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Abstract. Weakly supervised object localization (WSOL) aims at de-
tecting objects through only image-level labels. Class activation maps
(CAMs) are the commonly used features for WSOL. However, existing
CAM-based methods tend to excessively pursue discriminative features
for object recognition and hence ignore the feature similarities among
different categories, thereby leading to CAMs incomplete for object lo-
calization. In addition, CAMs are sensitive to background noise due to
over-dependence on the holistic classification. In this paper, we propose
a simple but effective WSOL model (named ISIC) through Inter-class
feature Similarity and Intra-class appearance Consistency. In practice,
our ISIC model first proposes the inter-class feature similarity (ICFS)
loss against the original cross entropy loss. Such an ICFS loss sufficiently
leverages the shared features together with the discriminative features
between different categories, which significantly reduces the model over-
fitting risk to background noise and brings more complete object masks.
Besides, instead of CAMs, a non-negative matrix factorization mask
module is applied to extract object masks from multiple intra-class im-
ages. Thanks to intra-class appearance consistency, the achieved pseudo
masks are more complete and robust. As a result, extensive experiments
confirm that our ISIC model achieves state-of-the-art on both CUB-200
and ImageNet-1K benchmarks i.e., 97.3% and 70.0% GT-Known lo-
calization accuracy, respectively.
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Fig. 1. (a) Visualization of discriminative (eye, beak and foot) and similar (body and
feather) features between two categories. (b) The comparison between the CAM-based
method and non-negative matrix factorization (NMF)-based one. NMF utilizes features
of multiple images of the same category to assist the object mask prediction, while CAM
performs on the single image features and highly relies on the classification layer.

1 Introduction

Thanks to the breakthrough of deep learning, recent years have witnessed great
progress in object detection [7]. However, training a high-performance object de-
tector requires massive bounding box annotations. These annotations are expen-
sive and sometimes unavailable. To alleviate the model’s thirst for annotations,
weakly-supervised object localization (WSOL) has gained lots of attentions [35,
32, 3, 31, 24, 1, 28, 12, 34, 16, 27, 4, 15, 9, 2] as it aims at predicting objects’ bound-
ing boxes through cheap image-level annotations. Therefore, it largely reduces
the annotation cost and is of great practical significance. Previous WSOL meth-
ods mainly rely on the class activation maps (CAMs) [35]. However, CAMs tend
to cover only small discriminative regions of an object, causing incomplete pre-
dictions. Hence, lots of approaches have been proposed to improve CAMs, such
as erasing based methods [32, 19, 3, 26, 14], feature refining based methods [24,
27, 16, 29, 4] and regression based methods [31, 12, 6]. All these methods have
achieved remarkable localization performance. However, these methods mostly
are based on classification models, whose goals are inconsistent with object lo-
calization due to the following two defects.

First, the similarity between classes has been ignored. Previous classification
models [18, 8, 20] usually adopt cross entropy loss for model training, thus finding
the discriminative features of each category. However, for WSOL, focusing too
much on differences between images will lead to incomplete predictions. Because
images from different categories might share highly similar features. Forcing the
model to distinguish between them causes the model to focus only on the most
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Fig. 2. Visualization of feature maps and predictions. (a) shows some feature maps
before the classification layer, where red rectangle in the first row shows the unused
features by CAM. (b) compares the predictions between CAM and our model.

discriminative object regions. To better elaborate this statement, we present an
illustrative example in Fig. 1(a). Two images come from different categories and
each of them could be regarded as a bag of features, such as beak, eye, body,
feather and foot. Among these two images, beak, eye and foot show different col-
ors or shapes, as shown in blue and red areas. These features are usually regarded
as the discriminative features and will be extracted to assist the classification
model in making decisions. However, there also exist some similar features in
the two images, namely body and feather, as shown in the green area. Overem-
phasizing the differences between images results in these similar features being
ignored, which leads to incomplete predictions for WSOL. Besides, due to the
classification supervision, even though there are no discriminative features in
the image, the model still is forced to learn the differences between images, thus
overfitting to the background noise.

