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Abstract. The prime challenge in unsupervised domain adaptation (DA)
is to mitigate the domain shift between the source and target domains.
Prior DA works show that pretext tasks could be used to mitigate this
domain shift by learning domain invariant representations. However, in
practice, we find that most existing pretext tasks are ineffective against
other established techniques. Thus, we theoretically analyze how and
when a subsidiary pretext task could be leveraged to assist the goal task
of a given DA problem and develop objective subsidiary task suitability
criteria. Based on this criteria, we devise a novel process of sticker in-
tervention and cast sticker classification as a supervised subsidiary DA
problem concurrent to the goal task unsupervised DA. Our approach
not only improves goal task adaptation performance, but also facilitates
privacy-oriented source-free DA i.e. without concurrent source-target ac-
cess. Experiments on the standard Office-31, Office-Home, DomainNet,
and VisDA benchmarks demonstrate our superiority for both single-
source and multi-source source-free DA. Our approach also complements
existing non-source-free works, achieving leading performance.

1 Introduction

The prevalent trend in supervised deep learning systems is to assume that train-
ing and testing data follow the same distribution. However, such models often fail
[6] when deployed in a new environment (target domain) due to the discrepancy
in the training (source domain) and target distributions. A standard approach
to deal with this problem of domain shift is Unsupervised Domain Adaptation
(DA) [10,30], which aims to minimize the domain discrepancy [3] between source
and target. The prime challenge in DA is to facilitate the effective utilization of
the unlabeled samples while adapting to the target domain.

Drawing motivation from self-supervised pretext task literature [35,13], re-
cent DA works [5,31] have adopted subsidiary tasks as side-objectives to improve
the adaptation performance. The intuition is that subsidiary task objectives en-
force learning of domain-generic representations, leading to improved domain
alignment [51] and consequently, better feature clustering for unlabeled target
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Fig. 1. We tackle A. unsupervised goal task DA by introducing B. a concurrent
subsidiary supervised DA. C. Our theoretical insights reveal that subsidiary tasks
having both higher TSM (X-axis) and DSM (Y-axis) are most suitable for concurrent
goal-subsidiary adaptation (i.e. the shaded blue area). The proposed sticker-based tasks
better suit concurrent goal-subsidiary DA among other self-supervised pretext tasks.

[31]. We aim to design a similar framework but, contrary to prior works, we
adopt a novel perspective of subsidiary supervised DA for the subsidiary task
concurrent to unsupervised goal task DA. Specifically, the framework involves a
shared backbone with a goal classifier and a subsidiary classifier (Fig. 1A, B).

To better understand how subsidiary supervised DA objectives support goal
task DA, we intend to theoretically analyze the proposed framework. While sev-
eral subsidiary tasks are available in the literature, there has been little attention
on identifying the desirable properties of a subsidiary task that would better aid
the unsupervised DA. A recent self-supervised work [55] studied the effective-
ness of pretraining with existing subsidiary tasks [35,13] on different downstream
supervised settings such as fine-grained or medical image classification [37,56].
We argue that our intended theoretical analysis is necessary to understand the
same for DA settings as DA presents a different set of challenges compared to
downstream supervised learning paradigms.

Thus, we attempt to answer two interconnected questions,

1. How does subsidiary supervised DA help goal task unsupervised DA?

2. What kind of subsidiary tasks better suit concurrent goal-subsidiary DA?

For the first question, we uncover theoretical insights based on generalization
bounds in DA [3,64]. These bounds define distribution shift or domain discrep-
ancy between source and target as the worst discrepancy for a given hypothesis
space. We analyze the effect of adding the subsidiary supervised DA problem on
the hypothesis space of the shared backbone. Based on this, we find that a higher
domain similarity between goal and subsidiary task samples leads to a lower do-
main discrepancy. This leads to better adaptation for concurrent goal-subsidiary
DA w.r.t. naive goal DA. Further, we observe that a higher goal-subsidiary task
similarity aids effective learning of both tasks with the shared backbone, which
is crucial for subsidiary DA to positively impact the goal DA.

For the second question, we first devise a subsidiary-domain similarity metric
(DSM) and a subsidiary-task similarity metric (TSM) to measure the domain
similarity and task similarity between any subsidiary task with a given goal task.
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Based on our theoretical insights, we propose a subsidiary task suitability criteria
using both DSM and TSM to identify DA-assistive subsidiary tasks. With this
criteria, we evaluate the commonly used subsidiary tasks from the pretext task
literature like rotation prediction [31], patch location [51], and jigsaw permuta-
tion prediction [5] in Fig. 1C. We observe that these existing tasks have signifi-
cantly low DSM. On the other hand, dense output based tasks like colorization
[22] or inpainting [38] severely lack in TSM as goal task is classification-based.
Understanding these limitations, we devise a sticker-intervention that facilitates
domain preservation (high DSM) and propose a range of sticker-based subsidiary
tasks (Fig. 2). For general shape-based goal tasks, it turns out that sticker clas-
sification task has the best TSM among other sticker-based tasks. This yields
higher adaptation performance thereby validating the proposed criteria.

