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Abstract. In this paper, we propose a new approach to applying point-
level annotations for weakly-supervised panoptic segmentation. Instead
of the dense pixel-level labels used by fully supervised methods, point-
level labels only provide a single point for each target as supervision, sig-
nificantly reducing the annotation burden. We formulate the problem in
an end-to-end framework by simultaneously generating panoptic pseudo-
masks from point-level labels and learning from them. To tackle the core
challenge, i.e., panoptic pseudo-mask generation, we propose a principled
approach to parsing pixels by minimizing pixel-to-point traversing costs,
which model semantic similarity, low-level texture cues, and high-level
manifold knowledge to discriminate panoptic targets. We conduct exper-
iments on the Pascal VOC and the MS COCO datasets to demonstrate
the approach’s effectiveness and show state-of-the-art performance in the
weakly-supervised panoptic segmentation problem. Codes are available
at https://github.com/BraveGroup/PSPS.git.
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1 Introduction

Panoptic segmentation [23] aims at fully parsing all the pixels into nonoverlap-
ping masks for both thing instances and stuff classes. It combines the semantic
segmentation and the instance segmentation tasks simultaneously. Classical deep
learning approaches require precise dense pixel-level labels to solve this problem.
However, acquiring exact pixel- and instance-level annotations on large-scale
datasets is very time-consuming, hindering the popularization and generaliza-
tion of the approaches in new practical applications.

To alleviate the annotation burden for segmentation models, researchers re-
cently proposed weakly-supervised learning (WSL) [4,52,51], which focuses on
leveraging coarse labels to train dense pixel-level segmentation tasks. Typically,
the weak supervision includes image-level [14,16,15], point-level [2,38], scribble-
level [47,31], and bounding box-level labels [9], etc. These approaches tackle
either semantic segmentation [36], instance segmentation [1,21], or panoptic seg-
mentation [41,27] tasks. Among them, the weakly-supervised panoptic segmen-
tation (WSPS) problem is the most challenging since it requires both semantic
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and instance discrimination with only weak supervision. As a result, the WSPS
got less attention in previous works, and its performance is far from satisfactory.
The seminal work by Li et al. [27] manages to address the WSPS problem using
bounding-box level labels. Later, JTSM [41] proposes to apply only image-level
labels for the WSPS problem. Recently, PanopticFCN [29] tackles this problem
by connecting multiple point labels into polygons. The performances of these
approaches differ significantly with the different weak annotations.

In this paper, we propose a new WSPS paradigm to use only a single point
for each target as the supervision, as illustrated in Fig. 1. Recall that the core of
weakly-supervised segmentation is to release the annotation burden while still
obtaining decent performance. In other words, balance the cost of annotation and
the model performance. We are motivated to use the point-level labels because,
on the one hand, the annotation time of point-level labels is only marginally
above the image-level labels [2], saving much cost compared with the box-level
or polygon labels. On the other hand, point labels can provide minimum spa-
tial information to localize and discriminate different panoptic targets for the
segmentation models.

A natural idea to estimate panoptic masks from point-level labels is to as-
sign each pixel in the image to one of the points according to some principles.
To this end, we propose tackling this problem by minimizing the pixel-to-point
traversing cost, measured by the neighboring pixel affinities. There are two basic
requirements to correctly assign pixels to point labels: semantic class matching
and instance discrimination. The former ensures that the pixels are parsed with
the correct class labels, and the latter is responsible for distinguishing different
instances in the thing classes. Therefore, we consider three criteria to model the
affinities: semantic similarity, low-level image cues, and high-level instance dis-
crimination knowledge. Using these criteria, we model the pixel-to-point travers-
ing costs and solve the assignment problem by finding the shortest path.

We base our approach on the transformer models [46,11,39], which have re-
cently shown impressive results in computer vision tasks [8,30,44,3,56]. Specifi-
cally, our approach contains a group of semantic query tokens to parse semantic
segmentation results and a group of panoptic query tokens responsible for the
panoptic segmentation task [30]. In addition to the regular panoptic segmen-
tation model, our approach contains a label generation model, which produces
dense panoptic pseudo-masks depending on the point-level labels and the crite-
ria above. The whole approach is end-to-end. After training, only the panoptic
segmentation branch is kept for testing. Thus, it does not incur additional com-
putation or memory overhead for usage. We conduct thorough experiments to
analyze the proposed approach and the properties of the point-level labels. Mean-
while, we demonstrate new cutting-edge performance with the WSPS problem
on the Pascal VOC [13] and the MS COCO [32] datasets.