Second, as shown in Fig. 1(b), the generation of CAMs is highly dependent
on the final classifier (i.e., the last fully connected layer), suffering from false
positives (i.e., noise) and false negatives (i.e., content missing) in the final pre-
dictions. Because CAM-based methods [35, 32] generally adopt parameters of
the classification layer as the coefficients to combine feature maps for final pre-
diction. However, these parameters are optimized for classification, where only
the most discriminative feature maps are selected out for combination and the
rest maps are ignored. But we argue that those overlooked feature maps actually
contain helpful information for WSOL. To explain it, we visualize some feature
maps extracted from the CAM-based model, as shown in Fig. 2. The body re-
gion (red rectangle) of the bird has been activated in feature maps. But in the
final prediction, the body region is ignored and only the head region stands out.
Namely, CAM-based methods could not make full use of the extracted feature
maps. Besides, CAMs are generated based on a single image, which is not robust
to background noise. As shown in the blue rectangle in Fig. 2, many background
areas are also activated, which interferes with the model’s predictions.
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To address the above concerns, we propose the Inter-class feature similarity
and Intra-class appearance Consistency (named ISIC) model, which improves
WSOL from two aspects: supervision and object mask generation. For supervi-
sion, we introduce the inter-class feature similarity (ICFS) loss to supplement
the widely used cross entropy (CE) loss. In practice, CE loss focuses on the dis-
criminative features of each category (i.e., red and blue areas in Fig. 1(a)), and
ICFS loss focuses on the similarities between different categories (green area in
Fig. 1 (a)). These two losses work against each other and eventually reach an
equilibrium. Therefore, ISIC can better balance the localization task and the
classification task and is not easy to overfit to the background noise, resulting
in more complete predictions.

For object mask generation, instead of relying on the classification layer,
we apply the non-negative matrix factorization module (NMFM) to obtain the
object mask. NMFM is based on features of multiple images from the same
category, which achieves the object mask by extracting the commonness of these
images, as shown in Fig. 1 (b). Compared with previous methods, NMFM does
not rely on the high-level classification layer, so it will not ignore the body
region in Fig. 2 and fully exploit all the feature maps. Besides, NMFM is based
on multiple images, which is more robust to background noise than that based on
a single image. After getting the predicted mask, we follow [24] to train a class-
agnostic segmentation model to get the final mask and apply a bounding box
extractor to obtain the final object localization. In summary, our contributions
fall into three parts:

– Opposite to classification, we propose the ICFS loss to constrain and main-
tain the similarity between classes. Such ICFS loss can largely reduce the
model risk of over-optimizing the discriminative features, thus more complete
regions of the object can be activated.

– We propose to replace the original CAMs with non-negative matrix factoriza-
tion for object mask generation, which avoids the over-discriminative effect
of the classification layer and the background noise.

– With negligible computational cost overheads, our proposed methods achieve
consistent and substantial gains, i.e., state-of-the-art on both CUB-200-2011
and ImageNet-1K benchmarks for WSOL.

2 Related Works

2.1 Class activation maps (CAMs) based WSOL

Weakly supervised object localization (WSOL) is a challenging task, aiming to
localize objects with inexpensive image-level annotations. Zhou et al [35] firstly
propose the class activation maps (CAMs) to extract the object location. But
restricted by the classification mechanism, CAMs only cover the discriminative
object parts. To make CAMs complete, HaS [19] proposes the random erasure
of image patches to force the model to mine more object regions. ACoL [32],
ADL [3], EIL [14] and AE [26] follow the erasure paradigm and drop the most
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discriminative features to reduce the model’s dependency on them. CutMix [30]
assembles patches from different images to guide model to learn more object
parts. These methods greatly improve the quality of CAMs, but have the risk of
spreading to the background regions when discriminative features are insufficient.

2.2 Pseudo label based WSOL

[12, 31, 6] take object localization as a regression task. Specifically, GCNet [12]
utilizes a detector to regress the object bounding box, and produces the object
mask by a generator to maximize the score of the classifier. But the indirect
supervision brings unstable predictions. Inspired by GCNet, SLTNet [6] super-
vises the regressor to learn through the pseudo bounding box generated by a
newly designed locator. On the contrary, PSOL [31] divides WSOL into two
separate tasks, classification and localization. It applies DDT [25] to produce
pseudo bounding boxes from the pre-trained model, which are exploited after-
ward to train a detector. However, these pseudo labels come from the pre-trained
model, which are inexact and lower the upper limit of the detector. Different from
pseudo bounding box label, SPOL [24] proposes to generate the pseudo mask to
train a lass-agnostic segmentation model and achieves higher performance.