Subsidiary tasks under sticker-intervention

A L W X

A. Sticker location B. Sticker rotation C. Sticker classification

Fig. 2. Sticker intervention involves mixup of input with
a masked sticker. We devise the following sticker-based
tasks; A. locating the quadrant of the sticker, B. predict-
ing sticker rotation, C. classifying sticker category.

To evaluate our the-
oretical insights and
the proposed concur-
rent subsidiary DA, we
particularly focus on
source-free DA regime
[23,21,17]. In this, the
source and target data
are not concurrently
accessible while model
sharing is permitted.
While this challenging
setting holds immense practical value by working within the data privacy regula-
tions, we choose source-free DA as it can prominently highlight our advantages.
The well-developed discrepancy minimization techniques, tailored to general DA
scenarios, guide the adaptation more significantly than our proposed approach
but cannot be used for source-free DA. Further, existing source-free works [26]
rely heavily on pseudo-label based self-training on target data. Our proposed
subsidiary supervised adaptation implicitly regularizes target-side self-training,
leading to improved adaptation.

To summarize, our main contributions are:

– We introduce concurrent subsidiary supervised DA, for a subsidiary task,
that not only improves unsupervised goal task DA but also facilitates source-
free adaptation. We provide theoretical insights to analyze the impact of
subsidiary DA on the domain discrepancy, and hence, the goal task DA.

– Based on our insights, we devise a subsidiary DA suitability criteria to iden-
tify DA-assistive subsidiary tasks that better aid the unsupervised goal task
DA. We also propose novel sticker intervention based subsidiary tasks that
demonstrate the efficacy of the criteria.

– Our proposed approach achieves state-of-the-art performance on source-free
single-source DA (SSDA) as well as source-free multi-source DA (MSDA)
for image classification. The proposed approach also complements existing
non-source-free works, achieving leading performance.
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2 Related Work

Pretext tasks in self-supervised learning. Pretext tasks are used to learn
deep feature representations from unlabeled data, in a self-supervised manner,
for downstream tasks. There are several pretext tasks such as image inpaint-
ing [38], colorization [62,22,63], spatial context prediction [7], contrastive pre-
dictive coding [36], image rotation [13], and jigsaw puzzle solving [35]. Pretext
tasks are commonly used for pre-training on unlabeled data followed by finetun-
ing on labeled data. Conversely, we perform supervised DA for the pretext-like
task along with the unsupervised goal task DA, resulting in a representation
that aligns the domains while maintaining the goal task performance.
Source-free DA. Recently, several methods have investigated source-free DA.
USFDA [19] and FS [20] investigate universal DA [61] and open-set DA [46],
in a source-free setting by synthesizing training samples to make the decision
boundaries compact. SHOT [26,27], NRC [59] maximize mutual information and
propose pseudo-labeling, using global structure to match target features to that
of a fixed source classifier. To provide adaptation supervision, 3C-GAN [23]
generates labeled target-style images from a GAN. Finally, SFDA [28], UR [49],
and GtA [18] are semantic segmentation specific source-free DA techniques.
Pretext task based DA. Several DA works have demonstrated the efficacy
of learning meaningful representations using pretext tasks. Early works [11,12]
used reconstruction as a pretext task to extract domain-invariant features. [4]
captured both domain-specific and shared features by separating the feature
space into domain-private and domain-shared spaces. [5] used jigsaw puzzles as
a side-objective to tackle domain generalization. [51] proposed that adaptation
can be accomplished by learning many self-supervision tasks at the same time.
[16] suggested a cross-domain SSL strategy for adaptation with minimal source
labels based on instance discrimination [57]. [15] recommended employing SSL
pretext tasks like rotation prediction and patch placement prediction. [45] solved
the challenge of universal domain adaptation by unsupervised clustering. [43]
employed easy labels for synthetic images, such as the surface normal, depth,
and instance contour, to train a network. [9] employed SSL pretext tasks like
rotation prediction as part of their domain generalization technique.

3 Approach

In this section, we introduce required preliminaries (Sec. 3.1), followed by theo-
retical insights (Sec. 3.2) that motivate our training algorithm design (Sec. 3.4).

3.1 Preliminaries

3.1.1 Goal task unsupervised DA. For closed set DA problem, consider a
labeled source dataset Ds = {(xs, ys) : xs∈X , ys∈Cg} where X is the input
space and Cg denotes the label set for the goal task. xs is drawn from the marginal
distribution ps. Let Dt = {xt : xt∈X} be an unlabeled target dataset with
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xt∼pt. The goal is to assign labels for each target image xt. The usual approach
[10,50,29] is to use a backbone feature extractor h : X →Z followed by a goal
classifier fg : Z → Cg (see Fig. 3A). The expected source risk with h and an
optimal labeling function fS : X → Cg, is ϵs(h) = Ex∼ps [1(fg ◦h(x) ̸= fS(x))],
where (.) is an indicator function. Similarly, ϵt(h) is the target risk with optimal
labeling function fT : X →Cg. We restate the theoretical upper bound on target
risk from [64]. For backbone hypothesis h∈H with H being the hypothesis space
and a domain classifier fd : Z→{0, 1} (0 for source, 1 for target),