In summary, the main contributions of this work are:

– We propose a new paradigm for the WSPS problem, which utilizes a single
point for each target as supervision for training.
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image point label panoptic segmentation

Fig. 1. Illustration of the proposed pointly-supervised panoptic segmentation. From
left to right: input images, point labels as supervision, and panoptic segmentation
predictions. The point labels provide a single point annotation for each target, including
both thing instances and stuff classes, which are used at training time only. Please see
Sec. 3 for details. Best viewed in color.

– A novel approach to estimating dense panoptic pseudo-masks by minimizing
the pixel-to-point traversing distance is proposed.

– We implement the approach in an end-to-end framework with transformers,
conduct analytical experiments to study the model and the point-level labels,
and demonstrate state-of-the-art performance on the Pascal VOC and the
MS COCO datasets.

2 Related Works

2.1 Panoptic Segmentation

The panoptic segmentation [23] task simultaneously incorporates semantic seg-
mentation and instance segmentation, where each pixel is uniquely assigned
to one of the stuff classes or one of the thing instances. This problem can
be tackled by combining the semantic and instance segmentation results in a
post-processing manner [23]. Later works such as JSIS [10] adopt a unified net-
work combining a semantic segmentation branch and an instance segmentation
branch. After that, many approaches have been proposed for improvement by
using feature pyramids [22], automatic architecture searching [49], and unifying
the pipeline [28], etc.

Recently, transformer-based approaches have shown impressive results across
the NLP [46,11,39] and the CV [3,12,56,34] applications. The seminal work
DETR [3] provides a clear and elegant solution for object detection and seg-
mentation. The following work DeformableDETR [56] improves it by using the
deformable transformers to reduce the computation burden and accelerate the
convergence. K-Net [54] adopts an iterative refinement procedure to enhance
the attention masks gradually. MaskFormer [8] proposes to separate the mask
prediction and the classification process. Panoptic SegFormer [30] embraces a
similar idea and adopts an auxiliary localization target to ease the model train-
ing. Our panoptic segmentation approach is based on these works, and we focus
on alleviating the annotation burden by exploiting point-level annotations.
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2.2 Weakly-Supervised Segmentation

Weakly supervised segmentation [4,52] aims to alleviate the annotation bur-
den for segmentation tasks by using weak labels for training. According to the
type of tasks, it concerns semantic segmentation [16,36,24,48,26,17], instance
segmentation [1,45], and panoptic segmentation [27,41] problems. According to
the kinds of supervision, these approaches use image-level [16,36,24,48,26,41],
point-level [2,38], scribble-level [47,31], or box-level [43,45,9] labels for training.
Among them, image-level label-based approaches are the most prevalent. These
approaches generally rely on the CAM [55,40] to extract spatial information from
classification models, which are trained by the image-level labels. Though great
progress has been achieved by these approaches on the semantic segmentation
task, it is generally hard to distinguish different instances of the same class with
only image-level labels, especially on large-scale datasets with many overlapping
instances. Li et al. [27] proposes to address this problem by additionally using
bounding-box annotations, which however takes much more time to annotate.
PanopticFCN [29] alternatively proposes to use coarse polygons to supervise the
panoptic segmentation model, which are obtained by connecting multiple point
annotations for each target. PSIS [7] proposes to address the instance segmen-
tation problem by using sparsely sampled foreground and background points in
each bounding box. Though these approaches achieve better results, their an-
notation burden is significantly heavier than image-level labels. In this paper,
we try to use a new form of weak annotation for panoptic segmentation, i.e., a
single point for each target. We demonstrate that this supervision can achieve
competitive performance compared with previous approaches while significantly
reducing the annotation burden.

2.3 Point-Level Labels in Visual Tasks

Recently point-level annotation has drawn interest in a broad range of com-
puter vision tasks. Beside the works concerning the detection and segmenta-
tion tasks [7,29,38,2], some works adopt point-level labels to train crowd count-
ing [50,33] models. SPTS [37] proposes to use points for the text spotting prob-
lem. Chen et al. [5] propose addressing weakly-supervised detection problems
using point labels. Besides, point labels also play an essential role in interactive
segmentation models, where users provide interactive hints through point-level
clicks [53,35,42]. To the best of our knowledge, there are still no approaches to
training panoptic segmentation models using only a single point per target.