2.3 Attention based WSOL

SPG [33] adopts a stage-wise manner to refine object mask, which regards high
confident object regions as the foreground seeds and uses the self-produced guid-
ance maps to progressively expand these seeds. SPOL [24] focuses on shallow
features and proposes a multiplication feature fusion to combine the complemen-
tary features of different layers. To capture the long-range feature dependency,
TS-CAM [4] proposes to generate the token semantic coupled attention map
by visual transformer [22], which extracts both semantics and positioning infor-
mation. Similarly, SPA [16] proposes the self-correlation to capture long-range
structural information of objects. All these methods have achieved great progress
in WSOL. However, the similarity between categories has been ignored. In this
paper, we explicitly use inter-class similarity to boost WSOL performance.

3 Methodology

3.1 Pipeline

Fig. 3 depicts the pipeline of our proposed ISIC model, which consists of two
stages(i.e., object mask generation and class-agnostic segmentation). During
training, both stages are involved, where the object mask generation stage is used
to generate pseudo masks for the input images, and the class-agnostic segmen-
tation stage adopts these pseudo masks as labels to train a binary (i.e., object
or no-object) segmentation model. But during inference, only the class-agnostic
segmentation stage is involved, where we directly derive the segmentation mask
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Fig. 3. Pipeline for the proposed ISIC model. In the object mask generation stage, to
improve the similarity between different categories, inter-class feature similarity loss
LICFS is applied. Besides, based on non-negative matrix factorization, we design NMFM
module to generate the object masks instead of CAM, which flows into the subsequent
segmentation stage as the pseudo labels. After training, a class-agnostic segmentation
model is achieved, which is adopted as the final model to predict the object bounding
boxes during inference.

for each input image and extract the object bounding box from the mask. This
decoupled design brings three benefits. First, the complex design (i.e., ICFS and
NMFM) in object mask generation will not be brought into the inference phase.
Hence, the time complexity of the model depends entirely on the segmentation
network and is not affected by ICFS or NMFM. Second, unlike the CAM-based
methods, which deal with the classification task and the location task at once,
our class-agnostic segmentation model focuses only on localization and is not
disturbed by the classification task, thus it can derive more complete object re-
gions. Third, the bounding box extraction from a segmentation mask is much
easier and less sensitive to the threshold selection than from a class activation
map, because values in the segmentation mask are more consistent (tending to
0 or 1), compared with the class activation map. After getting the bounding
box, we follow SPOL [24] to use a separate classification network(SPOL adopts
the EfficientNet-B7 [21]) to predict the category of the input image. Combin-
ing the bounding box and the category, we derive the final results. In fact, this
step of obtaining the object category can be omitted, if we focus only on object
localization without category information.

3.2 Baseline

As shown in the left part of Fig. 3, our proposed methods (i.e., ICFS and NMFM)
are concentrated in the object mask generation stage, which aims to improve
the accuracy of the pseudo masks. Before introducing the specific methods, let’s



Weakly Supervised Object Localization 7

Fig. 4. (a) visualizes incomplete predictions of CAM-based models. (b) shows images
from three categories. Obviously, the appearance similarity between image 1 and 2 is
larger than that between image 1 and 3. (c) shows the inter-class similarity matrix,
where the horizontal and vertical axes both represent the category index. The bright
areas (i.e., blue circle) and dark areas (i.e., green circle) indicate the high similarity
and low similarity between categories, respectively. (d) shows the loss curve of cross-
entropy (CE), where ICFS loss is not adopted as the supervision. (e) shows that ICFS
loss is adopted as the supervision.

first introduce the baseline model that we used. Our model is based SPOL [24],
which combines the complementarity of deep and shallow features and designs
the multiplication fusion strategy to improve the completeness of the object
regions. Specifically, SPOL adopts the ResNet50 [8] as the backbone network.
For each input image with the size H × W , SPOL extracts its features at five
scales (denoted as {fi|i = 1, ..., 5}) with the resolutions [H2i ,

W
2i ]. Considering

the calculation cost, SPOL only uses the last three scale features (i.e., f3, f4
and f5). These features are firstly upsampled to the same scale [H8 ,

W
8 ] and

then aggregated by element-wise multiplication. In this way, the details of the
shallow features and the semantics of the deep features are combined, both of
which are helpful for WSOL. We call these aggregated features as the multi-scale
fusion features, as shown in Fig. 3. More than that, SPOL also introduces the
Gaussian prior pseudo label, self-distillation and auxiliary loss to further enhance
the WSOL model. Readers can refer to the specific paper [24] for more details.
But to keep the model simple, only the most effective multiplication strategy is
involved in our baseline model and the other parts are directly ignored.