ϵt(h) ≤ ϵs(h) + dH(ps, pt) + λg;

where, λg = min

{
E
ps

[1(fS(x) ̸= fT (x))], E
pt

[1(fS(x) ̸= fT (x))]

}
and, dH(ps, pt) = sup

h∈H

∣∣∣∣ E
x∼ps

[1(fd ◦ h(x) = 1)]− E
x∼pt

[1(fd ◦ h(x) = 1)]

∣∣∣∣ (1)

Here, dH is theH-divergence [3] that indicates the distribution shift or worst-case
domain discrepancy between the two domains. λg is a constant that represents
the optimal cross-domain error of the labeling functions. Thus, the target risk
ϵt(h) is upper bounded by these two terms along with the source risk ϵs(h).

3.1.2 Subsidiary supervised DA. Next, we introduce a subsidiary super-
vised DA problem concurrent to the goal task unsupervised DA. To this end,
we aim to devise a subsidiary classification task with a new label set Cn. The
label-set specific attributes are inflicted on x ∈ X via an intervention, to form
supervised pairs. These pairs form labeled source, (xs,n, yn)∈Ds,n and labeled
target, (xt,n, yn)∈Dt,n datasets. Here, the inputs xs,n and xt,n are drawn from
marginal distributions ps,n and pt,n respectively. We also define the optimal la-
beling functions for source and target subsidiary task as fS,n : X → Cn and
fT,n :X →Cn. Next, the prediction mapping involves the shared goal-task back-
bone h followed by a subsidiary classifier fn : Z → Cn (see Fig. 3A). Here, the
source-subsidiary task error is ϵs,n(h) = Ex∼ps,n

[1(fn ◦ h(x) ̸= fS,n(x))]. Simi-
larly, ϵt,n(h) for target and λn defined as in Eq. 1. Thus, generalization bounds
for subsidiary DA with the same H is stated as,

ϵt,n(h) ≤ ϵs,n(h) + dH(ps,n, pt,n) + λn (2)

3.1.3 Metrics. We introduce two metrics that form the basis of our insights.
a) Subsidiary-Domain Similarity Metric (DSM), γDSM(., .). DSM mea-
sures the similarity between two domains as the inverse of the standard A-
distance [3]. A-distance can be thought of as a proxy [10] for H-divergence.
b) Subsidiary-Task Similarity Metric (TSM), γTSM(., .). TSM measures
the task similarity of a subsidiary task w.r.t. the goal task. TSM is computed us-
ing the standard linear evaluation protocol [47] borrowed from transfer learning
and self-supervised literature. It is the performance of a subsidiary-task linear
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A. Architecture overview B. Hypothesis space analysis C. Sticker intervention

Apply soft sticker-mask
(random scale, location and texture)

input outputmask

Fig. 3. A. Our method uses a shared backbone h with goal classifier fg and subsidiary
classifier fn. B. Hypothesis space analysis for only goal DA, only subsidiary DA and
concurrent goal-subsidiary DA (Sec. 3.2.1). C. Sticker intervention.

classifier attached to a goal-task pretrained backbone feature extractor hs,g. In-
tuitively, it indicates the extent of compatibility between the two tasks.

For a dataset pair of source-goal and source-subsidiary, i.e. (Ds,Ds,n);

γDSM(Ds,Ds,n) = 1− 1

2
dA(Ds,Ds,n); γTSM(Ds,Ds,n) = 1−min

fn
ϵ̂s,n(hs,g) (3)

Here, dA(., .) denotes A-distance and ϵ̂s,n(.) denotes empirical error for sub-
sidiary task on source data. Note that 0≤ ϵ̂s,n(hs,g)≤1 while 0≤dA(D1,D2)≤2.

3.2 Theoretical insights

We analyze the impact of solving subsidiary supervised DA on the goal task
unsupervised DA. We first consider the combined bounds (combining Eq. 1, 2),

ϵt(h) + ϵt,n(h) ≤ ϵs(h) + ϵs,n(h) + dH(ps, pt) + dH(ps,n, pt,n) + λg + λn (4)

Among the six terms on the right side, the two λ terms are constants as they do
not involve the hypothesis h or hypothesis space H. We analyze the source error
duet, ϵs(h)+ϵs,n(h), and the domain discrepancy duet dH(ps, pt)+dH(ps,n, pt,n).

