
Supplementary Material:
Concurrent Subsidiary Supervision for

Unsupervised Source-Free Domain Adaptation

Jogendra Nath Kundu1* , Suvaansh Bhambri1* , Akshay Kulkarni1* ,
Hiran Sarkar1 , Varun Jampani2 , and R. Venkatesh Babu1

1 Indian Institute of Science
2 Google Research

Supplementary Video

We provide a high-level summary video at https://youtu.be/ENJMz-Eg87k.
We visually demonstrate the key insights of our work as well as illustrate the
different subsidiary tasks and training algorithm used. We encourage the reader
to go through the video for a better understanding of the key ideas.

Supplementary Document

In this document, we provide extensive implementation details, additional perfor-
mance analysis and ablation studies. Towards reproducible research, we release
our complete codebase and trained network weights at https://github.com/

val-iisc/StickerDA. This supplementary is organized as follows:

– Section 1: Notations (Table 1)
– Section 2: Approach (Algo. 1)

◦ Target adaptation (Sec. 2.1)
◦ Subsidiary DA suitability criteria (Sec. 2.2)

– Section 3: Implementation details
◦ Sticker intervention (Sec. 3.1, Fig. 1, 2)
◦ Experimental settings (Sec. 3.2)

– Section 4: Analysis
◦ Extended comparisons (Sec. 4.1, Table 2, 3, 4)
◦ Hyperparam. sensitivity (Sec. 4.2, Table 5, Fig. 3, 4)
◦ Domain discrepancy analysis (Sec. 4.3, Fig. 4)
◦ Domain alignment analysis (Sec. 4.4, Fig. 4)
◦ Efficiency analysis (Sec. 4.5, Table 6)
◦ Combining subsidiary tasks (Sec. 4.6, Table 7)
◦ Differences and relationships with prior-arts (Sec. 4.7, Table 8, 9)

1 Notations

We summarize the notations used in the paper in Table 1. The notations are
listed under 5 groups: Models, Preliminaries, Datasets, Samples, and Spaces.
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2 Approach

We summarize our approach in Algo. 1 and provide details of the target adapta-
tion objectives that were omitted from the main paper due to space constraints.

Table 1: Notation Table

Symbol Description

M
o
d
el
s h Shared backbone feature extractor

fg Goal task classifier
fn Subsidiary task classifier

P
re
li
m
in
a
ri
es

ps Source marginal distribution
pt Target marginal distribution
ϵs Source goal task error
ϵt Target goal task error
ϵs,n Source subsidiary task error
ϵs,n Target subsidiary task error
dH H-divergence
H Backbone hypothesis space

H(uns)
g H-space for unsup. goal task

H(sup)
n H-space for sup. subsidiary task

D
a
ta
se
ts

Ds Labeled source dataset
Dt Unlabeled target dataset
Ds,n Subsidiary source dataset
Dt,n Subsidiary target dataset

D(od)
s Pseudo-OOS dataset

S
a
m
p
le
s

(xs, ys) Labeled source sample
(xs,n, ys, yn) Labeled subsidiary source sample

(x
(od)
s , y

(od)
s ) Labeled pseudo-OOS sample

xt Unlabeled target sample
(xt,n, yn) Subsidiary target sample

S
p
a
ce
s

X Input space
Z Backbone feature space
Cg Label set for goal task
Cn Label set for subsidiary task

2.1 Target adaptation

Self-training loss. We apply self-supervision in the target domain to cluster
target samples based on their neighborhood [36]. Each target sample in the
feature space is aligned with its neighbor. As a result, the model learns a dis-
criminative metric that translates a point to a semantically similar match. This
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is accomplished by reducing the entropy over point similarity. The model learns
tightly clustered features as it moves neighboring points closer together, resulting
in discriminative decision boundaries.