3.3 Inter-class and Intra-class Features Analysis

For WSOL, most of previous methods [35, 32, 24, 1] rely on classification models
to predict the object masks and then obtain the bounding boxes. Unfortunately,
limited by classification models, these masks only cover the most discriminative
object regions while other less discriminative ones are ignored. As shown in
Fig. 4(a), only the head regions of the birds are highlighted but the body parts
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are ignored. Because classification models focus only on the differences (i.e.,
head parts) between classes. To maximize the classification accuracy, features
that have the similar appearance (i.e., body parts) will be discarded. But for
WSOL, classification accuracy is not the only goal. Overemphasis on the inter-
class differences leads to incomplete object masks. Thus, we argue that WSOL
models should also consider the inter-class similarity.

Fig. 4(b) shows three images of three categories. From appearance, the simi-
larity between image 1 and 2 is larger than that between image 1 and 3. To quan-
tify the similarities between different categories, we use the pretrained ResNet50
to extract a 128 dimensional vector for each image in both CUB-200 [23] and
ImageNet-1k [17], then average the vectors of i-th category as its class represen-
tation ci. For any two representations ci, cj , we calculate their cosine similarity
sij =

cicj
||ci||2||cj ||2 . Bringing all sij together, we get the similarity matrix S. As

shown in Fig. 4(c), S is not evenly distributed. The highlighted areas (e.g., blue
circle) show the high similarity between categories and the dark areas (e.g., green
circle) show the low similarity between categories. However, previous methods
ignore the inter-class similarity, thus leading to incomplete predictions.

3.4 Inter-class Similarity Feature Loss

To address the above concerns, we propose the inter-class feature similarity
(ICFS) loss, which aims at reducing the feature distance between similar cate-
gories. Specifically, we first derive the representation ci for i-th category accord-
ing to Sec. 3.3 and then find the similar categories of ci by Mi = {j | Sij > γ},
where i and j are the category indexes, γ is a threshold, Mi is the index col-
lection of categories that similar to ci and S is the inter-class similarity matrix,
as shown in Fig. 4(c). Finally, we could define the distance Di between ci and
cj(j ∈ Mi) and derive ICFS loss LICFS by Eq. 1

Di =
1

Ni

∑
j∈Mi

||ci − cj ||22, LICFS =
1

Nk

Nk∑
i=1

Di (1)

where Ni is element number of Mi and Nk is the total number of categories. The
challenge is how to get the representation c for each category during training. The
naive way is feeding the entire training set into the model at each iteration and
calculate the class representation for each category, which is totally unacceptable
due to the high cost of computation and storage. Alternatively, we regard ci, cj
as the expectations of the image vectors of i-th and j-th categories, respectively.

ci = E[Xi], cj = E[Xj ] (2)

where E[·] is the expectation and Xi, Xj are the image vectors corresponding to
i-th and j-th categories, respectively. Hence, we derive the upper bound of Di.

Di =
1

Ni

∑
j∈Mi

||E[Xi]− E[Xj ]||22 ≤ 1

Ni

∑
j∈Mi

E||Xi −Xj ||22 (3)
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In Eq. 4, we use Monte Carlo sampling to approximate the upper bound, where
i and j are the category indexes. p and q are the sample indexes. xp

i and xq
j are

specific vectors. Nip and Niq are the numbers of xp
i and xq

j , respectively.

Di ≤ Ui =
1

NiNipNiq

∑
j∈Mi

Nip∑
p=1

Niq∑
q=1

||xp
i − xq

j ||
2
2 (4)

Finally, we replace Di with its upper bound Ui in LICFS and get Eq. 5.

