
Bayes. The similar approaches include SpatialDropout [49] and DropBlock [14].
SDE-Net [24] proposed to quantify uncertainty from a dynamical system per-
spective. AUM [39] utilized the average difference between the logit values for a
sample’s assigned class and its highest non-assigned class to identify the misla-
beled data.

3 Approach

3.1 Learning from Limited Supervision

For the setting of learning from limited supervision, we often have a dataset
D = {xn}Nn=1, where xn is the n-th sample of image data and N is the total
number of training samples. Let y⋆n denote the ground-truth class label of xn

and C is the number of classes, and they are mostly unseen in the setting. An
initial set of samples S0 is chose randomly to partition the dataset into two
subsets DS and DU, where the superscripts respectively represent ‘supervised’
and ‘unsupervised’. Learning from limited supervision aims to utilize unlabeled
data to reduce model uncertainty. Therefore, we write the objective as,

L(θ) = Ex∈DSℓ(y⋆
n, f(x;θ)) + λ · Ex∈DS∪DUh (q, f(x;θ)), (1)

where f(x;θ) represents the model function and θ is the learnable parameters.
The ℓ(·, ·) is cross-entropy loss for labeled samples. The h (·, ·) denotes the loss
that utilizes unlabeled data by q, which is obtained via the semi-supervised or
active learning methods. Since the main idea for this task is the use strategy
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of unlabeled data, measuring uncertainty to distinguish each of them is very
significant. Hence, it is necessary to develop an accurate uncertainty estimation
approach for learning from limited supervision.

3.2 Vibration-based Approach

The conventional measures, e.g., the maximum predictive probabilities, the en-
tropy and the gradients, often used instantaneous information to estimate un-
certainty. We do this from another view, i.e., evaluating it using information
from training procedure. Supposing an initial model is trained for T epochs in a
semi-supervised type, e.g., the Mean Teacher algorithm. If we sample the model
weights from the training process, e.g., from M -th epoch to L-th epoch, and con-
ducting forward pass at each epoch, a sequence of outputs

{
yM
n ,yM+1

n , . . . ,yL
n

}
can be obtained, where yi

n is the C-dimension vector for n-th sample of i-th

epoch. To better describe vibration, we form the sequence as sn =
{
sin

}i=L

i=M

where sin is the c-th element of yi
n and c is the class with maximum probability

predicted in L-th epoch. We aim to utilize this sequential information to estimate
uncertainty for unlabeled data. To achieve this, we consider to calculate vibra-
tion for this sequence. In general, if the sequence has higher vibration intensity
around a lower baseline, the prediction will be more uncertain. This inspires us
to utilize Fourier Transformation to capture its vibration. It is denoted as

Sk = L {sn} =

L∑
i=M

sin · e−j 2π
L−M ki. (2)

By calculating the real part of Sk, the amplitude sequence {A0, A1, . . . , AL−M+1}
can be obtained for the corresponding frequency components. Because of the
conjugate symmetry of Discrete Fourier Transformation, we use half part of the
obtained amplitudes

{
A0, · · · , A(L−M+1)/2

}
. A0 represents the direct component

of the frequency, which reveals the baseline where the sequence fluctuates, and{
A1, . . . , A(L−M+1)/2

}
represents the high frequency part which tells the vibra-

tion intensity. Therefore, we define the predictive uncertainty by

vc =

(L−M+1)/2∑
i=1

Ai − µ ·A0, (3)

where µ is the weight coefficient for balancing high frequency parts and direct
component. The summation to the high frequency parts lets the sequence lose its
order and makes it have no conflict with the sampling theory. While there may
other methods to extract uncertainty, we believe that Eq. (3) is a straightforward
and effective method that combines the direct and high frequency parts of the
amplitudes. In addition, another kind of information within the outputs, namely
label flipping, is also useful for estimating uncertainty. Generally, a prediction
is more uncertain when the predicted label flips more frequent in the training
process. Hence, we define a sequence with binary values {bM , bM+1, . . . , bL} for