For each mini-batch of target features, we calculate the similarity to all target

samples. Let F
(mb)
t ∈ R|Dt|×d denote the memory bank which stores all target

features and d denotes the dimensions for output features fg ◦ h(xt). Here, |Dt|
denotes the number of samples in the target dataset. All stored features are
L2-normalized. Specifically,

F
(mb)
t = [F1, F2, . . . , F|Dt|] (1)

where Fj denotes the jth item in F
(mb)
t . Let fi = h(xi) denote the features

of the current ith mini-batch, and Bt denote the set of indices of the mini-batch

samples in F
(mb)
t . The probability that fi is a neighbor of the feature Fj is,

pi,j =
exp(FT

j fi/T )∑|Dt|
j=1,j ̸=i exp(F

T
j fi/T )

(2)

where the temperature parameter T controls the number of neighbors. Then,
the entropy i.e. the loss is defined as,

Lst = − 1

|Bt|
∑
i∈Bt

Dt∑
j=1,j ̸=i

pi,j log(pi,j) (3)

Diversity loss. We encourage the prediction to be balanced to avoid degenerate
solutions, where the model predicts all data to a particular class (and does not
predict other classes for any target sample). We employ the prediction diversity
loss, which has been frequently used in clustering [9] and domain adaptation
[20]. The diversity objective is,

Ldiv(fg ◦ h(x)) = DKL(p̂,
1

|Cg|
1|Cg|)− log |Cg| (4)

where 1|Cg| represents a |Cg|-dimensional vector of ones, p̂=Ext∈Dt
[σ(fg◦h(xt))]

is average output embedding for entire target dataset, and σ denotes softmax.

2.2 Subsidiary DA suitability criteria

2.2.1 Subsidiary-Domain Similarity Metric (DSM). As discussed in
Sec. 3.1.3 of the main paper, we define subsidiary-domain similarity metric,
γDSM as the inverse of the H-divergence between the two domains. We follow [8]
and use the A-distance [4] between the goal task dataset Ds and the subsidiary
task dataset Ds,n as a proxy for H-divergence. We define the dataset labels as
1 for subsidiary source dataset Ds,n and 0 for original source dataset Ds and
train a linear binary classifier on the features of a frozen ImageNet-pretrained



4 J. N. Kundu et al.

[26] ResNet-50 [10] with a subset of the mixed data, and obtain the classifier
error on the other subset as ψ. The DSM is then computed as,

dA(Ds,Ds,n) = 2ψ(1− ψ) (5)

γDSM(Ds,Ds,n) = 1− 1

2
dA(Ds,Ds,n) (6)

How to choose the threshold ζd? Insight 2 introduced a threshold ζd for
DSM to select pretext tasks suitable for subsidiary supervised DA. To choose a
threshold, we first consider the A-distances between the actual source and target
domains. These A-distances are in the range of 1.5 to 2.0 [31] for Office-Home
and indicate the range of A-distances corresponding to realistic domain shifts.
This range corresponds to the range of 0 to 0.25 in terms of DSM. In Fig. 7A of
the main paper, we observed DSM in a range of 0 to 0.3 for the patch-location
and image-rotation subsidiary task samples w.r.t. the original samples, indicating
that these tasks induce a realistic domain shift. Contrary to this, our proposed
sticker task produced DSM in the range of 0.6 to 0.9, indicating much better
domain preservation. Thus, we choose the threshold ζd = 0.5 which represents
∼70% reduced domain shift w.r.t. realistic domain shifts (i.e. w.r.t. 1.5 to 2.0).

2.2.2 Subsidiary-Task Similarity Metric (TSM). γTSM determines how
similar a subsidiary task is to the goal task. TSM is calculated using the basic
linear evaluation protocol [29] in self-supervised literature. It illustrates the de-
gree of compatibility between the two tasks. For computing γTSM, we train a
linear classifier fn on the features hs,g for subsidiary task dataset Ds,n extracted
using a frozen source-pretrained ResNet-50 [10] backbone. For the sticker classi-
fication task, we randomly select 4 classes to keep the number of classes uniform
for the different subsidiary task candidates illustrated in Fig. 1C and Fig. 7B
in the main paper. We thus obtain the error for the different subsidiary task
classifiers as ϵ̂s,n and the subsidiary-task similarity metric is computed as:

γTSM(Ds,Ds,n) = 1−min
fn

ϵ̂s,n(hs,g) (7)