3.2.1 Analyzing the domain discrepancy duet (Fig. 3B). We analyze
w.r.t. the domain discrepancy duet considering three configurations:
a) While performing only unsupervised goal task DA, the backbone opti-

mization would operate on a limited hypothesis space H(uns)
g ⊂ H where

H(uns)
g = {h ∈ H : |ϵt(h)− ϵs(h)| ≤ ζ

(uns)
g }. Here, ζ

(uns)
g is a threshold on the

source-target error gap.
b) While performing supervised adaptation only for subsidiary domain adapta-

tion, the optimization would operate on a limited hypothesis space H(sup)
n ⊂ H

i.e.,H(sup)
n = {h ∈ H : |ϵt,n(h)− ϵs,n(h)| ≤ ζ

(sup)
n }. Here, ζ

(sup)
n is a threshold on

the subsidiary-task source-target error gap.
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c) While concurrently performing a) unsupervised goal task DA and b) sub-
sidiary supervised DA (i.e. the proposed approach), the optimization would oper-

ate on a limited hypothesis spaceHg,n ⊂ H. Specifically,Hg,n = H(sup)
n ∩H(uns)

g .
This is because the backbone is shared between the two DA tasks and hence,
would be limited to the intersection space.

Different configurations lead to different H-spaces and consequently, different
H-divergences. Comparing the H-divergences leads us to the following insight.
Insight 1. (H-divergence in concurrent goal DA and subsidiary DA)
The backbone hypothesis space for concurrent unsupervised goal DA and sub-

sidiary supervised DA, i.e.Hg,n = H(sup)
n ∩H(uns)

g will yield a lower H-divergence

than H(uns)
g (hypothesis space for only unsupervised goal task DA), i.e.

dHg,n
(ps, pt) ≤ dH(uns)

g
(ps, pt) and dHg,n

(ps,n, pt,n) ≤ dH(uns)
g

(ps,n, pt,n) (5)

Remarks. In Eq. 1, dH(ps, pt) is the supremum over the hypothesis space H i.e.

a worst-case measure. SinceHg,n⊂H(uns)
g ,Hg,n would have a lowerH-divergence

as the worst-case hypothesis of H(uns)
g may be absent in the subset Hg,n. This

applies to both pairs, (ps, pt) and (ps,n, pt,n). While a lower H-divergence duet
leads to improved goal DA, the equality may hold when the worst hypothesis of

H(uns)
g remains in Hg,n. In such a case, concurrent DA would perform the same

as naive goal DA. To this end, we put forward the following insight.
Insight 2. (When is concurrent DA strictly better than naive DA?)
A subsidiary task supports the strict inequality dHg,n(ps, pt) < dH(uns)

g
(ps, pt) if

with at least (1−δ) probability, the subsidiary-domain similarity γDSM(Ds,Ds,n)
exceeds a threshold ζd by no less than ξ; P[γDSM(Ds,Ds,n) ≥ ζd − ξ] ≥ 1 − δ.
Remarks. In other words, the strict inequalities in Eq. 5 would hold if the DSM
γDSM(., .) exceeds a threshold ζd. The supports for this insight are twofold. First,
a subsidiary task may heavily alter domain information [32], e.g . jigsaw shuffling
[5]. Then, the backbone will be updated using out-of-domain samples which is
undesirable as such samples are unlikely for inference. This will be avoided if
Insight 2 is satisfied. Second, if DSM is high, we can approximate ps ≈ ps,n and
pt ≈ pt,n. Thus, more samples from subsidiary task data will be available for
training the backbone to be domain-invariant (as subsidiary task uses samples
from both the domains) i.e. reducing dH against the same in naive goal DA.

3.2.2 Analyzing the source error duet. Now we analyze w.r.t. the source
error duet of Eq. 4. While the H-divergence is lower for concurrent goal task DA
and subsidiary supervised DA, a logical concern is that simultaneous minimiza-
tion of errors, i.e. ϵs(h)+ ϵs,n(h), for both tasks may be difficult with the shared
backbone h. Further, it may happen that simultaneous training for both tasks
in target domain may hamper the goal task performance as it is unsupervised.
In such cases, the subsidiary task would be ill-equipped to assist the goal task
adaptation. To avoid these, we propose another empirical criterion as follows.
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Insight 3. (Goal and subsidiary task similarity for concurrent DA)
Higher goal-subsidiary task similarity (TSM) aids effective minimization of both
task errors with the shared backbone, which is crucial for subsidiary supervised
DA to positively affect the goal task DA. The criterion is γTSM(Ds,Ds,n) > ζn.
Remarks. Here, ζn is a threshold. The TSM γTSM indicates the compatibility
of goal task features to support the subsidiary task. Intuitively, a higher TSM
implies more overlap in the discriminative features of the two tasks, which would
allow better simultaneous minimization of both task errors.

