
What to Hide from Your Students:
Attention-Guided Masked Image Modeling

Supplementary Material

Ioannis Kakogeorgiou1, Spyros Gidaris2, Bill Psomas1, Yannis Avrithis3,4,
Andrei Bursuc2, Konstantinos Karantzalos1, and Nikos Komodakis5,6

1National Technical University of Athens 2valeo.ai
3Institute of Advanced Research in Artificial Intelligence (IARAI) 4Athena RC

5University of Crete 6 IACM-Forth

Table of Contents

A More Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A.1 More Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
A.2 More Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
A.3 More Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

B Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5



What to Hide from Your Students:
Attention-Guided Masked Image Modeling

Supplementary Material

Ioannis Kakogeorgiou1, Spyros Gidaris2, Bill Psomas1, Yannis Avrithis3,4,
Andrei Bursuc2, Konstantinos Karantzalos1, and Nikos Komodakis5,6

1National Technical University of Athens 2valeo.ai
3Institute of Advanced Research in Artificial Intelligence (IARAI) 4Athena RC

5University of Crete 6 IACM-Forth

A More Experiments

We provide more benchmarks (subsection A.1), more ablations (subsection A.2),
and more visualizations (subsection A.3).

A.1 More Benchmarks

How Does AttMask Affect the Patch Features? In contrast with the
DINO objective that is applied only on the output [CLS] token embeddings, the
MIM objective is directly applied to the output features of the patch tokens.
Table A1 shows that using global average pooling (GAP) over patch features
instead of the [CLS] token embeddings, AttMask outperforms baseline iBOT [25]
by 9.0% k-NN accuracy. This indicates that AttMask leads to a more challenging
MIM objective, which in turn forces the ViT to learn more discriminative patch
features.

Table A1. k-NN top-1 accuracy on ImageNet-1k validation using global average pool-
ing (GAP) over patch features vs. the [CLS] token embeddings. Models are pre-trained
on 100% of ImageNet-1k for 100 epochs

CLS GAP

iBOT 71.5 49.0
iBOT + AttMask 72.5 58.0

Gain +1.0 +9.0

Does AttMask Lead to Better Exploitation of Non-Salient Parts? We
examine the performance of the models pre-trained on 100% of ImageNet-1k on
a more challenging ImageNet-1k validation set. In particular, we gradually mask
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Table A2. Linear probing top-1 accuracy on a more challenging masked version of
ImageNet-1k validation set. Salient parts are gradually masked using the attention
maps of the official pre-trained DINO ViT-Base model and setting the corresponding
masked pixel values to zero (black). Models pre-trained on 100% of ImageNet-1k for
100 epochs

Mask Ratio (%) 0 10 30 50 70

iBOT 74.4 64.8 47.6 31.4 17.0
iBOT + AttMask 75.7 66.9 50.0 34.2 20.5

Gain +1.3 +2.1 +2.4 +2.8 +3.5

Table A3. Scene classification measuring accuracy (%) using linear probing on
Places205 [23]. Models pre-trained on 100% ImageNet-1k training set for 100 epochs

iBOT iBOT+AttMask

Places205 55.9 56.7

the salient parts using the attention maps of the official pre-trained DINO ViT-
Base model and setting the corresponding masked pixel values to zero. Our
assumption is that a more robust model should be less sensitive when salient
parts of an object are missing. In Table A2, we observe that as more parts of
the images are hidden, a larger gain occurs by using AttMask with iBOT. This
indicates that AttMask leads to less sensitive models that exploit better the
non-salient parts or even background context.

Downstream Tasks using Linear Probing. We experiment on scene classi-
fication on Places205 [23], measuring classification accuracy, using linear probing
evaluation on models pre-trained on 100% of ImageNet-1k for 100 epochs. In Ta-
ble A3, we observe that AttMask improves scores by 0.8% accuracy.