How to choose the threshold ζn? Insight 3 introduced a threshold ζn for
TSM to select pretext tasks suitable for subsidiary supervised DA. The task
similarity of the subsidiary task is dependent on the goal task. For computing
the threshold for TSM, we plot the γTSM for the candidate subsidiary tasks (Fig.
7B) and select the appropriate threshold ζn. Based on our observations in Fig.
7B of the main paper, we set ζn as 0.6.
Suitability criterion. Definition 1 in the main paper gives the overall suitabil-
ity criterion for selecting the subsidiary task as:

γDSM(Ds,Ds,n) + γTSM(Ds,Ds,n) > ζ (8)

Therefore, we set the threshold ζ as a sum of ζd and ζn i.e. 1.1.
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Algorithm 1 Pseudo-code for the proposed approach

Source-side training

1: Input: source data Ds, stickered source data Ds,n, pseudo-OOS dataset D(od)
s ,

ImageNet pretrained backbone h (as per [20]), randomly initialized goal classifier
fg and randomly initialized sticker classifier fn.
Goal task source pre-training

2: for iter < MaxIter do:
3: Sample batch from Ds ∪ Ds,n

4: Compute Ls,g using Eq. 7 (main paper)
5: update θh, θfg by minimizing Ls,g

6: end for
Sticker task source pre-training

7: for iter < MaxIter do:
8: Sample batch from Ds,n

9: Sample batch from D(od)
s

10: Compute Ls,n and L(od)
s using Eq. 8 (main paper)

▷ using samples from Ds,n and D(od)
s respectively

11: update θfn by minimizing Ls,n,L(od)
s using separate Adam optimizers

12: end for
Target-side training

13: Input: target data Dt, stickered target data Dt,n, source-side pretrained backbone
h, goal classifier fg and sticker classifier fn.
Source-free target adaptation

14: for iter < MaxIter do:
15: Sample batch from Dt

16: Sample batch from Dt,n

17: Compute Lst and Ldiv using Eq. 3, 4 (suppl.)
▷ using samples from both Dt and Dt,n

18: Compute Lt,n using Eq. 9 (main paper)
▷ using samples from only Dt,n

19: update θh, θfn by minimizing Lt,n

20: update θh by minimizing Lst,Ldiv using separate Adam optimizers
21: end for

3 Implementation details

3.1 Sticker intervention

We define a sticker as a printed alphabet with a random color and random
texture [5] within the alphabet. We scale the sticker randomly and paste it at
a random location within a black image (all zeros) with the same size as goal
task sample xs∈RH×W , yielding xn∈RH×W (see Fig. 1A). The corresponding
sticker-task labels yn, along with xn, form the sticker dataset Dn. We also define
a pixel-wise mask to perform mixup [37] only at the sticker pixels to avoid the
effects of the black background on the rest of the goal task image.
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Scale Location

Sticker-Mixup

A. Sticker Dataset Procurement

B. Sticker Intervention

Scale Location

Sticker-Mixup

Sticker Dataset Procurement

Sticker Intervention

Fig. 1: Illustration of A. sticker dataset procurement and B. sticker intervention
T (see Sec. 3.1). Best viewed in color.

Specifically, m(u)=1(xn(u) ̸=0) where u : [ux, uy] denotes the spatial index
in an H ×W lattice. As shown in Fig. 1B, a goal task sample x, i.e. either xs,

x
(od)
s or xt, and a sticker xn are combined using mixup [37] as,

T (x, xn) = m⊙ (λx+ (1− λ)xn) + (1−m)⊙ x (9)

where λ denotes the mixup ratio, ⊙ represents element-wise multiplication
and T is the sticker intervention (as defined in Insight 4 of main paper).