Based on Insight 1, concurrent subsidiary supervised DA and goal task DA
yields a lower domain discrepancy. Further, based on Insight 2, a subsidiary
task can be selected such that effective minimization of both source errors is
possible simultaneously. Thus, using Eq. 1, we can infer that suph∈Hg,n

ϵt(h) ≤
sup

h∈H(uns)
g

ϵt(h) i.e. a lower target error upper bound for our approach w.r.t.

naive goal task DA. Now, we summarize the criteria (Insight 2, 3).
Definition 1. (Subsidiary DA suitability criteria) A subsidiary task is
termed DA-assistive i.e. suitable for subsidiary supervised DA if the sum of DSM
γDSM and TSM γTSM exceeds a threshold ζ,

γDSM(Ds,Ds,n) + γTSM(Ds,Ds,n) > ζ (6)

Remarks. In other words, a subsidiary task which is domain-preserving and has
high task similarity w.r.t. the goal task is DA-assistive i.e. suitable for subsidiary
supervised DA to aid the goal task DA. We employ this criteria empirically
for a diverse set of subsidiary tasks (shown in Fig. 1C). Next, we describe the
motivation for our proposed sticker intervention and corresponding subsidiary
tasks as well as training algorithms tailored for source-free DA.

3.3 Sticker intervention based subsidiary task design

While one may consider pretext tasks from the self-supervised learning literature
as candidates for subsidiary DA, almost all such tasks fail to satisfy subsidiary
DA suitability criteria in Eq. 6. For instance, dense output based tasks such
as colorization [62,22], inpainting [38], etc. exhibit markedly low task similar-
ity (TSM) against the non-dense goal tasks. Further, the input intervention for
certain pretext tasks such as jigsaw [5], patch-location[51], rotation [31,15], sig-
nificantly alter the domain information leading to low domain similarity (DSM).
Insight 4. (Sticker-intervention based tasks well suit subsidiary DA)
Sticker intervention is the process of pasting a sticker xn (i.e., a symbol with
random texture and scale) on a given image sample xs ∈ Ds to obtain a stick-
ered sample, i.e. xs,n = T (xs, xn) ∈ Ds,n. Following this, the subsidiary task
could be defined as the classification of some sticker attribute (e.g. shape, loca-
tion, or orientation). Such a formalization provides effective control to maximize
γDSM(Ds,Ds,n) and γTSM(Ds,Ds,n), in line with our suitability criteria.
Remarks. The sticker intervention (Fig. 3C) facilitates domain preservation
while simultaneously supporting a range of subsidiary tasks. Since the proposed
sticker intervention alters only a local area of the sample, the original content is
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not suppressed which in turn preserves the domain information, implying high
DSM. Following this, one can ablate over a range of sticker-based tasks in order
to select a suitable subsidiary task based on the given goal task. Below, we
discuss some possible subsidiary tasks under the sticker intervention.
a) Sticker location (Fig. 2A). We draw motivation from patch-location [51],
where the task is to classify the quadrant to which a patch-input belongs. With
sticker intervened images, the task is to classify the quadrant with the sticker.
Our use of whole images as input is more domain-preserving than patch-input.
b) Sticker rotation (Fig. 2B). Motivated by the image rotation task [31], we
propose sticker rotation task where the rotation of the sticker has to be classified
(0◦, 90◦, 180◦and 270◦rotations possible). Note that our sticker rotation does not
affect the domain information while rotating the entire image does.
c) Sticker classification (Fig. 2C). While the discriminative features in the
previous two tasks were location and rotation, we propose sticker classification
task with primary discriminative features as shape. In other words, the task is
to classify the sticker shape (i.e. the symbol) given a stickered sample.

3.4 Training algorithm design under source-free constraints

For the standard DA setting with concurrent access to source and target data
[10,50], the subsidiary supervised DA can be implemented simply by optimiz-
ing the subsidiary classification loss simultaneously for source and target. This
would yield a lower domain discrepancy as discussed in Sec. 3.2. However, in the
more practical source-free setting [23,19] where concurrent source-target access
is prohibited, this simple approach would not be possible. We believe the im-
provements will be prominent in source-free DA based on the following insight:
Insight 5. (Subsidiary DA better suits challenging source-free DA).
Existing source-free DA works heavily rely on pseudo-label or clustering based
self-training on unlabeled target with no obvious alternative. The proposed sub-
sidiary supervised adaptation helps to implicitly regularize the target-side self-
training, leading to improved adaptation performance. The subsidiary DA not
only aids goal DA as a result of high DSM but also preserves the goal task induc-
tive bias as a result of high TSM, while adhering to the source-free constraints.
Remarks. The source-free setting presents new challenges which highlight the
advantages of our proposed method more prominently. This is because, the per-
formance in non-source-free DA is strongly influenced by well-developed discrep-
ancy minimization techniques. However, these techniques cannot be leveraged in
a source-free setting due to their requirement of concurrent source-target data
access. Thus, we primarily operate in the source-free regime to evaluate our the-
oretical insights and the proposed concurrent subsidiary supervised DA problem.

We perform the training in three steps. First two steps involve pre-training
of goal task and subsidiary task respectively with source data. The final step
involves adapting both tasks to target domain. For clarity, we first summarize
available and intervened datasets required for training and their notations.
Datasets. The goal task source data is denoted by (xs, ys) ∈ Ds while the
corresponding unlabeled target is denoted by xt ∈ Dt. The intervened stickered-
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A. Source-side training B. Target-side training

Goal pre-training Sticker pre-training
Sticker task

Supervised DA

Goal task
Unsupervised DA

Fig. 4. A. Source-side training involves goal pre-training (Sec. 3.4.1) and sticker pre-
training (Sec. 3.4.2).B. Target-side training involves concurrent goal-task unsupervised
DA and sticker-task supervised DA (Sec. 3.4.3).

source data, coupled with both goal and sticker task labels, is denoted by
(xs,n, ys, yn) ∈ Ds,n. The corresponding stickered-target data, with only sub-
sidiary sticker task labels, is denoted by (xt,n, yn) ∈ Dt,n. We introduce a pseudo-

OOS (out-of-source) dataset, D(od)
s further in this section.