3 Approach

In this section, we elaborate on the details of the proposed approach. Fig. 2
illustrates the overall framework, which can be decomposed into two major com-
ponents, a label generation model and a panoptic segmentation model. These
two components share the same backbone and the transformer encoder [56]. The
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Fig. 2. Illustration of the proposed approach. Left: the overall framework, which con-
tains a label generation model and a panoptic segmentation model. The former pro-
duces dense panoptic pseudo-labels from point-level labels, the latter is responsible for
the final panoptic segmentation prediction. Right: the detailed pipeline of the label
generation model. Please see Sec. 3 for more information. Best viewed in color.

label generation model is the core of the weakly-supervised learning, which is
responsible for obtaining dense panoptic pseudo-masks from weak point-level
labels. The panoptic segmentation model is the same as those fully-supervised
ones and learns from the panoptic pseudo-masks. All these models are trained as
a whole in an end-to-end manner. After the training stage, the label generation
model can be removed, only leaving a standard panoptic segmentation model
for usage. Hence, it does not bring any computation or memory overhead than
other fully-supervised methods.

3.1 Dense Semantics from Point Supervision

Semantic parsing is the cornerstone of our approach to producing dense pixel-
level pseudo-masks from sparse point-level labels. We decompose the panoptic
pseudo-label generation problem into two steps: semantic parsing and instance
discrimination. In the semantic parsing step, the semantic probabilities for all
the pixels in the image are first obtained. By means of this, the latter problem
could be reduced to partition pixels within each class into different instances,
reducing the solution space and improving the estimation robustness.

To generate semantic segmentation results, we adopt a set of semantic query
tokens, which has a one-to-one correspondence to the semantic classes, as shown
in Fig. 2. The semantic decoder is made of transformer decoder layers following
the Panoptic SegFormer [30]. It contains a mask branch to decode masks from
tokens and a classification branch to decode the class probabilities. The semantic
segmentation probabilities are then obtained by multiplying together the mask
probabilities and the class probabilities.

Let P ∈ RHW×C denote the semantic segmentation probabilities of the C
classes. Given a set of N point-level labels, it can be mapped to a set of Ns

labeled semantic pixels, Y = {(xi, ci)}N
s

i=1, where xi and ci are the coordinate
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and class index of the ith pixel, respectively. The mapping could be implemented
by coloring the surrounding pixels of each point-level label and applying the same
geometric augmentations as the input image. The partial cross-entropy loss for
semantic segmentation is the average on labeled pixels:

Lsem = − 1

Ns

∑
(xi,ci)∈Y

logPxi,ci , (1)

To supplement the sparse partial cross-entropy loss, inspired by [45], we adopt
the image texture-based constraints densely on all the pixels, a.k.a., color-prior
loss. Let Pi, Pj ∈ RC denote the class probabilities of the ith and jth pixels,
respectively. The color prior loss is defined as:

Lcol = − 1

Z

HW∑
i=1

∑
j∈N (i)

Ai,j logP
T
i Pj , (2)

where PT
i Pj measures the predicted probability similarity of the pair, higher

values indicate that the prediction of the pair tends to be the same class. Ai,j is
the color-prior affinity following [45], which is obtained by thresholding the pixel
similarity computed in the LAB color space with threshold 0.3. N (i) is the set of

neighbor pixel indices of i. Z =
∑HW

i=1

∑
j∈N (i) Ai,j is the normalization factor.

By optimizing Eq. 2, neighboring pixels owning similar colors are encouraged to
derive the same semantic prediction. Experiments in Sec. 4.3 demonstrate this
strategy can effectively improve the mask quality.

3.2 Traversing Distance and Mask Generation

After obtaining the semantic classes of each pixel, the challenge of generating
panoptic masks is mainly reduced to discriminating different instances in the
same class. We propose a principled approach to address this problem by assign-
ing each pixel to the nearest point label, where the distance is defined by the
proposed traversing distance, as illustrated in Fig. 3.

Denote the cost of traveling from pixel i to point label s by Di,s, the target
is to find the nearest point label ŝ, and mark pixel i as the foreground of the
corresponding segmentation target. Formally,

Di,s = min
Γi,s

∫
E(x)Γi,s(x)dx, (3)

where, Γi,s is a path from pixel i to point label s. E describes the non-negative
traversing cost along the path. In discrete digital images, the path is defined as
a sequence of continual pixels under the 8-neighborhood connection.