3.1.1 Hyperparameters

a) Sticker shape is decided by randomly selected alphabets.
b) Sticker size is determined by randomly sampling the size ratio between
sticker and goal task images from a uniform distribution over the range [0.1, 0.4].
c) Sticker location for pasting the sticker in the goal task image is sampled
from a uniform distribution over the ranges [1, H] and [1,W ]. The sampled
coordinates are rounded down to the nearest integer for pasting the sticker.
d) Number of sticker classes determines the difficulty level of the subsidiary
supervised DA problem.
e) Mixup ratio determines the visibility of the sticker w.r.t. the goal task
image. We use a constant mixup ratio of 0.4.
We provide ablations for these hyperparameters in Sec. 4.2.

3.1.2 Usage. The intervention is applied in the same manner to both source
samples xs as well as target samples xt, yielding sticker labels yn for the sticker
classifier. Mitsuzumi et al . [23] show that, beyond a certain grid size (4x4),
shuffling the grid patches makes the domain unrecognizable. Inspired by this, we
generate the pseudo-OOS dataset by randomly shuffling the grid patches with
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C. Source-side training D. Target-side training
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Fig. 2: The pseudo-OOS data D(od)
s contains patch-shuffled versions of source

data Ds. Green circles only highlight the stickers and are not part of the samples.

a grid size of (6x6) as shown in Fig. 2. The sticker intervention is also applied
to the pseudo-OOS samples in order to emphasize the difference between source
and pseudo-OOS samples even when stickers are present. However, for pseudo-

OOS samples, the sticker label is treated as y
(od)
s , for the OOS node to act as

an implicit domain discriminator, leading to improved source-target alignment.
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Fig. 3: Sensitivity to no. of sticker
classes |Cn| for Office-Home MSDA.

Method SF
Office-31

�A �W �D Avg.

PFSA [7] ✗ 57.0 97.4 99.7 84.7
SImpAl [31] ✗ 70.6 97.4 99.2 89.0
WAMDA [1] ✗ 72.0 98.6 99.6 90.0
MIAN [25] ✗ 76.2 98.4 99.2 91.3
MLAN [35] ✗ 75.7 98.8 99.6 91.4

Source-combine ✗ 65.2 94.6 98.4 86.1
SHOT[20]-Ens ✓ 75.0 94.9 97.8 89.3
DECISION [2] ✓ 75.4 98.4 99.6 91.1
CAiDA [6] ✓ 75.8 98.9 99.8 91.6
Ours ✓ 78.3 99.1 99.7 92.4

Table 2: Multi-Source DA (MSDA)
comparisons on Office-31.

Enabling source-free DA. The proposed sticker intervention can be used
within source-free constraints. This is because, the alphabet font can be shared
between source-side and target-side while the texture dataset [5] is open-source.

3.2 Experimental settings

Architecture details. We use a ResNet-50 [10] backbone for Office-Home,
Office-31 and DomainNet, and ResNet-101 for VisDA, for a fair comparison with
prior works. We employ the same network design as SHOT [20], i.e. replacing
the classifier with a fully connected layer with batch norm [13] and another fully
connected layer with weight normalization [28]. For the subsidiary classifier, we
use the same architecture after ResLayer-3.
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Optimization details. We employ multiple Adam optimizers during training
to avoid loss weighting hyperparameters. Specifically, we use a distinct optimizer
for each loss term. In each training iteration, we optimize only one of the losses
(round robin method). Each optimizer uses a learning rate of 1e-3. Intuitively,
each Adam optimizer’s moment parameters adaptively scale the associated gra-
dients, eliminating the requirement for loss-scaling hyperparameter tuning. For
source model training, following [20], we set the maximum number of epochs
to 100 and 30 for Office-31 and Office-Home, whereas it is set to 10 and 15 for
VisDA and DomainNet respectively. For adaptation, the maximum number of
epochs is set to 15 for all datasets, following [20].

4 Analysis

We provide more comparisons with prior state-of-the-art methods and report
hyperparameter sensitivity analyses.

