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1 Cross attention in Regressor/Predictor

One core design of our BootMAE is decoupling the target-specific context from
the encoder, i.e. provide low-level feature for the pixel regressor and high-level
feature for the feature predictor. The feature injection procedure is conducted by
a cross-attention operation. Formally, the cross-attention operator of regressor
can be formulated as follows:
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here WQ ∈ Rddecoder×ddecoder project the input feature Zv into the queue Q with
dimension ddecoder, and WQ ∈ Rdencoder×ddecoder and WQ ∈ Rdencoder×ddecoder

project the injection feature Zshallow
v into the key K and value V . The Zshallow

v

can be replaced with Zdeep
v for the formulation of cross-attention in predictor.

With such cross-attention, we provide context information to decoder and relieve
the encoder from “memorizing” such context.

In our experiment, we use the output feature of the first encoder block as the
low-level feature and the output feature after the last encoder block as the high-
level feature. Such a simple strategy could be applied to models with different
number of layers directly. Here we conduct some ablation to study how the
injected feature affects the pretraining performance.

As shown in Table 1, for ViT-B with 12 blocks, we provide low-level feature
(output of the first block), middle-level feature (output of the 6th block), and
high-level feature (output of the last block) to the pixel regressor and feature
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Table 1: Illustrating the effect of different injection feature. We show fine-tune
accuracy (%) on ImageNet-1K.

Context for Feature Predict
Low-level Middle-level High-level

Context for Pixel Regress
High-level 83.2 83.3 83.4
Middle-level 83.6 83.6 83.7
Low-level 83.8 83.9 84.0

Table 2: Results of bootstrapped feature prediction. The performance is im-
proved from 83.2% to 83.6% with the MAE features as prediction targets for
300 epochs, achieving the same performance with the vanilla MAE with pre-
trained 1600 epochs. When the model is pre-trained for 800 epochs, it achieves
83.8%.

Model Prediction Target Pre-train Epoch Fine-tuning

MAE Pixel 300 83.2
MAE Pixel 800 83.4
MAE Pixel 1600 83.6

MAE Feature 300 83.6
MAE Feature 800 83.8

predictor respectively. We find that the pixel regression branch is sensitive to
the level of injection feature. If we provide high-level or middle-level features to
it, it performs poorly. Such a result proves our hypothesis that low-level context
is crucial for the encoder to alleviate it from memorizing low-level context. If we
provide high-level features to the pixel regressor, it is helpless and the encoder
has to memorize the context anyway. On the contrary, we observe that the feature
prediction is less sensitive to the provided context. One possible explanation is
that the decoder input Zv and the prediction target are both high-level semantic
features, so the context information may be not so crucial.

2 Simple Feature Prediction for MAE

As we mentioned in our introduction, we find simply replacing the pixel predic-
tion task with feature prediction could help the MAE to get better performance.
With a block-wise mask, MAE gets 83.8% accuracy with only 800 epochs, even
better than the vanilla MAE pretrained for 1600 epochs. Note that here we pro-
vide the prediction target feature from a 800 epochs pretrained MAE (row 2 in
Table 2).

3 Experiment Details

In this section, we provide more detailed experimental settings.
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Fig. 1: Visualization of the two different masking strategies. The masked region
is close to the visible region in random masking. For block-wise masking, a large
continuous block is masked and most center patches are masked.

ImageNet Pretraining. We train our BootMAE with both ViT-B (12 trans-
former blocks with dimension 768) and ViT-L (24 transformer blocks with di-
mension 1024) for the encoder. The regressor and the predictor consist of 2
transformer blocks. The dimension of the regressor is set to 512 while the the di-
mension of the predictor is set to the same as the encoder for feature prediction.
The learn-able mask token for regressor and the predictor are both initialized
by random noise. The input is partitioned 14 × 14 patches from the image of
224×224, and each patch is of size 16x16. Following the setting in MAE, we only
use standard random cropping and horizontal flipping for data augmentation.
The total masking ratio is 75%, same with that in MAE [4]. The block-wise mask
is generated follow the BEiT and we set the minima number for each block is 16
and the maximum is 60. Both ViT-B and ViT-L model are trained for 800 epochs
with batch size set to 4096 and the learning rate is set to 1.5e−4 ∗batchsize/256.
We use Adam [6] and a cosine schedule [7] with a single cycle and we warm up
the learning rate for 40 epochs. The learning rate is further annealed following
the cosine schedule. For the momentum parameter, we increase it from 0.999
to 0.9999 linearly in the first 100 epochs. For ViT-B, we further increase it to
0.99999 in the first 400 epochs. We also use a weighted mask to assign larger
loss weight to the center region of each block.

ADE20K Semantic segmentation. Here we use: UperNet [9] based on the
implementation from mmsegmentaion [3]. For UperNet, we follow the settings
in [1] and use AdamW [8] optimizer with initial learning rate 4e−4, weight
decay of 0.05 and batch size of 16 (8 GPUs with 2 images per GPU) for 160K
iterations. The learning rate warmups with 1500 iterations at the beginning
and decays with a linear decay strategy. We use the layer decay [1] for the
backbone and we set it as 0.65. As the ViT architecture outputs features with
the same size, here we add four different scale FPNs to scale the feature map into
different size. Specifically, we upsample the output feature of the 4th block 4×,
upsample the output feature of the 6th block 2×, keep the output feature of the
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8th block unchanged and downsample the output feature of the 12th block 2×.
We use the default augmentation setting in mmsegmentation including random
horizontal flipping, random re-scaling (ratio range [0.5, 2.0]) and random photo-
metric distortion. All the models are trained with input size 512 × 512. The
stochastic depth is set to 0.1. When it comes to testing, we report single-scale
test result.
COCO Object Detection and Instance Segmentation.We use the classical
object detection framework Mask R-CNN [5] based on the implementation from
mmdetection [2]. We train the framework with 1× schedule and single-scale input
(image is resized so that the shorter side is 800 pixels, while the longer side does
not exceed 1333 pixels) for 12 epochs. We use AdamW [8] optimizer with a
learning rate of 4e−4, weight decay of 0.05 and batch size of 16. We also use the
layer decay [1] for the backbone and we set it to 0.75. The learning rate declines
at the 8th and 11th epoch with decay rate being 0.1. The stochastic depth is set
to 0.1. Similar to the implementation of semantic segmentation above, we also
use four different scale FPNs to scale the feature map into different size.
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