Training for More Epochs. We train iBOT with AttMask on 100% of
ImageNet-1k for 300 epochs. AttMask not only accelerates the learning process
and has better performance on data-limited regimes as explained in the main
paper, but as we see in Table A4(a), even when trained for many epochs and
with many data, it still brings an improvement of 0.4% k-NN and 0.1% linear
probing over baseline iBOT [25]. Also, AttMask outperforms all other state-of-
the-art frameworks on linear probing evaluation on ImageNet-1k validation set.
We highlight that MST [10] employs an additional CNN decoder, while AttMask
achieves improved linear probing performance with fewer learnable parameters.

We argue that the higher improvement of AttMask k-NN compared with
linear probing indicates higher quality of learned embeddings, since linear prob-
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Table A4. Top-1 accuracy on ImageNet validation set. (a) k-NN and linear probing
using the full ImageNet training set; (b) k-NN using only ν ∈ {1, 5, 10, 20} examples
per class. Pre-training on 100% ImageNet-1k for 300 epochs

Method
(a) Full (b) Few Examples

k-NN Linear ν = 1 5 10 20

SimCLR [5] - 69.0
BYOL [6] 66.6 71.4
MoBY [21] - 72.8
DINO [4] 72.8 76.1
MST [10] 75.0 76.9
iBOT [25] 74.6 77.4 38.9 54.1 58.5 61.9
iBOT+AttMask (Ours) 75.0 77.5 40.4 55.5 59.9 63.1

Table A5. Top-1 accuracy on ImageNet validation set after supervised fine-tuning
for 100 epochs on ImageNet-1k training set. Models pre-trained on 100% ImageNet-1k
training set for 300 epochs

iBOT iBOT+AttMask

Fine-tuning on ImageNet 81.1 81.3

ing amounts to supervised classification on higher-dimensional embeddings1 and
on the same dataset that was used for self-supervised pre-training. To vali-
date this, we experiment with a more challenging variant of k-NN where only
ν ∈ {1, 5, 10, 20} examples per class of the training set are used. Table A4(b)
shows that using AttMask for self-supervised pre-training and then using only
simple k-NN classifier with only one example per class, achieves an accuracy
improvement of 1.5% compared with the default iBOT. This highlights the su-
periority of AttMask in low-shot learning regimes, which are of great practical
interest.

Full fine-tuning on ImageNet-1k. For iBOT and iBOT+AttMask pre-
trained on ImageNet-1k for 300 epochs, we also experiment with further su-
pervised fine-tuning on ImageNet-1k, training for 100 epochs. We report results
in Table A5. AttMask improves iBOT by 0.2% (81.1% → 81.3%), providing a
better network initialization for supervised finetuning.

A.2 More Ablations

MIM Loss Weight. The overall loss of iBOT [25] is a weighted sum of
Lmim (3), with weight λ, and Lg (4) + Llc (A1) (DINO), with weight 1. Table

1 We remind that, following the evaluation setups of DINO [4] for ViT-S, for linear
probing we use the concatenated features from the last 4 layers of ViT while for
k-NN the feature from only the last layer. So, linear probing uses 4 times higher-
dimensional features
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Table A6. k-NN top-1 accuracy on ImageNet-1k validation vs. MIM Loss Weight λ,
while the weight of DINO loss is fixed to 1. Pre-training on 20% of ImageNet-1k for
100 epochs

MIM Loss Weight λ 0.0 0.5 1.0 2.0

iBOT 43.4 46.5 46.7 41.9
iBOT+AttMask 43.5 47.3 49.7 48.3

Gain +0.1 +0.8 +3.0 +6.4

A6 shows that AttMask is superior to the default block-wise random masking
of iBOT in all cases, while the default λ = 1 works best for both and yields the
greatest gain of 3% k-NN accuracy for AttMask. In particular, increasing the
weight of the MIM loss leads to a larger gain in k-NN accuracy. This shows that
AttMask boosts the MIM task.

Table A7. AttMask-High vs. random masking strategies: k-NN top-1 accuracy on
ImageNet-1k validation for iBOT pre-training on 20% of ImageNet-1k for different
mask ratio r. †: default iBOT masking strategy from BEiT [1]

Mask Ratio r (%) 10-30 10-50 10-70 30

Random Block-Wise 46.5 46.7† 47.1 46.9
Random 47.6 47.8 47.8 48.2
AttMask-High 49.5 49.7 48.5 49.1

Masking strategy and mask ratio. We ablate both the masking strategy
(random block-wise, random or AttMask-High) and the mask ratio r in Table
A7. AttMask-High with 10-50 mask ratio gives the best results.