4.1 Extended comparisons and ablations

a) Single-Source DA for Office-31 and VisDA. Our approach outperforms
source-free NRC [36] and SHOT++ [21] by 1.5% and 1.7% respectively on Office-
31 (Table 3), and gives comparable performance to non-source-free works. On
the larger and more challenging VisDA dataset, our approach surpasses NRC by
1.6% and SHOT++ by 1% (Table 3).
b) Multi-Source DA for Office-31. To analyze our performance on closed-set
MSDA, we compare our approach with source-free and non-source-free prior arts
in Table 2. Even without domain labels, our approach achieves state-of-the-art
results on the Office-31 benchmark, even for the non-source-free setting.
c) Variance across random seeds. We highlight the significance of our results
by reporting the mean and standard deviation of accuracy for 5 runs with differ-
ent random seeds (2nd last row of Table 3) for SSDA. We observe low variance
even w.r.t. prior non-source-free works.
d) Ablations for target adaptation. We present ablations on the goal task
objectives for the target-side training (Lst and Ldiv) in Table 4. First, we com-
pare the baseline i.e. source-trained model (#1) with the Ldiv based DA model
(#2). It is interesting to note that only using the diversity objective with sub-
sidiary supervision improves SSDA and MSDA by 2.4% and 5.5% respectively
over the baseline (#2 vs. #1), highlighting the relevance of diversity promotion.

The neighborhood clustering based self-training loss Lst improves target clus-
tering in the latent Z space by bringing the backbone features h(x) closer to their
respective nearest neighbors. Using Lst in conjunction with the subsidiary DA
loss Lt,n enhances the goal task adaptation by 10.5% and 5.2% for SSDA and
MSDA respectively, compared to not using Lst (#4 vs. #2). We observe that
employing both Ldiv and Lst further improves the performance by 3.8% and
1.9% for SSDA and MSDA respectively (#4 vs. #3), demonstrating that the
two losses are complementary for goal task DA.
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Table 3: Single-Source Domain Adaptation (SSDA) on Office-31 and VisDA
benchmarks with mean and standard deviation over 5 runs. The last row in-
dicates the variance over different sets of sticker shapes while others indicate
variance over different random seeds. SF indicates source-free DA.

Method SF
Office-31 VisDA

A→D A→W D→W W→D D→A W→A Avg S → R

FAA [12] ✗ 94.4 92.3 99.2 99.7 80.5 78.7 90.8 -
RFA [3] ✗ 93.0 92.8 99.1 100.0 78.0 77.7 90.2 79.4
SCDA [19] ✗ 95.4 95.3 99.0 100.0 77.2 75.9 90.5 -
DMRL [32] ✗ 93.4±0.5 90.8±0.3 99.0±0.2 100.0±0.0 73.0±0.3 71.2±0.3 87.9 -
MCC [15] ✗ 98.6±0.1 95.5±0.2 98.6±0.1 100.0±0.0 72.8±0.3 74.9±0.3 89.4 -
CAN [16] ✗ 95.0±0.3 94.5±0.3 99.1±0.2 99.8±0.2 78.0±0.3 77.0±0.3 90.6 87.2
RWOT [34] ✗ 94.5±0.2 95.1±0.2 99.5±0.2 100.0±0.0 77.5±0.1 77.9±0.3 90.8 -
FixBi [24] ✗ 95.0±0.4 96.1± 0.2 99.3±0.2 100.0±0.0 78.7±0.5 79.4± 0.3 91.4 87.2
CDAN+RADA [14] ✗ 96.1±0.4 96.2±0.4 99.3±0.1 100.0±0.0 77.5±0.1 77.4±0.3 91.1 76.3

SHOT [20] ✓ 94.0 90.1 98.4 99.9 74.7 74.3 88.6 82.9
CPGA [27] ✓ 94.4 94.1 98.4 99.8 76.0 76.6 89.9 84.1
HCL [11] ✓ 90.8 91.3 98.2 100.0 72.7 72.7 87.6 83.5
VDM-DA [30] ✓ 93.2 94.1 98.0 100.0 75.8 77.1 89.7 85.1
A2Net [33] ✓ 94.5 94.0 99.2 100.0 76.7 76.1 90.1 84.3
NRC [36] ✓ 96.0 90.8 99.0 100.0 75.3 75.0 89.4 85.9
SHOT++ [21] ✓ 94.3 90.4 98.7 99.9 76.2 75.8 89.2 87.3
3C-GAN [18] ✓ 92.7±0.4 93.7±0.2 98.5±0.1 99.8±0.2 75.3±0.5 77.8±0.1 89.6 -
SFDA [17] ✓ 92.2±0.2 91.1±0.3 98.2±0.3 99.5±0.2 71.0±0.2 71.2±0.2 87.2 -
Ours (random seed) ✓ 95.6±0.2 94.6±0.2 99.2±0.1 99.8±0.2 77.0±0.3 77.7±0.3 90.7 88.2±0.4
Ours (random sticker) ✓ 95.5±0.1 94.2±0.2 98.9±0.2 99.9± 0.1 77.2±0.1 76.3±0.2 90.3 88.0±0.3