6 H. Hu, L. Xie et al.

each unlabeled sample, where bi = 1 denotes argmaxyi
n equals to argmaxyL

n

and bi=0 represents they are different.
For the label flipping sequence, we also conduct Discrete Fourier Transforma-

tion to it and calculate its vibration according to Eq. (3), which denoted as vl. To
conveniently combine the two measures, we conduct min-max normalization for
them and obtain the results v̂c and v̂l respectively. We verify the effectiveness of
this fused measure by the experiments on active learning in Section 4.2. Finally,
the predictive uncertainty is defined by a weight α as:

vf = (1− α) · v̂c + α · v̂l (4)

3.3 Theoretical Foundation

Since we estimate uncertainty by using sequential information from training
process, the important question to be solved is how to sample the sequence. One
can use the whole sequence (from 0-th epoch to the last) or part of it. To solve
this, we make use of Bayesian probability theory which provides a mathematical
tool to analysis model uncertainty. The predictive distribution for a Bayesian
procedure is defined as:

p(y∗|x∗,D) =

∫
p(y∗|θ,x∗)p(θ|D)dθ, (5)

where x∗ and y∗ are test inputs and outputs. The posterior distribution p(θ|D)
in Eq. (5) is intractable. Next we will show how to develop a Gaussian approxi-
mation to the posterior by stochastic gradient descent (SGD) iterations. Accord-
ing to the deduction in [33], when the gradients or the learning rates are small
enough and the optimization is confined to a sufficiently small region, the SGD
iterations is equivalent to a stochastic process known as the Ornstein-Uhlenbeck
(OU) process [51]. The OU process has an analytic stationary distribution q(θ)
which follows a Gaussian distribution of:

q(θ) ∝ exp

{
−1

2
θ⊤Σ−1θ

}
, (6)

where Σ is the corresponding covariance matrix. We can approximate q(θ) by
Monte Carlo sampling procedure, e.g., drawing θ from the latter part of the
training procedure. To approximate the p(θ|D), the variational inference [23] is
utilized by minimizing the KL divergence between it and the stationary distri-
bution q(θ), which is written as argminϵ,S KL (q(θ)||p(θ|D)). It involves with
the learning rate ϵ and mini-batch size S. The learning rate to satisfy this is
ϵ = 2 S

N
D

Tr(BBT )
, where D is the dimension of θ and BBT = C is the gradi-

ent noise covariance. For an explicit deduction, please kindly refer to [33]. To
achieve the requirement of minimization, the learning rate needs to be a small
value, and the norm of gradients needs to be small but larger than zero. These
conditions are satisfied when we sample θ from the late training epochs (close
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to converging). Hence, the approximated predictive distribution is given by:

q(y∗|x∗,D) =

∫
p(y∗|θ,x∗)q(θ)dθ. (7)

Since the optimization in the late training epochs can agree with Bayesian proce-
dure, we estimate uncertainty by using the sampled sequence information. This
can be viewed as sampling from the distribution q(y∗|x∗,D).
Relationship to previous works. Similarly, Temporal Ensembling [27] uti-
lized sequential outputs to obtain weights or predictions. AUM [39] proposed
to exploits differences in the training dynamics of clean and mislabeled sam-
ples. Though they both aim to make use of the outputs in training epochs,
our approach is different from them in many aspects. TE only conducted self-
ensembling to obtain more accurate predictions, while our approach estimates
uncertainty for unlabeled samples. AUM used the front part outputs in training
to calculate area under the margin values, which is inapplicable to unlabeled
samples for the margins are very close at those epochs. Also, AUM neglects the
semantic changes in training epochs while our approach considers this by cal-
culating vl. In addition, the idea of forgetting events [50] is similar to the used
label flipping sequence. Lastly, SG-MCMC [7, 9] is also a Bayesian method that
used for uncertainty estimation. However, Our approach is different from them
in theory, i.e., our approach utilizes a stationary distribution to approximate the
posterior, while SG-MCMC samples from an asymptotically exact posterior.