In this framework, the question reduces to defining proper transferring cost E
to help distinguish different instances. We consider three criteria to accomplish
this task: semantic similarity, low-level boundary cues, and high-level instance-
aware manifold knowledge. For clarity, we slightly abuse the notation to denote
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Fig. 3. (a) Illustration of the traversing distance method. Each pixel finds the point
label with the minimum traversing cost and is assigned to the corresponding target.
(b) Example of a two-instance case, showing the traversing cost of each pixel to each
point label. Highlighted regions have low costs. Please see Sec. 3.2 for details. Best
viewed in color.

the cost between neighboring pixels i and j by Ei,j , which is composed of the
three items:

Ei,j = Es
i,j + λbE

b
i,j + λmEm

i,j , (4)

where, λb and λm are the weights controlling the relative importance.
Es

i,j reflects the semantic similarity, whose value is low if the neighboring
pixels belong to the same class. It is defined by the aforementioned semantic
probabilities:

Es
i,j =

C∑
c=1

|Pi,c − Pj,c|, (5)

where, Pi,c is the probability of the ith pixel belonging to class c. By means of
this, crossing pixels of different classes are costly. Thus, paths residing in the
object interiors are encouraged. This strategy could help pixels be assigned to
the point within a coherent class region rather than geometrically closer points
but with different classes.

Eb
i,j defines the boundary cost considering the low-level image textures. Given

the boundary map B ∈ RHW obtained by edge filters, Eb
i,j is counted by the

non-negative value at the target location. In this way, the paths are encouraged
not to cross the boundaries:

Eb
i,j = |Bj |, (6)

In this paper, we adopt the efficient Sobel filter to compute the boundary
map. The boundary cost implicitly assumes that regions of coherent colors are
more likely to belong to the same class and instance, which has been proved ex-
perimentally by previous works [24,25,45] in addressing the segmentation tasks.

Em
i,j provides high-level knowledge to distinguish instances, which is learned

by the deep model online. We add a manifold projector to the transformer en-
coder to produce dense features to compute the instance similarity, as illustrated
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in Fig. 2. The manifold projector firstly reshapes the feature tokens back to 2D
spatial features. Features from different pyramid levels are bilinearly sampled to
the same size and summed together. Then, the projection is obtained by a 2-layer
MLP model, implemented by two 1×1 convolution layers interleaved by a ReLU
activation. Given the L2-normalized feature map F ∈ RHW×D produced by the
manifold projector, the cost is defined by the non-negative cosine distance:

Em
i,j = max{1− FT

i Fj , 0}, (7)

where, the projected features belonging to the same instance are similar and pro-
duce low costs. In this way, paths are encouraged not to cross different instances.
To convey instance-aware knowledge, the manifold projection model should be
trained by instance-aware constraints. For clarity, we postpone explaining the
details in the Sec. 3.3.

After obtaining the criteria, the next step is finding the shortest path between
each pair of pixels and point labels in the 8-neighborhood graph. Note that the
graph is very sparse because each pixel only connects to its local neighbors.
Let N denote the total number of point labels and M denote the number of
pixels. Then, the minimum distance Di,s in Eq. 3 can be efficiently solved by the
shortest distance algorithm with time complexity O(MN logM).

It is noteworthy that the distance measurement in Eq. 3 can only produce
connected components. As a result, if an instance is overlapped and separated
into several parts by some region belonging to different classes, the farther parts
would be assigned with the wrong class. To overcome this limitation, we use the
class compatibility between the pixel and the point label to reweight the distance
before assigning pixels to point labels.

ŝ = argmins

[(
D̂i,s − 1

)
·
(
PT
i Ps

)]
, (8)

where, Pi is the probability of the ith pixel obtained by the semantic segmenta-
tion branch. Ps is the one-hot encoding of the point label’s ground truth class.
D̂ is the normalized version of D in range [0, 1]. Finally, we judge that pixel i
is part of the instance holding point label ŝ according to Eq. 8, and the whole
image is parsed into non-overlapping regions, obtaining panoptic pseudo-masks.