LICFS =
1

Nk

Nk∑
i=1

1

NiNipNiq

∑
j∈Mi

Nip∑
p=1

Niq∑
q=1

||xp
i − xq

j ||
2
2 (5)

The total training loss consists of cross-entropy loss (i.e., LCE) and LICFS, as
shown in Eq. 6, where λ is a hyper-parameter. LCE supervises the model to
learn the discriminative features between categories. In contrast, LICFS forces
the model to learn the similarities between categories. These two losses work
against each other so that the model will not go to extremes and eventually reach
an equilibrium. Fig. 4(d) shows the loss curves for LCE and LICFS when λ = 0 in
CUB-200. The model minimizes the LCE as much as possible, and the inter-class
difference gradually becomes large. However, when λ = 1, as shown in Fig. 4(e),
inter-class difference is constrained and the model does not go to extremes for
classification, thus could get more complete predictions. Note that, ICFS loss
aims at improving the integrity of pseudo masks and does not care about the
classification performance. Following SPOL [24], a separate classification model
is adopted to predict the object category.

Ltotal = LCE + λLICFS (6)

3.5 Intra-class Appearance Consistency

Most of the previous WSOL methods obtain the object mask based on class
activation maps, where the parameters of the classifier play an important role.
Specifically, given a group of feature maps {F1, F2, ..., FN} (extracted before the
classifier) with spatial sizeW×H and the parameters L of the final classifier with
shape N×C, where N and C is the number of maps and categories, respectively.
Then the class activation map Mc for the c-th class is derived as Eq. 7. With a
threshold, Mc can be binarized to extract the object bounding box.

Mc =

N∑
i=1

Li,cFi (7)

However, CAM-based methods are flawed in two ways. First, the goals of clas-
sification and localization are inconsistent. Directly using the parameters of the
final classifier to generate the class activation maps is harmful. As shown in
Fig. 2, although the bird’s body have been included in the feature maps, the
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final prediction suffers from the under-utilization of feature maps and get in-
complete predictions. Second, for CAM-based methods, each image is processed
separately, which is exposed to the risk of accidental noise. Namely, some clut-
tered background may lead to the prediction failure. In contrast, predictions
based on multiple images (Fig. 1(b)) are statistically more robust to noise. By
extracting the commonality of multiple images of the same category, accidental
risk is reduced and the complementarity between images is fully explored.

Given the above concerns, we propose the non-negative matrix factorization
mask (NMFM) module to generate object masks. Different from CAMs [35],
NMFM does not rely on the final classifier. Instead, it achieves the object mask
based on the appearance consistency of multiple images from the same cate-
gory. Specifically, NMFM utilizes the non-negative matrix factorization (NMF)
to extract the commonalities between images. NMF was first proposed in [10]
and has been widely used in face recognition [5], recommender system [13] and
data compression [11]. Given a non-negative matrix V ∈ Rm×n, NMF finds two
non-negative matrices P ∈ Rm×c and Q ∈ Rc×n, so that V ≈ PQ. The specific
optimization function is shown in the Eq. 8.

min
P,Q

f(P,Q) =
1

2

n∑
i=1

m∑
j=1

(Vij − (PQ)ij)
2 (8)

subject to Pia ≥ 0, Qbj ≥ 0, ∀i, a, b, j

Instead of relying on the classifier, we apply NMF to compress the feature maps
F ∈ RW×H×N into the object mask M ∈ RW×H . Namely, we find a project
direction vector S ∈ RN×1 so thatM = F ·S (dot production), where S is derived
from the statistics of multiple F of the same category rather than the parameters
of the classifier. Specifically, we split F into W ×H vectors, each of which has N
dimensions. Supposing there are T images in each category, then we could get
T ×W ×H vectors. Lining up these vectors together, we get a big matrix Θ ∈
RTWH×N . To find the optimal projection direction S, we use NMF to decompose
Θ into two small matrices θ1 ∈ RTWH×1 and θ2 ∈ R1×N so that Θ ≈ θ1 · θ2(dot
production), where θ1 represents the set of vectors reduced in dimension, which
is discarded. θ2 is what we need, which represents the projection direction and
combines the commonality of multiple images. Namely, S = θT2 . According to
M = F · S, the object mask could be derived by M = F · θT2 .