3.4 Application to Different Scenarios of Learning from Limited
Supervision

In this section, we apply the proposed approach to the tasks of learning from
limited supervision, including semi-supervised learning, active learning, and one-
bit supervision. The difference among them is their usage to unlabeled data.
SSL utilizes unlabeled data to enhance generalization ability. In particular, the
consistency-based type defines the h (·, ·) in Eq. (1) as a mean square error loss
and sets q as the outputs for the perturbative samples. The pseudo-labeling
based type sets q as the pseudo labels and uses a cross-entropy loss to optimize
them. Compared to SSL, AL selects informative samples from unlabeled data
to annotate. Its objective equals to set h (·, ·) as the cross entropy and let q
be the ground-truth of the selected samples. Different from AL that annotates
true labels for samples, one-bit supervision annotates by asking the labeler if
it belongs to a guessed class. All of the three tasks start by training the initial
model using DS and DU.
Semi-Supervised Learning. For SSL, we utilize the proposed uncertainty
measurement to mine reliable pseudo labels to improve semi-supervised base-
lines. In particular, after training the initial model M0, we calculate uncertainty
for unlabeled samples by Eq. (4) via the outputted probabilities and label flip-
ping information. Then we select K samples with the smallest vibration values
from DU, and use M0 to generate pseudo labels for them. Then adding them



8 H. Hu, L. Xie et al.

to DS and fine-tuning the model to obtain the first stage model M1. We adopt
appropriate strategies to utilize the mined pseudo labels for the used baseline.
For Mean Teacher [48], we inject the pseudo labels according to each unlabeled
batch. For FixMatch [47], we replace the pseudo labels generated by the weak-
augmented images with ours.

In the next iteration, we moderately increase the number of selected samples
to obtain more reliable pseudo labels. The cycle of selecting pseudo labels and
fine-tuning continues until the training converges. One issue for pseudo-label
selection is about class imbalance, i.e., the correct predictions may focus on
partial classes. Especially when the model is not strong enough, this issue will
be more obvious. To alleviate this, we assign weight for each class by wi =

A
ni
,

where A is the average number of samples in each class in labeled set (including
pseudo labels), and ni denotes the actual number of samples in i-th class. Here
we normalize the weights by ŵ=w/max(w).
Active Learning. We apply the proposed approach to AL by selecting the in-
formative samples. The training process of AL often consists of several iterations,
and in each of them a batch of samples is selected for annotating. To obtain more
accurate estimation, we train the model in each stage in semi-supervised type. In
our algorithm, for the t-th cycle, we estimate uncertainty for unlabeled data by
Eq. (3) and Eq. (4) according to the model Mt−1. Then selecting J samples with
the largest uncertainty and checking their ground-truth to imitate the process
of annotating. Then adding them to DS

t−1, and removing from DU
t−1. Finally we

update to obtain new model Mt using both DS
t and DU

t . This iteration continues
until the satisfied performance is achieved.
One-bit Supervision. We apply our approach to one-bit supervision via con-
ducting mix annotation, which efficiently acquires supervision by combining full-
bit and one-bit annotation. Since the multi-stage training framework in one-bit
supervision is similar to the process of AL, we omit the introduction to the it-
erations. For t-th stage, after calculating uncertainty for unlabeled samples by
Eq. (4), we select I samples with the largest vibrations to conduct full-bit anno-
tation, then adding them to DF, the subset of full-bit annotated samples. Next,
we select a subset DO

t from DU
t and use the model Mt−1 to make predictions for

them to conduct one-bit annotation. Generally, selecting samples with predic-
tive probabilities around 0.5 will obtain the highest gains for one-bit annotation.
Hence, the middle-uncertain samples are selected according to the model preci-
sion. By checking their ground-truth, we add correctly guesses to the positively
labeled set DO+, and add incorrectly guesses to the negatively labeled set DO−.
Finally, we retrain the model by combining the labeled set DS ∪DF ∪DO+, the
negatively labeled set DO− and the unlabeled set DU

t .