3.3 Weakly-Supervised Training

In this section, we elaborate on training the whole model with the generated
pseudo-masks. Firstly, the panoptic segmentation model, as illustrated in Fig.
2, is trained by the pseudo-masks. As aforementioned, we adopt the Panoptic
SegFormer architecture, which contains a localization decoder to help quickly
converge to the target locations, a classification branch to predict class proba-
bilities for each query token, and a mask decoder to decode masks. They are
optimized by the localization loss, the focal loss, and the dice loss, respectively.
For simplicity, here we denote all these losses to train the panoptic segmentation
model as Lpan. Please refer to the paper [30] for more details.
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In addition to the panoptic segmentation model, the manifold projector used
in Eq. 7 also needs to train to provide instance-aware representations. Here we
utilize a contrastive learning strategy [19,6] to optimize the manifolds with the
pseudo-masks. Let Mi ∈ RHW denote the pseudo-mask of target i that contains
point label with coordinate xi. The global representation of target i is the masked
average of the projection F ∈ RHW×D:

F̄i =
1

Zi

HW∑
j=1

Mi,jFj , (9)

where, Zi =
∑HW

j=1 Mi,j is for normalization, Fj ∈ RD is the feature at pixel j.
The loss for the projector is the average of all point-to-target contrasts:

Lcl = − 1

N

N∑
i=1

log
exp

(
FT
xi
F̄i/τ

)∑N
j=1 exp

(
FT
xi
F̄j/τ

) , (10)

where, N is the total number of point labels, τ is a scale factor and is set
0.07 following [19]. When the setting is extended to annotate each target with
multiple points, the sum in the denominator of the contrasts should iterate over
the number of targets. With this optimization target, the feature projections at
the labeled points are encouraged to be coherent within the estimated instance
region and distinctive from the others. The pseudo-mask estimation and the
manifold projector mutually benefit each other and improve the model together.

Taking all the above components together, our final model is end-to-end:

Lall = Lsem + Lcol + Lpan + Lcl, (11)

After training, only the panoptic segmentation model is kept for testing, thus
not incurring any computation or memory overhead compared with previous
fully-supervised panoptic segmentation models.

4 Experiments

In this section, we discuss the experiments. We first describe the experiment
setting and implementation details and then elaborate on the analyses and com-
parison using the VOC and COCO datasets.

4.1 Datasets

Pascal VOC dataset [13,18] contains 10582 training images and 1449 validation
images. It has 20 thing classes and one stuff class. By default, a single point label
per target is sampled with the uniform distribution from the masks, which is fixed
through all the experiments. To study the influence of point label distribution,
we also adopt other sampling strategies in Sec. 4.3 for analyses. We analyze our
approach with the panoptic quality (PQ), segmentation quality (SQ), recognition
quality (RQ), and intersection over union (IoU) metrics.
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MS COCO dataset [32] contains 118k images for training, 5k images for valida-
tion, and 20k images for testing. It contains 80 thing classes and 53 stuff classes.
The same point sampling strategy and metrics are applied to the COCO.

4.2 Implementation Details

Architecture.We base our approach on the Panoptic SegFormer with a ResNet50
backbone [20]. As mentioned in Sec. 4.3, we adopt an extra group of semantic
query tokens to produce the semantic segmentation results. Specifically, the C
semantic tokens produce C masks and classification scores, which are multiplied
together and projected by a linear layer followed by a Softmax function to pro-
duce semantic probabilities. The mask decoder contains 6 transformer decoder
layers [30], which has the same architecture as the panoptic segmentation model.
The color prior loss in Eq. 2 is constructed by sampling neighboring pixels with
kernel size 5 and dilation rate 2, and the loss is amplified by factor 3. The image
edge used in Eq. 6 is obtained by the Sobel filter in the LAB color space and
its absolute values are normalized into the range [0, 1]. The panoptic segmenta-
tion model follows the same setting as [30], and the number of query tokens for
panoptic segmentation is set to 300.

Optimization. We follow previous practice [30] for training, i.e., AdamW op-
timizer with learning rate 1.4× 10−4, weight decay 1.4× 10−4, and batch size 8.
The learning rates for the backbone parameters are multiplied by the factor 0.1.
To stabilize the training, we adopt a linear warm-up strategy for the losses Lpan

and Lcl during the first training epoch, so that reliable pseudo-panoptic masks
can be obtained, which depends on the well-learned semantic parsing results.
The balancing weights λb and λm in Eq. 4 are all set 0.1 by default. In exper-
iments, we extend each point label to a square region with a size of 17 pixels
to facilitate the training of semantic segmentation, as explained in Eq. 1. The
shorter sizes of input images are resized to 600 and 800 on the VOC and COCO,
respectively. On the VOC, we train 20 epochs and decay the learning rate with
a factor of 0.1 after epoch 15. On the COCO, we follow the 1× schedule to train
12 epochs and decay the learning rate after epoch 8.