A.3 More Visualizations

Visualization of Attention Maps. In Figure A1, we utilized the pre-trained
models on 20% of ImageNet and observe that, when training iBOT with the
default block-wise random masking strategy, there is at least one head (in blue)
that attends the background to a great extent. By contrast, with our AttMask, all
heads mostly attend salient objects or object parts. It appears that by focusing
on reconstructing highly-attended masked tokens, the network learns to focus
more on foreground objects.

Visualization of Masking Examples. We illustrate the effect of mask ratio
r (%) to various masking strategies in Figure A2 and Figure A3. While random
Block-Wise and Random masking fail to consistently mask informative parts of
an image, AttMask-High and AttMask-Hint make use of attention to hide salient
and all but very salient parts respectively. This gives rise to a more challenging
MIM task.
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Input Image

Block-Wise

AttMask

Fig.A1. Multi-head attention maps from the last layer, training iBOT with the default
block-wise strategy from BEiT [1] and with our AttMask. From the attention matrix (5)
of each head, we extract the attention map of the [cls] token and display in different
color per head the patch tokens that are included in the top 60% of the attention mass

B Experimental Setup

We provide more details on the experimental setup, including multi-crop, train-
ing details and evaluation details.

Multi-Crop. Following [4,25], we apply the multi-crop strategy [3] to generate
a set of m low-resolution local crops, which cover only small parts of the image,
tokenized as Zc

1, . . . , Z
c
m. Similar to Lg (4), the loss is applied globally on the

[cls] tokens, in particular between the student output for a local crop Zc
j and

the teacher output for a global view Zv, both of which are non-masked:

Llc = −
∑
v∈V

m∑
j=1

fθ′(Zv)[cls] log(fθ(Z
c
j )

[cls]). (A1)

The overall loss is a weighted sum of Lmim (3), Lg (4) and Llc (A1).

Training Details. For our analysis and ablation (subsection 4.2, subsection
4.4 and subsection A.2), we pre-train models on 20% of ImageNet-1k for 100
epochs. For both iBOT and DINO we use AdamW [14] as optimizer. Unless
otherwise stated, we use the ViT-S/16 architecture and a batch size of 240. We
warm-up learning rate η for 10 epochs following the linear scaling rule η = 5×
10−4×bs/256 where bs is the batch size and then decay using a cosine schedule.
We also use a cosine schedule from 0.04 to 0.4 for weight decay. We set teacher
momentum to 0.99 and student temperature to 0.1. We use a linear warm-up for
teacher temperature from 0.04 to 0.07 for the first 30 epochs following DINO.

All methods in subsection 4.2, subsection 4.4 and subsection A.2 use the
multi-crop scheme with two 2242 global crops and six 962 local crops that ap-
proximately scale the training time by a factor of γ = 2+ 6× (96/224)2 = 3.10.
We use color jittering, Gaussian blur and solarization as data augmentations.
Local crops scales are sampled from (0.05, s) and global crop scales from (s, 1).
We set s to 0.4 for DINO and 0.25 for iBOT. We set the dimensionality of the
head output to 65536 for DINO, while for iBOT, we use a shared projection head
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for [CLS] and patch tokens, of dimensionality 8192. We do not perform weight
normalization on the last layer of the MLP heads.

For our benchmark (subsection 4.3 and subsection A.1), we pre-train models
on 100% of ImageNet-1k for 100 and 300 epochs. For the 100-epoch experiments,
the setup is the same as on 20% of ImageNet-1k except for increasing the teacher
momentum to 0.996 and the number of local crops to ten. The scaling factor of
the training time in this case is γ = 2 + 10 × (96/224)2 = 3.84. For the 300
epochs experiments, we increase the batch size to 800 and set s to 0.32, similar
to the iBOT default scale.