4.2 Hyperparameter sensitivity analysis

a) Sticker shape. We randomly selected 10 alphabets and used them consis-
tently to report all the results in the main paper. However, to test the variance
of our approach w.r.t. sticker shape, we report the mean and standard deviation
over 5 runs of SSDA experiments on Office-31 (last row of Table 3), randomly
sampling the 10 alphabets (i.e. sticker shapes) for each run. We observe a low
standard deviation indicating low sensitivity to the sticker shapes.

b) Sticker size.We select this scale range based on empirical evidence (Table 5).
We observe that adaptation performance suffers with sticker scale less than 0.1,
since the sticker is hardly visible, making it difficult for the sticker classifier to
receive meaningful supervision. The performance with larger sized stickers (more
than 0.7) also drops as the sticker may occlude goal task content significantly.

c) Sticker location. We observe that our approach is only mildly sensitive to
this hyperparameter (Table 5). We restrict the sticker location to regions far
from the image centre and observe slightly lower accuracy. On the other hand,
pasting the sticker near the image centre area further decreases performance
as the sticker may occlude a larger part of the goal task content. Allowing the
sticker to be pasted uniformly across the image yields the best performance.

d) Number of sticker classes. We perform a sensitivity analysis for the num-
ber of sticker categories |Cn| for MSDA on Office-Home (Fig. 3). We observe that
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on →Ar (MSDA) from Office-Home.

Table 4: Ablation study on Office-
Home. SF, SSDA and MSDA in-
dicate source-free, single-source DA
and multi-source DA.

#
Target-side

SF
Office-Home

Lst Ldiv Lt,n SSDA MSDA

1 ✗ ✗ ✗ - 60.2 66.9
2 ✗ ✓ ✓ ✓ 62.6 72.4
3 ✓ ✗ ✓ ✓ 69.3 75.7
4 ✓ ✓ ✓ ✓ 73.1 77.6

Table 5: Sensitivity analysis for
sticker scale and location on the
single-source DA (SSDA) bench-
mark of Office-Home dataset.

Sticker scale Acc.

0.05− 0.1 71.8

0.1− 0.4 72.2

0.4− 0.7 73.1

0.7− 1.0 72.0

Sticker location Acc.

Central region 71.5

Except central region 72.0

Entire image 73.1

performance improves with increasing number of classes upto 10 and reduces
slightly for higher |Cn|. Overall, we observe consistent gains over the baseline.
e) Mixup ratio λ. In Fig. 4A, we observe consistent gains over the baseline
(mixup ratio λ = 0 i.e. sticker classifier and losses not used) for a wide range
of λ values. The best performance is observed for λ = 0.4. Intuitively, higher
mixup ratios imply very low sticker visibility while lower mixup ratios imply
more occlusion of goal task content, both yielding slightly lower performance.

4.3 Domain discrepancy analysis

In Fig. 4B, we reportA-distance as a measure of the domain discrepancy dH(ps, pt)
across different source-target pairings in the backbone feature space Z for our ap-
proach and prior source-free state-of-the-art SSDA [20] and MSDA [2] works. A
lower value for A-distance indicates lower domain discrepancy. In comparison to
prior works, our technique clearly achieves lower A-distance between source and
target for both settings. This implies that our backbone learns domain-agnostic
features that are more generalized to the target domain. This corresponds to
an increase in target performance and demonstrates that subsidiary supervised
adaptation efficiently minimizes the latent space distribution shift, dH(ps, pt),
consistent with Insight 1 of the main paper.
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4.4 Domain alignment analysis