Compared with CAMs, NMFM does not rely on the classifier, hence making
better use of feature maps, as shown in Fig. 2. Besides, NMFM extracts the
commonality of a category of images, which is more robust to background noise.
Note that, NMFM is not involved in the training or inference phase. It is just
applied to generate the pseudo masks after the classification model has been
trained. Thus, it is called only once and will not bring any time complexity
for the training or inference phase. With these pseudo masks, we train a class-
agnostic segmentation model. The final object bounding boxes are extracted
from the predictions of the class-agnostic segmentation model rather than the
pseudo masks generated by NMFM.
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3.6 Class-agnostic Segmentation Stage

Although NMFM generates accurate object masks, too many modules are in-
volved in the object mask generation stage, which brings a lot of computation
and complexity. To make the inference faster and easier, we use the object masks
(generated by NMFM) as the pseudo labels to train a separate class-agnostic seg-
mentation model for prediction. Specifically, we use ResNet50 as the backbone
network to extract the features of five scales (denoted as {fi|i = 1, ..., 5}) for
each image. Similar to the baseline model in Sec. 3.2, only features of the last
three scales are utilized, namely f3, f4, f5. We upsample these features to the
same scale and aggregate them by element-wise multiplication. Finally, we send
the aggregated features to a 1x1 convolutional layer to generate the binary ob-
ject mask, which is supervised by the pseudo labels derived from NMFM. During
inference, for each image, we use the segmentation model to get the object mask
and the complex object mask generation stage is discarded. Hence, the whole
inference process is simple and quick. Besides, compared with the class activa-
tion maps, the predictions of the segmentation are already binary. So precise
threshold adjustment for bounding box extraction is no longer required.

4 Experiments

4.1 Experimental Setup

Datasets. CUB-200 [23] and ImageNet-1K [17] are adopted for model evalua-
tion, where CUB-200 consists of 200 categories, with 5,994 training images and
5,794 testing images. ImageNet-1K consists of 1000 categories, with 1,281,197
training images and 50,000 testing images. All the training images have only
image-level labels, but the testing images have bounding box annotations.

Metrics. Following [35, 3, 24], three metrics are adopted to quantify the model
performance. 1) Top-1 localization (Top-1 Loc): top-1 prediction is exactly the
right image class and the IoU (Intersection over Union) between the predicted
bounding box and the ground truth one is larger than 0.5. 2) Top-5 localization
(Top-5 Loc): top-5 predictions contain the right image class and the IoU between
the predicted bounding box and the ground truth one is larger than 0.5. 3) GT-
known localization (GT-known Loc): the IoU between the predicted bounding
box and the ground truth one is larger than 0.5.

Data Augmentation and Training Settings. During training, we follow
previous methods [24, 35, 32, 3, 31] to first resize each input image to 256 × 256
then randomly crop it to 224 × 224. Also, a random flip is adopted to increase
the diversity of input images. During inference, the random cropping is replaced
by the center cropping and the random flip is removed [31, 3]. We use the SGD
optimizer to train our model, where the learning rates for both CUB-200 [23] and
ImageNet-1K [17] are 0.02 and remain constant throughout the training process.
Besides, due to the difference in dataset size, the training epochs for CUB-200
and ImageNet-1K are set to 32 and 5, respectively.
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Table 1. Performance comparison between the state-of-the-art methods. ’-’ means no
given. The highest scores are highlighted in bold.

Model Backbone
CUB-200 ImageNet-1K

Top-1 Loc Top-5 Loc GT-known Top-1 Loc Top-5 Loc GT-known

CAM [35] VGG16 36.13 - - 42.80 54.86 59.00
ACoL [32] VGG16 45.92 56.51 62.96 45.83 59.43 62.96
SPG [33] InceptionV3 46.64 57.72 - 48.60 60.00 64.69
ADL [3] VGG16 52.36 - 73.96 44.92 - -
I2C [34] InceptionV3 65.99 68.34 72.60 53.11 64.13 68.50
GC-Net [12] InceptionV3 58.58 71.10 75.30 49.06 58.09 -
PSOL [31] InceptionV3 65.51 83.44 - 54.82 63.25 65.21
SPA [16] VGG16 60.27 72.5 77.29 49.56 61.32 65.05
ORNet [27] VGG16 67.74 80.77 86.2 52.05 63.94 68.27
TS-CAM [4] Deit-S 71.3 83.8 87.7 53.4 64.3 67.6

RCAM [1] ResNet50-SE 58.39 - 74.51 51.96 - 64.40
ADL [3] ResNet50-SE 62.29 - 71.99 48.53 - -
SPOL [24] ResNet50 80.12 93.44 96.46 59.14 67.15 69.02
SLT-Net [6] ResNet50 72.3 - 90.7 56.2 - 68.5
PSOL [31] ResNet50 70.68 86.64 90.00 53.98 63.08 65.44
FAM [15] ResNet50 73.74 - 85.73 54.46 - 64.56
ISIC (Ours) ResNet50 80.68 94.08 97.32 59.61 67.84 70.01