Evaluation Details. For the ImageNet-1k evaluation, we use k-NN and linear
probing as in DINO [4] and iBOT [25]. We evaluate on ImageNet-1k validation
set. For k-NN, we use the [CLS] feature from the last ViT layer and set k to 20.
For linear probing, we train a linear classifier using SGD with a batch size of 1024
for 100 epochs. We set learning rate to 0.003 and do not apply weight decay. We
apply random resized crops and horizontal flips as data augmentations and keep
the central crop. Following DINO [4] and iBOT [25], we use the concatenation
of the [CLS] features from the last four layers as input to the linear classifier.

For the evaluation of downstream tasks with finetuning, we train models on
CIFAR10, CIFAR100 [9] for 500 epochs and on Oxford Flowers [15] for 1000
epochs. We set learning rate to 7.5× 10−6, weight decay to 0.05 and use a batch
size of 900.

On COCO [11], we evaluate the performance of object detection and instance
segmentation downstream tasks. We consider the COCO 2017 set, which contains
118K training images, 5k validation and 20 test-dev. We consider the Cascade
Mask R-CNN [2, 7] as task layer and follow the setup from [12]. We use the
hyper-parameter configuration from [25]: multi-scale training (resizing image
with shorter size between 480 and 800, with the longer side no larger than 1333).
We use AdamW [14] with initial learning rate 10−4, the 1× schedule (12 epochs
with the learning rate decayed by 10× at epochs 9 and 11) and weight decay
0.05. Unlike [25], where training is on 8 GPUs with 4 images per GPU, we use 2
images per GPU due to hardware limitations. For a fair and direct comparison,
we fine-tune iBOT baseline with the same configuration.

We evaluate on ADE20K [24] for the semantic segmentation downstream
task. It consists of 25k images in 150 classes, with 20k for training, 2k for vali-
dation and 3k for testing. We rely on UperNet [20] as task layer and fine-tune
the entire network following the setup from [12]: 160k iterations with 512× 512
images. We do not perform multi-scale training and testing. We adopt the same
hyper-parameters as in [25]. We use the AdamW [14] optimizer with an initial
learning rate of 7× 10−4 with poly-scheduling, layer decay rate 0.65 and weight
decay 0.05. We train on 8 GPUs with 2 images per GPU.

For the evaluation of downstream tasks without finetuning, we follow the
protocol of DINO on ROxford, RParis [18] and DAVIS 2017 [17]. On Caltech-
UCSD Birds (CUB200) [19], Cars (CARS196) [8], Stanford Online Products
(SOP) [16] and In-Shop Clothing Retrieval (In-Shop) [13], we extract features
from test set images and directly apply nearest neighbor search to measure
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Recall@k [16]. On Places205 [23], we train a 205-way linear classifier on pre-
cached features, using only horizontal flip as augmentation. Training is with
SGD for 50 epochs using an initial learning rate of 0.01 that is decreased to 0
with cosine schedule, a batch-size of 1024, and no weight decay.
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10% 30% 50% 10% 30% 50%

Block-Wise

Random

AttMask-High

AttMask-Hint

Block-Wise

Random

AttMask-High

AttMask-Hint

Fig.A2. Illustration of different masking strategies vs. mask ratio r (%) (part 1).
We compare random Block-Wise masking (BEiT [1]) with Random masking (Sim-
MIM [22]), AttMask-High and AttMask-Hint. Our AttMask-High uses the attention
map arising in the encoder to hide patches, while AttMask-Hint reveals very salient
patches to leave hints about the identity of the masked object
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10% 30% 50% 10% 30% 50%

Block-Wise

Random

AttMask-High

AttMask-Hint

Block-Wise

Random

AttMask-High

AttMask-Hint

Fig.A3. Illustration of different masking strategies vs. mask ratio r (%) (part 2).
We compare random Block-Wise masking (BEiT [1]) with Random masking (Sim-
MIM [22]), AttMask-High and AttMask-Hint. Our AttMask-High uses the attention
map arising in the encoder to hide patches, while AttMask-Hint reveals very salient
patches to leave hints about the identity of the masked object
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