3.4.1 Goal task source pre-training (Fig. 4A). We train the backbone h
and goal classifier fg with source data Ds and stickered-source data Ds,n:

min
θh,θfg

E
(x,y)∈Ds∪Ds,n

[Ls,g]; Ls,g = Lce(fg ◦ h(x), y) (7)

Here, θh and θfg are the parameters of h and fg, Lce is the cross-entropy loss, y
is the goal task label, and expectation is implemented by sampling mini-batches.

3.4.2 Sticker task source pre-training (Fig. 4A). We pretrain the sticker
classifier fn while inculcating the ability to reject samples out of the source
distribution. Specifically, fn predicts a (|Cn| + 1)-sized vector and is trained to
classify out-of-source (OOS) samples to the (|Cn|+ 1)th class.
Insight 6. The OOS node in the sticker classifier implicitly behaves as a do-
main discriminator from adversarial alignment methods. Minimizing the OOS
probability only for the target data aligns the target with the source.
Remarks. In source training, the OOS objective forces the sticker classifier to
discriminate between source and OOS samples. This is done with the intuition
that OOS samples simulate the role of target samples in adversarial alignment
methods. This domain discriminatory knowledge will support future source-free
target alignment. Concretely, the shared backbone can be adapted to the target,
by minimizing OOS probability for target samples, as source knowledge is pre-
served by freezing fg. Thus, we require OOS data to prepare fn for adaptation.
Obtaining the OOS dataset. A naive approach is to use a dataset unrelated
to the goal task label set. Conversely, we devise a pseudo-OOS dataset using
only already available source samples. Mitsuzumi et al . [32] show that, beyond a
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Table 1. Single-Source Domain Adaptation (SSDA) on Office-Home benchmarks. SF
indicates source-free adaptation.

Method SF
Office-Home

Ar�Cl Ar�Pr Ar�Rw Cl�Ar Cl�Pr Cl�Rw Pr�Ar Pr�Cl Pr�Rw Rw�Ar Rw�Cl Rw�Pr Avg

FixBi [33] ✗ 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7
SENTRY[41] ✗ 61.8 77.4 80.1 66.3 71.6 74.7 66.8 63.0 80.9 74.0 66.3 84.1 72.2
SCDA [24] ✗ 60.7 76.4 82.8 69.8 77.5 78.4 68.9 59.0 82.7 74.9 61.8 84.5 73.1

SHOT [26] ✓ 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
A2Net [58] ✓ 58.4 79.0 82.4 67.5 79.3 78.9 68.0 56.2 82.9 74.1 60.5 85.0 72.8
GSFDA [60] ✓ 57.9 78.6 81.0 66.7 77.2 77.2 65.6 56.0 82.2 72.0 57.8 83.4 71.3
CPGA [42] ✓ 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6
NRC [59] ✓ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
SHOT++[27] ✓ 57.9 79.7 82.5 68.5 79.6 79.3 68.5 57.0 83.0 73.7 60.7 84.9 73.0
Ours ✓ 61.0 80.4 82.5 69.1 79.9 79.5 69.1 57.8 82.7 74.5 65.1 86.4 74.0

certain grid size, shuffling grid patches makes the domain unrecognizable. Hence,
we generate a pseudo-OOS dataset by shuffling grid patches of source images.

We also add stickers to shuffled images, at random, to further instill dif-

ferences between source and pseudo-OOS (see Suppl). Formally, (x
(od)
s , y

(od)
s ) ∈

D(od)
s where y

(od)
s denotes OOS category i.e. (|Cn|+ 1)th category of fn.

We train only the sticker classifier fn, keeping backbone h and goal classifier
fg frozen, using cross-entropy loss Lce. With Ls,n = Lce(fn ◦h(xs,n), yn), the

overall objective for stickered source data Ds,n and pseudo-OOS data D(od)
s is,

min
θfn

E
Ds,n

[Ls,n] + E
D(od)

s

[L(od)
s ]; where L(od)

s = Lce(fn ◦ h(x(od)
s ), y(od)s ) (8)

3.4.3 Source-free target adaptation (Fig. 4B). For unsupervised goal task
adaptation, we use the general self training loss Lst and diversity loss Ldiv [26].
See Suppl. for more details. The goal task objective is given in Eq. 9 (left),

min
θh

E
Dt∪Dt,n

[Lst+Ldiv]; and min
(θh,θfn )

E
Dt,n

[Lt,n]; Lt,n = Lce(fn◦h(xt,n), yn) (9)

The goal classifier fg is frozen to preserve its inductive bias and only the back-
bone h is updated for both original and stickered samples in Eq. 9 (left).