4.2 Comparison with state-of-the-arts

Quantitative Comparison. To evaluate the performance of the proposed ISIC,
we train it both on CUB-200 [23] and ImageNet-1k [17], as shown in Table 1.
Many state-of-the-art methods [35, 32, 3, 33, 34, 12, 31, 16, 27, 4, 1, 24, 15] are also
included in Table 1 for comparison. The highest scores are highlighted in bold.
Among all these methods, ISIC achieves the highest accuracy on both CUB-200
and ImageNet-1K in terms of Top-1 Loc, Top-5 Loc and GT-Known Loc
metrics. Especially for GT-Known Loc metric, ISIC achieves a pronounced
performance boost, demonstrating its superiority in object localization.
Visual Comparison. Fig. 5 shows some localization maps for CUB-200 and
ImageNet-1k, where the bottom row and the middle row visualize the predic-
tions derived from CAM [35] and our proposed ISIC, respectively. Obviously,
compared with CAM, ISIC could cover more complete object regions rather than
only focus on the most discriminative ones. Besides, ISIC predictions preserve
sharper object boundaries and more detailed shapes.

4.3 Ablation Studies

Ablation Study for Each Component. We use CUB-200 to evaluate each
component of the proposed ISIC. As shown in Table 2, ICFS loss largely im-
prove the localization accuracy of the baseline model by 4.9% in the GT-Known
Loc metric, surpassing a lot of SOTA methods, which proves the significance of
inter-class similarity for WSOL. Compared with the excessive pursuit of inter-
class difference in classification models, ICFS loss guides the model to a better
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Fig. 5. Visualization of the localization maps with CAM [35] (bottom row) and the
proposed ISIC (middle row). Ground truth bounding boxes and the predicted bounding
boxes are shown in red and green color, respectively.

balance between inter-class similarity and inter-class difference, thus achieving
more complete predictions. Besides, NMFM also boosts the model performance
by suppressing noise and improving feature utilization. With all components,
the object localization capability of ISIC is largely enhanced.

Ablation Study for λ. In Eq. 6, λ is set to balance LCE and LICFS. To study
its disturbance with the performance, different values are chosen for CUB-200,
as shown in Table 3. λ = 0 means no ICFS supervision. When λ = 1.0, the model
reaches an equilibrium between inter-class similarity and inter-class difference,
achieving the best performance. However, when λ keeps increasing, the balance
is broken and the model degrades.

Ablation Study for γ. In Sec. 3.4, we set a threshold γ to find the similarity
categories. Table. 4 shows its effect at different values. When γ = 0.3, our model
achieves the best performance.

Visualization of the similar categories. Fig. 6 shows some images of the
similar categories (Sec. 3.4). As shown, category similarity is widespread both
in the fine-grained dataset (CUB-200) and the general dataset (ImageNet-1k).
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Fig. 6. Images from the similar categories. One row represents a group of categories.

Table 2. Ablation studies for each component of ISIC. BASE is the baseline model.
ICFS and NMFM are the proposed components of ISIC. SEG means the class-agnostic
segmentation model. CUB-200 is adopted for evaluation.

BASE ICFS NMFM SEG
CUB-200

Top-1 Top-5 GT-Known
✓ 73.0 85.2 88.3
✓ ✓ 77.3 90.1 93.2
✓ ✓ 75.7 88.6 91.5
✓ ✓ ✓ 77.4 90.8 94.1
✓ ✓ ✓ ✓ 80.7 94.1 97.3

Table 3. Ablation studies for λ.
λ 0 0.5 1.0 1.5

Top-1 73.0 76.5 77.3 75.4
Top-5 85.2 89.2 90.1 89.8

Gt-Known 88.3 92.3 93.2 92.7

Table 4. Ablation studies for γ.

γ 0.2 0.3 0.4 0.5

Top-1 76.9 77.3 76.7 75.6
Top-5 89.7 90.1 89.5 88.7

Gt-Known 92.8 93.2 92.6 91.9

5 Conclusion

In this paper, we investigate the effect of inter-class similarity on WSOL and
propose the ICFS loss against the widely used cross entropy loss. Besides, consid-
ering predictions from the classifier are biased to classification task, we propose
to abandon CAMs and apply the non-negative matrix factorization to generate
object masks. All the proposed modules greatly improve the WSOL performance.
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