4.3 Ablation Studies

In this section, we conduct analytic experiments on the VOC dataset to reveal
the properties of the proposed method with point-level supervision.

Instance Discrimination. We first conduct experiments to demonstrate the
effectiveness of the proposed traversing distance-based instance discrimination
approach. Tab. 1 shows the ablation results of the distance measurement criteria
in Eq. 4. With only the semantic probabilities, the model achieves PQ 46.6% on
the VOC val set. The boundary criterion and the manifold criterion improve the
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Table 1. Ablation studies for the proposed traversing distance-based instance discrim-
ination. Results are reported on the VOC val set. Es, Eb, and Em denote the criteria
of semantic similarity, low-level boundary, and high-level manifold, respectively.

Es Eb Em PQ PQth PQst

✓ 46.6 44.5 89.1
✓ ✓ 48.5 46.5 89.3
✓ ✓ 49.4 47.4 89.2
✓ ✓ ✓ 49.8 47.8 89.5

Table 2. Influence of the hyper-parameters in computing the traversing cost. Re-
sults are reported on the VOC val set. We conduct experiments by fixing one hyper-
parameter and alter another.

λb λm PQ PQth PQst

0.0 0.1 49.4 47.4 89.2
0.1 0.1 49.8 47.8 89.5
0.5 0.1 48.3 46.3 89.1
1.0 0.1 48.4 46.3 89.4

0.1 0.0 48.5 46.5 89.3
0.1 0.1 49.8 47.8 89.5
0.1 0.5 49.3 47.3 89.2
0.1 1.0 48.9 47.0 89.1

baseline result to 48.5% and 49.4%, respectively. We noticed that this improve-
ment is mainly due to the PQth, which is improved from 44.5% to 46.5% and
47.4%, respectively. And the results of stuff classes are relatively similar, demon-
strating that the low-level image cues and high-level instance-aware manifold can
effectively help to identify different instances. Finally, with all the criteria, our
approach achieves the final result of PQ 49.8% and PQth 47.8%.

Hyper-parameter Sensitivity. We conduct experiments to study the sensi-
tivity of the hyper-parameters used in Eq. 4. To save the search cost, we fix one
parameter and adjust another. Results reported in Tab. 2 show that the scale
of the additional criteria for the instance discrimination, i.e., the boundary and
the feature manifold criteria, should be approximately one order of magnitude
smaller than the semantic criterion. It is noteworthy that even larger values are
not optimal, they still boost the baseline’s performance from PQ 46.6% to 48.3%
or higher, demonstrating the robustness of the proposed approach.

Point Sampling Strategies. We conduct experiments to study the influence
of the position distribution bias of the point labels. In addition to the uniform
sampling strategy, we also tried the center-biased and the border-biased sampling
strategies. Specifically, we first compute the euclidean distance of each pixel to
the centroid of the corresponding ground truth mask. Then, we build the prob-
ability density map according to the square of the euclidean distance. Finally,
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Table 3. Influence of the point sampling strategy. Results are reported on the VOC
val set. “Border” and “Center” refer to strategies that prefer target border regions and
center regions, respectively.

Method mIoU PQ SQ RQ

Border 65.6 44.7 78.1 55.7
Uniform 67.5 49.8 78.4 62.0
Center 67.7 50.9 79.1 62.8

Table 4. Ablation study of the semantic segmentation submodule. Results are reported
on the VOC val set.

Method mIoU PQ SQ RQ

w/o Lcol 62.2 41.3 74.3 54.0
w/ Lcol 67.5 49.8 78.4 62.0

the points are sampled based on the normalized probability for each target to
obtain border-biased labels. The center-biased labels are sampled in a similar
way by reversing the probabilities. Results in Tab. 3 show that the center-biased
labels achieve the best performance, and the border-biased labels perform worst.
While the SQ values of the three methods are relatively similar, the RQ of the
border-biased strategy is much worse than the others, revealing that annotations
near borders are harmful to discriminating different targets, while annotations
at center regions provide more robust results. This phenomenon has positive
meanings because center annotation accords with human intuition and is easier
in practice.