4 Experiments

4.1 Datasets and Implementation Details

Dataset. For both SSL and AL, we do experiments on three classification bench-
marks CIFAR10, CIFAR100 [25] and Mini-ImageNet. CIFAR10 and CIFAR100
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are standard datasets with 10 and 100 classes respectively. They contain 60K im-
ages in which 50K for training and 10K for testing. All of them are 32×32 RGB
images and uniformly distributed over all classes. For Mini-ImageNet, we use the
training/testing split created in [41], which contains 100 classes, 50K training
images and 10K testing images. For one-bit supervision, the experiments are
conducted on CIFAR100 and Mini-ImageNet. In addition, the experiments on
ImageNet [43] are also conducted for SSL. This dataset contains 1.2M images
from 1000 classes.
Implementation Details. For SSL, we use Wide ResNet-28-2 [55], a com-
monly used backbone for CIFAR10 and CIFAR100, and ResNet-18 [18] for
Mini-ImageNet. For AL, WRN-28-2 is used for all three datasets. For one-bit
supervision, we follow the experimental setting in [19] to use ResNet-50 for
Mini-ImageNet, and ResNet-26 [18] with Shake-Shake regularization [13] for
CIFAR100. The SSL experiments are based on two famous baselines, Mean
Teacher [48] and FixMatch [47]. The experiments for AL are conducted using
Mean Teacher. We refer to their original paper to set our parameters. We use the
SGD optimizer with momentum. For the hyper-parameters in our approach, we
set the balance coefficient µ to 0.1 for all experiments. The fused weight α is set
to 0.6 for CIFAR10 and Mini-ImageNet, and 0.2 for CIFAR100. For the value of
K in SSL, we choose it according the model precision. We follow the general rules
to set the parameter I in AL. Specifically, on CIFAR10, we randomly select 100
samples as the initial labeled set, and add 500 samples in each of the following
stage, except for the last two which 1000 samples are added; on CIFAR100, we
randomly select 5000 samples as the initial labeled set and add 1000 samples in
the next stage; on Mini-ImageNet, we randomly select 20% samples as the initial
set and add 5% in the following stage. For one-bit supervision, we split the quota
of supervision used in each stage into two parts, 1000 full-bit annotations (about
6644 bits of supervision) and the remaining one-bit annotations.

4.2 Main Results

Semi-Supervised Learning. The results for combining with two semi-supervised
baselines are shown in Table 1. We run 5 iterations for three datasets for their
performance approaches to converge. We can observe that our approach both
achieves higher performance when applied to Mean Teacher [48] and FixMatch [47].
Also, more accuracy gains are obtained when combined with the MT algorithm,
e.g., it achieves 7.00% gains for CIFAR100 with 4000 labels. Except for the
used weak baseline, we also own this to that our approach is more applicable
to consistency-based approaches. Meanwhile, our approach still achieves 0.82%
gains when combined with FixMatch. Specifically, to our knowledge, we report
the best results on Mini-ImageNet both with 4000 and 10000 labels when using
ResNet-18. We also list some popular semi-supervised methods in Table 1, and
among them UPS [42] is most similar with our approach. It also used an uncer-
tainty estimation method (MC Dropout [11]) to mine pseudo labels. The results
show that our approach outperforms UPS both with the two baselines, which
verifies the superiority of the proposed uncertainty measure.
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Table 1: Test error (%) of semi-supervised methods on CIFAR10, CIFAR100
and Mini-ImageNet. The methods with ∗ represent that using the CNN-13 ar-
chitecture. ”RA” represents the Randaugment [8] approach. For our method and
two baselines Mean Teacher and FixMatch, we report the mean and standard
deviation over 3 runs

CIFAR10 CIFAR100 Mini-ImageNet

Total Labels 250 1000 4000 2500 4000 10000 4000 10000

PL [29] 49.78±0.43 30.91±1.73 16.09±0.28 - - 36.21±0.19 - -

DeepLP [22] - 22.02±0.88* 12.69±0.29* - 46.20±0.76* 38.43±1.88* 70.29±0.81 57.58±1.47

Π model [27] - - 14.01±0.38 - - 37.88±0.11 - -

VAT [34] - 18.64±0.40 11.05±0.31 - - - - -

PLCB [1] 24.81±5.35 - 6.28±0.30 - 37.55±1.09* 32.15±0.50* 56.49±0.51 46.08±0.11

MixMatch [4] 11.29±0.75 - 6.24±0.07 39.70±0.27 - 28.59±0.31 49.79±0.11 44.27±0.23

UPS [42] (RA) - 8.18±0.15* 6.39±0.02* - 40.77±0.10* 32.00±0.49* - -

SemCo [35] 5.87±0.31 - 4.43±0.01 33.80±0.57 29.40±0.18 25.07±0.04 46.01±0.93 41.25±0.76