In Fig. 4C, we present t-SNE [22] visualizations of backbone features learned by
SHOT [20] and our approach for SSDA, and DECISION [2] and our approach
for MSDA. As expected, all three approaches aid the formation of target clusters
but source-target alignment for prior arts is weaker compared to our approach.
We also observe that our method better preserves the source clusters (green in
SSDA and blue in MSDA) while producing dense clusters for the target features
(red in both settings) that are better aligned with the source clusters. This
improved source-target alignment can be attributed to the OOS node in the
sticker classifier, consistent with Insight 6 presented in the main paper.

Table 6: Training and inference time comparison w.r.t. NRC [36] and
SHOT++ [21]. All timings are obtained using a single 1080Ti GPU.

Method
Training time (in sec), Ar→Cl Inference

time (in
millisec)

Office-Home

Source
pretrain

Sticker
pretrain

Target
adapt

Total
SSDA
Avg.

MSDA
Avg.

NRC 282 - 1060 1342 1.9 72.2 74.7
SHOT++ 306 - 10043 10349 1.9 73.0 75.7
Ours 282 643 284 1209 1.9 74.0 77.6

4.5 Efficiency analysis

We provide detailed training time comparisons of our work w.r.t. NRC [36] and
SHOT++ [21] in Table 6. We make certain observations: 1) We achieve superior
target adaptation efficiency with the fastest training (4th column) and the best
performance (last 2 columns). Note that we use same learning rate and scheduler
as in NRC and SHOT++. 2) Inference complexity (6th column) is same for all
as we do not require the subsidiary classifier during inference.

Table 7: Combining multiple subsidiary tasks.

Office-Home SSDA

Baseline (B) 66.2

B + patch-loc 67.6
B + rotation 67.9
B + rotation + patch-loc 68.0

B + sticker-rot 69.0
B + sticker-clsf 69.7
B + sticker-rot + sticker-clsf 69.5
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4.6 Combining subsidiary tasks

Introducing multiple subsidiary tasks in the same framework brings up additional
challenges like multi-task balancing. For instance, consider a combination of
rotation (Rot) and patch-location (PL). From Fig. 1C in the main paper, Rot
has high TSM while PL has high DSM. This does not imply that combining
Rot and PL would yield a better overall TSM+DSM, and may rather have a
detrimental impact. Thus, one should aim for a subsidiary task having both
TSM and DSM greater than those of Rot and PL. Empirically, we do not find
any conclusive result. In Table 7, we observe that while Rot+PL shows marginal
gains, combining Sticker-rot and Sticker-clsf shows degraded performance.

Table 8: Comparisons w.r.t. pretext task based DA works.

Method
Pretext
Task

High
DSM+TSM

Additional
regularization

Rotation,
SS-DA [17]

Rot. Patch Jigsaw
✗

Adv. alignment,
AdaBN

JiGen [5] Jigsaw ✗ Augmentations
PAC [34] Rotation ✗ Aug. consistency
Ours Sticker ✓ None

Table 9: Comparisons w.r.t. prior source-free DA works.

Method
Key insights

(differences)
Common

SHOT Info-max. for implicit feature alignment Ldiv

SHOT++ Easy-hard target split for better adaptation Ldiv

CPGA Contrastive prototypes for better pseudo-labels Lst

GSFDA Local struct. clustering for better repr. learning Lst,Ldiv

NRC Cluster assumption for better pseudo-labels Lst,Ldiv

A2Net
Dual classifiers to find src-similar tgt samples and

-contrastive matching for category-wise alignm.

1. How and when subsidiary task is DA-assistive?

2. Criteria for DA-assistive subsidiary tasksOurs

3. Process of sticker intervention

Lst,Ldiv
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4.7 Differences and relationships with prior-arts

These are discussed in Table 8 and 9. Our method is free from additional regu-
larization unlike prior works (Table 8). While our key contributions are unique,
the common loss terms are widely used (e.g . GSFDA, NRC in Table 9).
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