For subsidiary supervised sticker adaptation, we use a simple cross-entropy
loss with sticker labels. We implicitly minimize OOS probability by maximizing
label class probability. We observe that this works well and explicit minimization
of OOS probability is not required. As per Insight 6, out-of-target (OOT) samples
are not required. Further, using OOT samples to update the backbone could be
undesirable as discussed under Insight 2. The objective is given in Eq. 9 (right).
Both backbone h and sticker classifier fn are updated as the task is supervised.
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Table 2. Multi-Source Domain Adaptation (MSDA) on DomainNet and Office-Home.
We outperform source-free (denoted by SF) prior arts despite not using domain labels.

Method SF w/o Domain
Labels

DomainNet Office-Home

→C →I →P →Q →R →S Avg →Ar →Cl →Pr →Rw Avg

WAMDA [1] ✗ ✗ 59.3 21.8 52.1 9.5 65.0 47.7 42.6 71.9 61.4 84.1 82.3 74.9
SImpAl50 [53] ✗ ✗ 66.4 26.5 56.6 18.9 68.0 55.5 48.6 70.8 56.3 80.2 81.5 72.2
CMSDA [48] ✗ ✗ 70.9 26.5 57.5 21.3 68.1 59.4 50.4 71.5 67.7 84.1 82.9 76.6
DRT [25] ✗ ✗ 71.0 31.6 61.0 12.3 71.4 60.7 51.3 - - - - -
STEM [34] ✗ ✗ 72.0 28.2 61.5 25.7 72.6 60.2 53.4 - - - - -

Source-combine ✗ ✓ 57.0 23.4 54.1 14.6 67.2 50.3 44.4 58.0 57.3 74.2 77.9 66.9
SHOT [26]-Ens ✓ ✗ 58.6 25.2 55.3 15.3 70.5 52.4 46.2 72.2 59.3 82.8 82.9 74.3
DECISION [2] ✓ ✗ 61.5 21.6 54.6 18.9 67.5 51.0 45.9 74.5 59.4 84.4 83.6 75.5
SHOT++ [27] ✓ ✗ - - - - - - - 73.1 61.3 84.3 84.0 75.7
CAiDA [8] ✓ ✗ - - - - - - - 75.2 60.5 84.7 84.2 76.2
NRC [59] ✓ ✓ 65.8 24.1 56.0 16.0 69.2 53.4 47.4 70.6 60.0 84.6 83.5 74.7
Ours ✓ ✓ 70.3 25.7 57.3 17.1 69.9 57.1 49.6 75.1 64.1 86.6 84.4 77.6

4 Experiments

We provide the implementation details of our experiments and thoroughly eval-
uate our approach w.r.t. state-of-the-art prior works across multiple settings.
Unless mentioned, Ours implies sticker classification as the subsidiary task.

4.1 Experimental setup

Datasets. We evaluate on four standard DA benchmarks; Office-31 [44], Office-
Home [54], VisDA [40], and DomainNet [39]. See Suppl. for more details.
Implementation details. We use a ResNet-101 [14] backbone for VisDA, and
ResNet-50 for other benchmarks. We employ the same network design as SHOT
[26]. For the subsidiary classifier, we use the same architecture after ResLayer-3.
The number of sticker classes is 10. See Suppl. for more details.

4.2 Discussion

a) Single Source Domain Adaptation (SSDA). We compare with prior
source-free SSDA works in Table 1 on Office-Home. We achieve state-of-the-art
results exceeding the source-free SHOT++ and non-source-free SCDA [24] by
1% and 0.9% respectively. See Suppl. for Office-31 and VisDA results.
b) Multi Source Domain Adaptation (MSDA). In Table 2, we compare
with the source-only baseline (source-combine) and source-free works. Even with-
out domain labels, our approach achieves state-of-the-art results, even w.r.t.
non-source-free works on Office-Home (+1%). On DomainNet, we outperform
source-free works (+2.2%) with comparable results to non-source-free works.
c) Evaluating the subsidiary DA suitability criteria. We empirically eval-
uate DSM and TSM for our sticker-based tasks as well as existing tasks from
self-supervised literature in Fig. 5A, 5B. Compared to patch location [51] and
image rotation [31], sticker location and sticker rotation tasks exhibit higher
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Fig. 5. We observe higher A. domain similarity (DSM) and B. task similarity (TSM)
for our sticker-based tasks compared to existing subsidiary tasks like patch-location
and image-rotation. This correlates with the better MSDA performance of sticker-based
tasks on Office-Home and validates our criteria (Definition 1). C. Faster and improved
convergence w.r.t. prior source-free works on both SSDA and MSDA for Office-Home.

DSM and thus, are more suitable with better adaptation performance (Table 3).
However, sticker classification task is the most suitable due to its higher TSM as
shape is the primary discriminative features, same as in goal task. We observe a
positive correlation between DA performance and both DSM and TSM, which
empirically verifies our suitability criteria. In Table 3, we also compare dense
output based tasks like colorization and inpainting, which give marginal gains.