MT [48] 52.30±0.95 21.54±0.12 11.48±0.21 - 52.36±0.39 38.00±0.17 70.58±0.37 56.91±0.16

Ours+MT 48.05±1.17 16.94±0.18 9.33±0.08 - 46.56±0.43 34.55±0.21 69.46±0.13 54.91±0.08

MT (RA) 16.50±0.18 11.72±0.10 9.48±0.29 49.83±0.10 43.86±0.56 35.60±0.36 61.97±0.32 52.98±0.27

Ours+MT(RA) 10.37±0.53 7.63±0.64 5.87±0.05 42.12±0.22 36.86±0.46 29.84±0.23 57.02±0.26 49.73±0.29

FixMatch [47] (RA) 6.16±0.79 5.21±0.08 4.73±0.03 34.28±0.23 31.22±0.16 26.87±0.05 40.02±0.35 38.47±0.39

Ours+FM (RA) 6.06±0.76 4.84±0.04 4.63±0.12 33.53±0.21 30.40±0.20 26.18±0.12 39.21±0.58 37.72±0.20
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Fig. 2: The relationship between the ex-
pected calibration error (ECE) and the
value of our uncertainty measure (vf ) on
unlabeled samples.

To reveal the quality of uncer-
tainty estimated by our approach,
we analyze the relationship between
it and the Expected Calibration Er-
ror (ECE) score[16]. Experiments are
conducted on CIFAR10 with 1000 and
4000 labels and CIFAR100 with 4000
and 10000 labels, and trained using
MT. The results are presented in Fig-
ure 2, which show that the ECE scores
are positively associated with the un-
certainty values. It means reliable
pseudo labels can be obtained by se-
lecting samples with low uncertainty
defined in our approach. Experiments
on CIFAR100 with 5000 labels are
also conducted to verify this. Our ap-
proach achieves (95.7%/88.73%) ac-
curacy with top-5,000/10,000 selected samples, while the numbers for Con-
sistency, Confidence, and Entropy are (88.94%/82.26%), (92.6%/84.7%), and
(92.56%/84.86%), respectively.
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Table 2: Test error (%) of our approach on CIFAR10, CIFAR100, and Mini-
ImageNet for active learning. They are all based on the Mean Teacher algorithm.
The comparison methods include K-center [44], MC Dropout [11], AUM [39] and
Consistency [12]. The Initial labels for these three datasets respectively are 100,
5000 and 10000

Methods Random Confidence K-center MC Dropout AUM Consistency Vibration Vibration fused