Semantic Segmentation Module. In this section, we conduct ablation ex-
periments to study the semantic segmentation submodule. Results in Tab. 4
demonstrate the low-level cues can effectively improve the segmentation per-
formance from mIoU 62.2% to mIoU 67.5%. The improvement of the semantic
segmentation quality not only improves the quality of the panoptic masks, i.e.,
SQ is improved from 74.3% to 78.4%, but also benefits the localization of the
targets, i.e., a significant improvement of the RQ from 54.0% to 62.0%. We con-
jecture the reason is that more accurate semantic probabilities provide more
reliable instance discrimination cues for Eq. 4 to distinguish different targets.

4.4 Comparison with Related Works

We compare our approach with the related works in Tab. 5. Compared to the
JTSM [41] that uses image-level labels, our approach achieves significant im-
provement with the help of point-level labels, which improves the PQ with
+10.8% on the VOC, and +24.0% on the COCO. It demonstrates that point-
level labels are promising in addressing panoptic segmentation problems. As
pointed out by Bearman et al. [2], the point-level labels only cost marginally
above image-level labels. For example, on the VOC dataset, image labels cost
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Table 5. Comparison with related works on the VOC and the COCO datasets. Results
are reported on the COCO val set and the VOC val set. M mask annotation for fully-
supervised learning, B bounding-box level supervision, I image-level supervision, P the
proposed point-level supervision, P10 point-level supervision with 10 points per target.

Method Backbone Supervision
COCO VOC

PQ PQth PQst PQ PQth PQst

Panoptic FPN [22] R50 M 41.5 48.3 31.2 65.7 64.5 90.8
K-Net [54] R50 M 47.1 51.7 40.3 - - -
MaskFormer [8] R50 M 46.5 51.0 39.8 - - -
Panoptic SegFormer [30] R50 M 48.0 52.3 41.5 67.9 66.6 92.7

Li et.al. [27] R101 B + I - - - 59.0 - -
JTSM [41] R18-WS I 5.3 8.4 0.7 39.0 37.1 77.7
PanopticFCN [29] R50 P10 31.2 35.7 24.3 48.0 46.2 85.2

Ours R50 P 29.3 29.3 29.4 49.8 47.8 89.5
Ours R50 P10 33.1 33.6 32.2 56.6 54.8 91.4

on average 20.0 sec/img, while point labels cost 22.1 sec/img, where the dif-
ference is marginal compared with the full labels’ 239.7 sec/img. Compared to
the PanopticFCN [29] using ten points to connect polygons for training, our
approach achieves competitive performance when using only a single point as
annotation, which is +1.8% on the VOC and -1.9% on the COCO in respect
to the PQ. Note that these comparable results are achieved by using only 1/10
of the annotations of the PanopticFCN. When increasing the annotation to ten
points per target, our approach achieves +8.6% and +1.9% improvements on the
VOC and the COCO datasets compared with the PanopticFCN, demonstrating
the scalability of our approach in utilizing more points per target.

To help qualitatively study the results, we visualize the predictions on the
val set of VOC and COCO. Results in Fig. 4 show that our approach performs
generally well in handling scenes with complex multiple instances and classes.
We also show the results for hard examples, which contain extremely many
instances with small scales. In these cases, some instances are missing in the
prediction. Improving the performance with these small and thin objects when
only accessing point-level labels may be a potential direction in future studies.

5 Conclusions

In this paper, we propose a new paradigm for weakly-supervised panoptic seg-
mentation using a single point label for each target. To tackle this problem, we
propose a principled approach that generates panoptic pseudo-masks by solving
the minimization problem of pixel-to-point traversing costs, which integrates se-
mantic similarity, low-level texture cues, and high-level knowledge to distinguish
different targets. We demonstrate its effectiveness and study the influence of
point labels through analytical experiments. Besides, we achieve new state-of-
the-art performance with point-level labels on the VOC and COCO datasets.
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(a) Results on the VOC val set. 

(b) Results on the COCO val set. 

(c) Hard cases with multiple small and thin objects. 

Fig. 4. Visualization of the panoptic segmentation results. The models are trained with
a single point per target as annotation. Each group from left to right are the input,
prediction, and ground truth, respectively. Best viewed in color.
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