Table 3. Subsidiary task com-
parisons on Office-Home for
source-free DA. Here, baseline
is same as #3 in Table 5.

Method SSDA MSDA

Baseline (B) 66.2 74.3
B + inpainting 66.3 74.5
B + colorization 66.8 74.7

B + jigsaw 67.0 74.8
B + patch-loc 67.6 75.0
B + rotation 67.9 75.4

B + sticker-loc 68.8 75.5
B + sticker-rot 69.0 75.7
B + sticker-clsf 69.7 76.2

d) Faster and improved convergence. Fig.
5C illustrates our better and faster convergence
w.r.t. source-free prior arts for both SSDA and
MSDA. The hypothesis space for concurrent sub-
sidiary supervised DA and unsupervised goal task
DA, Hg,n, is a subset of the hypothesis space for

only unsupervised goal task DA, H(uns)
g . Thus, we

achieve faster convergence. Further, as per Insight
1, lower domain discrepancy leads to lower target
error i.e. improved convergence.
e) Compatibility with non-source-free DA.
In Table 4, we evaluate the compatibility of
concurrent subsidiary supervised DA with exist-
ing non-source-free SSDA techniques [10,30,52].
MSDA results are obtained by combining the mul-
tiple sources for each target. Compared to the
original reported results, all four perform better
with our proposed subsidiary DA. Note that our non-source-free variant outper-
forms these results (#7 in Table 5).

4.2.1 Ablation Study. Below, we discuss a thorough ablation study.
a) Effect of subsidiary supervised DA and OOS node. In Table 5, we com-
pare the baseline i.e. only unsupervised goal task DA (#3) with the addition of
only OOS classifier (#4). Here, a binary classifier is used for OOS detection. We
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Table 4. Evaluating compatibil-
ity of subsidiary DA with non-
source-free DA works on Office-
Home. SSDA and MSDA indicate
single-source and multi-source DA.

Method
Office-Home

SSDA MSDA

CDAN [30] 65.8 69.4
+ Subsidiary-DA 67.1 71.2

SRDC [52] 71.3 73.1
+ Subsidiary-DA 71.9 75.2

FixBi [33] 72.7 -
+ Subsidiary-DA 73.7 -

CMSDA [48] - 76.6
+ Subsidiary-DA - 78.1

Table 5. Ablation analysis. Here, sticker-w-OOS-
clsf denotes learning with all the proposed com-
ponents unlike in only-OOS-clsf (all losses except
Ls,n,Lt,n) and only-sticker-clsf (all losses except

L(od)
s ). SF denotes source-free constraint.

# Variation SF
Office-Home

SSDA MSDA

1. Source-only baseline - 60.2 66.9

2. + sticker-w-OOS-clsf - 61.9 71.4

3. Adaptation baseline (B) ✓ 66.2 74.3

4. B + only-OOS-clsf ✓ 67.0 74.9

5. B + only-sticker-clsf ✓ 69.7 76.2

6. B + sticker-w-OOS-clsf ✓ 73.1 77.6

7. B + sticker-w-OOS-clsf ✗ 74.5 78.3

observe gains of 0.8% and 0.6% for SSDA and MSDA respectively. This indicates
that only OOS helps, but subsidiary classifier is essential for further improve-
ments. Next, we compare the baseline (#3) with concurrent goal-subsidiary DA
without using OOS (#5). We observe an improvement of 3.5% and 1.9% for
SSDA and MSDA. Adding the OOS objective to the subsidiary supervised DA
(#6 vs. #4) improves the source-target alignment as explained in Insight 6,
resulting in improvements of 3.1% and 1.4% for SSDA and MSDA.
b) Subsidiary-goal task similarity. As per Insight 3, higher goal-subsidiary
task similarity is important for effective learning of both tasks. Thus, in Table 5,
we compare the source-only baseline (#1) with only subsidiary supervised DA
without goal task target adaptation (#2). We observe gains of 1.7% and 1.3% for
SSDA and MSDA respectively. This illustrates the positive correlation between
sticker classification and goal task even when target goal losses are not used.

5 Conclusion

In this work, we introduced concurrent subsidiary supervised DA for a pretext-
like task to aid the unsupervised goal task DA. We provide theoretical insights
to analyze the effect of subsidiary supervised DA on the domain discrepancy and
consequently on the goal task adaptation. Based on the insights, we introduce
a subsidiary DA suitability criteria to determine DA-assistive subsidiary tasks
that improve the goal task DA performance. We also propose a novel sticker
intervention based pretext task that follows our criteria. The proposed approach
outperforms prior state-of-the-art source-free SSDA and MSDA works on four
standard benchmarks, establishing the usefulness of our approach.
Acknowledgments. This work was supported by MeitY (Ministry of Electron-
ics and Information Technology) project (No. 4(16)2019-ITEA), Govt. of India
and a research grant by Google.
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