CIFAR10

iter 1 37.98 42.39 35.53 33.27 40.75 40.95 35.37 27.33

iter 2 24.26 23.24 23.20 25.74 25.00 28.38 26.75 20.43

iter 3 20.85 18.25 16.87 21.46 18.93 18.58 18.79 15.14

iter 4 15.69 12.80 12.40 13.42 12.28 12.49 11.58 10.53

iter 5 12.39 10.55 10.70 11.46 10.06 10.05 10.04 9.47

CIFAR100

iter 1 45.49 45.37 45.35 45.31 45.77 46.18 45.64 43.99

iter 2 43.40 43.15 42.53 42.10 42.37 43.24 41.97 41.22

iter 3 42.25 41.08 40.03 39.46 39.22 40.30 38.78 38.42

iter 4 39.67 38.72 38.67 38.01 38.56 38.36 37.61 37.11

iter 5 38.19 37.37 37.20 37.06 37.33 37.9 37.01 36.51

Mini-ImageNet

iter 1 45.23 46.07 45.13 44.33 45.58 45.00 44.68 43.14

iter 2 42.24 42.89 42.29 42.43 41.47 42.22 42.41 40.30

iter 3 40.34 40.95 40.77 40.30 40.07 40.45 38.98 38.62

iter 4 38.90 39.50 38.82 37.57 38.63 37.43 37.87 36.77

iter 5 37.51 37.11 37.98 36.55 36.85 36.63 36.96 35.95

Also, with the training iteration increases, uncertainty for unlabeled samples
becomes lower. For example, in SSL on CIFAR100 with 10000 labels, the av-
erage uncertainty decreases throughout training: the values after 1st, 5th, 10th
iterations are 0.3516, 0.2570, and 0.2434, respectively. In addition, we also do
ablations for pseudo labels selection and class weights. The experiments are con-
ducted on Mini-ImageNet with 4000 and 10000 labels by using MT. Only mining
pseudo labels achieves 42.12% and 49.32% accuracy respectively, and further us-
ing the generated class weights brings 0.86% and 0.85% gains. Finally, we test
the computation cost on a RTX 2080Ti GPU, in SSL in CIFAR10/100, each
training epoch takes 76.72s, in which, after forward/backward prop, using the
newest model to update sequential information takes 10.73s, then uncertainty
estimation plus pseudo label selection takes 5.44s.

Active Learning. The experiments for AL are conducted on CIFAR10, CI-
FAR100 and Mini-ImageNet. From the results on Table 2 we can obtain some
observations. Firstly, the fused vibration measure achieves higher performance
than the single measure on all four iterations for three datasets. This verifies
the effectiveness of the approach which utilizes both the outputted probabili-
ties and label flipping sequences. Secondly, compared to the basic AL methods,
e.g., Random, Confidence and K-center [44], our approach obviously outperform
them in all iterations. For example, on CIFAR10, it achieves 8.20% accuracy
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gains compared to K-center in the first iteration. Though these three methods
are simple, we argue that they still provide strong baselines when combined with
semi-supervised algorithms.

Thirdly, compared to other uncertainty estimation methods, such as MC
Dropout [11] and AUM [39], our approach still achieves higher performance in
four iterations on three datasets. In particular, the gains are 5.94% and 13.42%
respectively in the first iteration on CIFAR10. This demonstrates the superiority
of our approach for uncertainty estimation. Here AUM was originally designed
to identify the mislabeled data, we adapt it to active learning by calculating the
average difference between the prediction probabilities for a sample’s pseudo-
labeled class and its highest non-pseudo-labeled class. Lastly, on all datasets,
the proposed approach outperforms Consistency [12] for all iterations. Notably,
it is also designed for SSL algorithm, which is appropriate to verify our approach
as a comparison. In addition, another observation on these three datasets is, our
approach obtains the highest gains on the first stage, which shows that it enjoys
more advantages when the supervision is scarce.
One-bit Supervision. The experiments for one-bit supervision are conducted
on CIFAR100 and Mini-ImageNet. The proposed mix annotation approach achieves
23.93% and 50.29% test error respectively on these two datasets. Compared
to the baseline Mean Teacher, our approach brings 6.31% and 8.65% accuracy
gains respectively. The gains still have 2.31% and 4.17% when compared to the
original one-bit supervision. In addition, MixMatch [4] and UDA [53] achieves
25.88% and 24.50% test error on CIFAR100 using Wide ResNet-28-8 backbone,
which is inferior to our approach. These results demonstrate the effectiveness of
the proposed mix annotation approach, for which efficiently utilize the annota-
tion information to maximize the labeling gains. And we own this to that our
approach accurately estimates uncertainty for all unlabeled samples.

We also apply the proposed approach to noise learning and conduct experi-
ments on CIFAR10 by assigning random labels to a random subset of training
data. Our approach is based on MT and trains using predicted noisy data as
unlabeled data. It achieves 10.06%, 12.77% test error for 0.2, 0.4 noise level re-
spectively, which are obviously better than the standard training (using all data)
achieves, i.e., 13.82%, 18.19% test error.

4.3 Diagnostic Experiments

Transferring to Large-Scale Dataset. To verify the effectiveness of our ap-
proach on large scale datasets, we do experiments on ImageNet [43] for semi-
supervised learning. The results are still based on the two baselines, Mean
Teacher [48] and FixMatch [47]. For MT, we use ResNet-50 as the backbone.
Our approach achieves 47.30% and 59.88% test error respectively for using 5%
and 10% labels, and brings 4.89% and 2.87% gains when compared to the base-
line. For FixMatch, we use VGG-16 as the backbone and train using 10% labeled
samples. The error rate of our approach is 30.84%, which outperforms the base-
line by 3.38% gains. These results reveal the potential of the proposed approach
in applying to large scale datasets.
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Fig. 3: Analysis to the starting epoch of the sampled sequence, balance coefficient
µ and fused weight α. Experiments are conducted on on CIFAR10 and CIFAR100
for the first iteration of active learning, using WRN-28-2 backbone. Results about
starting epoch are ran for 10 times.

Position of Starting Epoch. We conduct experiments for the first active learn-
ing iteration on CIFAR10 and CIFAR100, to investigate the effect of different
starting epoch of the sequence. The results are shown on the subfigure (a) of Fig-
ure 3. We can obtain some observations from them. Firstly, most of the results
are higher than the ”Random” approach on two datasets, which shows the supe-
riority of estimating uncertainty from sequential data. Secondly, the best results
are obtained when setting the starting point to the latter epoch, e.g., 80 and 100
for CIFAR10 and CIFAR100 respectively. This is in accord with the sampling
theory for approximating the posterior, which is introduced in Section 3.3.
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Fig. 4: Value of learning rate and the
Frobenius norm of gradients in the train-
ing procedure on CIFAR100 with 5000
labels. The gradients are obtained from
the last fully-connected layer

Lastly, we observe that sampling
from early epochs does not show dra-
matic accuracy drop, i.e., violating
the constraints necessary for the the-
oretical guarantee still yield good re-
sults. We argue that this is quite of-
ten in practice, e.g., for SVMs. Also,
sampling from the latter epochs is ad-
vantage in computation cost. We also
analyze the curve changing of learning
rate and norm of gradients in train-
ing process. The results are shown in
Figure 4. According to the deduction
in Section 3.3, to better approximate
the posterior, the learning rate needs
to be small while the norm of gra-
dients needs to be larger than zero.
Hence, the sequence needs to be sam-
pled from about epoch 80 to 140 for
this training stage.
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Transferring to other network ar-
chitecture. We also verify the proposed approach by using WRN-28-8 as the
backbone for semi-supervised learning. The experiments are based on Mean
Teacher [48] and FixMatch [47] and are conducted on CIFAR100 and Mini-
ImageNet with 10000 labels. For MT, it achieves 24.99% and 34.06% test error
respectively, which outperforms the baseline by 2.93% and 3.83% gains. For Fix-
Match, the error rates are 22.58% and 21.11% for two datasets, and brings 0.75%
and 0.94% than the baseline. As a comparison, MixMatch [4] and UDA [53]
achieves 28.31% and 24.50% test error on CIFAR100 in the same setting re-
spectively. These results are inferior to our approach, which demonstrates the
effectiveness of our approach by a stronger backbone.

Robustness to Hyperparameters. Our approach introduces two new hyper-
parameters, namely the balance coefficient µ and the fused coefficient α. Here
we investigate the effect of different choice for them. The parameter µ plays
the role of balancing the high frequency part and the direct component. As
shown in the subfigure (c) in Figure 3, we can observe that µ = 0.1 achieves the
best results on both two datasets. When µ becomes too large, the performance
degrades obviously. It shows the significance of making a balance between the
vibration baseline and its intensity. We set µ = 0.1 in all our experiments for
the robustness of our approach to it. The parameter α is used to balance the
two components in the fused measure. As shown in the subfigure (b) in Figure 3,
setting α to 0.6 and 0.2 achieves the best accuracy respectively on CIFAR10 and
CIFAR100. Also, the performance for different α varies relatively smoothly on
two datasets. In general, the proposed uncertainty estimation approach enjoys
flexibility in hyperparameter adjustment for its robustness and limited numbers.

5 Conclusions

In this paper, we propose a novel approach for uncertainty estimation, and use it
to improve learning from limited supervision. The conventional methods includ-
ing the probabilities and the entropy often estimate uncertainty from instan-
taneous information. Different from them, we do this by using the sequential
data from training process, e.g., the probabilities. In particular, we measure the
vibration of the obtained sequence via Fourier Transformation. By equipping
with label flipping, a more accurate estimation will be obtained. Inspired by the
Bayesian theory which provides a probabilistic representation of uncertainty,
the sequence is sampled from latter optimization iterations. The effectiveness of
the proposed approach for semi-supervised learning, active learning and one-bit
supervision is verified by the extensive experiments on CIFAR10, CIFAR100,
Mini-ImageNet and ImageNet.
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