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Abstract. Recently, masked image modeling (MIM) has become a promis-
ing direction for visual pre-training. In the context of vision transform-
ers, MIM learns effective visual representation by aligning the token-
level features with a pre-defined space (e.g., BEIT used a d-VAE trained
on a large image corpus as the tokenizer). In this paper, we go one
step further by introducing guidance from other modalities and validat-
ing that such additional knowledge leads to impressive gains for visual
pre-training. The proposed approach is named Multimodality-guided Vi-
sual Pre-training (MVP), in which we replace the tokenizer with the vi-
sion branch of CLIP, a vision-language model pre-trained on 400 million
image-text pairs. We demonstrate the effectivenss of MVP by perform-
ing standard experiments, i.e., pre-training the ViT models on ImageNet
and fine-tuning them on a series of downstream visual recognition tasks.
In particular, pre-training ViT-Base/16 for 300 epochs, MVP reports a
52.4% mIoU on ADE20K, surpassing BEIT (the baseline and previous
state-of-the-art) with an impressive margin of 6.8%.

Keywords: Visual Pre-training, Masked Image Modeling, Multimodal-
ity

1 Introduction

Deep neural networks have been a fundamental tool for computer vision, yet
they often require a large amount of labeled training data [9] and the model
can sometimes bias towards the semantic labels. A promising direction to al-
leviate the issues is unsupervised visual pre-training, which has been attract-
ing increasing attentions in both academia and industry. After the early efforts
based on geometries [24, 35] and image generation [25, 33], the emerge of con-
trastive learning [17, 6, 4, 29, 28, 36] has made a great progress in learning from
large-scale image data. Without semantic annotations, these approaches report
competitive downstream transfer performance, sometimes even surpassing the
supervised counterpart [18].

Recently, vision transformers [13, 30] have been validated effective in a wide
range of visual recognition tasks, but these models are also shown to heavily
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Fig. 1. The motivation of our MVP. The image-text pairs of CC3M [27] are shown at
the top. For each case, the caption can depict some important semantic contents. The
pipeline of masked image modeling is presented at the bottom, and our MVP simply
replaces the vision tokenizer in BEIT with the multimodal tokenizer.

rely on large-scale training data. To alleviate the burden, researchers start in-
vestigating unsupervised pre-training. Besides applying contrastive learning [7,
3], another interesting methodology is named masked image modeling (MIM)1.
MIM [2, 16, 34, 37, 12, 41] removes part of image patches from input and requires
the target model to recover the missing contents. Currently, there are two main
directions for MIM: one [2, 12] is to predict the tokenized features (e.g., by d-
VAE [39] or VQ-VAE [32]), and the other [16, 37] is to predict pixel-level informa-
tion. MIM works particularly well for vision transformer models, e.g., when the
pre-trained backbone is allowed to be fine-tuned, state-of-the-art image classifi-
cation accuracy is reported on ImageNet-1K [9]. But, we note that such models
are weak when the backbone is frozen – for example, BEIT [2] reports a 37.6%
accuracy in the linear probing test on ImageNet-1K; MAE [16] improves it to
67.8%, but it is still significantly lower than that reported by contrastive learn-
ing (e.g., DINO reports 78.2%). This makes us conjecture that the pre-trained
model learns relatively weak semantic features for visual representation.

The goal of this paper is to enhance the semantics for MIM. For this pur-
pose, we present Multimodality-guided Visual Pre-training (MVP), a single yet
effective framework that incorporates multimodal information into MIM, in par-
ticular, the BEIT framework [2]. As shown in Figure 1, our motivation is simple
that multimodal data can provide more semantic knowledge. Therefore, instead
of using a tokenizer that was pre-trained with pure image data, we replace it

1 It borrows the framework of masked language modeling (MLM) [20, 11] from natural
language processing.



MVP: Multimodality-guided Visual Pre-training 3

with a tokenizer that is pre-trained with image-text pairs. We expect the lat-
ter to provide weak semantic guidance (since the tokenizer is required to align
vision and language) and open-domain representation ability (the texts are not
constrained by a set of pre-defined classes). To the best of our knowledge, this is
the first work that investigates the use of multimodal pre-training on the MIM
framework.

MVP is easily implemented upon BEIT, i.e., directly changing the tokenizer.
In particular, we refer to the pre-trained model of CLIP [26] that has seen 400
million image-text pairs, and directly take the vision branch as the tokenizer. It
replaces the original tokenizer pre-trained by d-VAE [39]. Other parts of BEIT
are nearly unchanged expect for the prediction pretext task. Interestingly, such a
simple modification brings large benefits on a series of downstream tasks. MVP
reports a 75.4% accuracy on ImageNet-1K linear probing, which significantly
surpasses the numbers of BEIT (37.6%) and MAE (67.8%), demonstrating its
strong ability of semantic learning. In the fine-tuning test, MVP reports 84.4%
and 86.3% accuracy with ViT-Base/16 and ViT-Large/16 backbones, respec-
tively, both of which surpass the BEIT baseline by more than 1%. Most no-
tably, when the pre-trained backbone is transferred for semantic segmentation
on ADE20K [40], MVP with a ViT-Base/16 backbone achieves a 52.4% mIOU,
which outperforms all existing MIM-based methods by a remarkable margin of
3.6%.

The main contributions of this paper can be summarized as follows:

– We analyze the recent masked image modeling (MIM) based pre-training
methods lack of semantics knowledge, and then firstly point out they can be
enhanced with the guidance of other modalities.

– We design a simple yet effective algorithm to improve the transfer perfor-
mance of MIM-based visual pre-training. By resorting to a tokenizer pre-
trained with multimodal data (image-text pairs), MVP learns richer seman-
tic knowledge for each image.

– We evaluate the effectiveness of MVP with extensive experiments, and the
results clearly demonstrate the advantages of MVP over the recently pro-
posed visual pre-training methods.

2 Related Work

In the deep learning era, a fundamental methodology for visual recognition is
to train deep neural networks. In the scenarios with insufficient labeled training
data, a popular pipeline is to pre-train the model with labeled/unlabeled data
from other sources (e.g., ImageNet [9]) and transfer the model to specific do-
mains. This paper focuses on unsupervised (self-supervised) pre-training. In this
section, we review two sub-topics in this field, namely, visual pre-training and
multimodal pre-training.
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2.1 Visual Pre-training

Currently, as self-supervised learning methods with contrastive loss [17, 6, 28, 29]
heavily boost the transfer performance of visual models, self-supervised learn-
ing has become the mainstream in the visual pre-training field. For example,
He et al. [17] proposed a momentum contrast framework to reduce the limita-
tion of requirement on batch size, and significantly pushed forward the transfer
performance of pre-training models. Concurrently, SimCLR [4] has been pro-
posed to verify the effect of different data augmentation strategies in contrastive
learning based methods. Moreover, target to avoid the confusion of sampled neg-
ative noise, BYOL [15] was designed to achieve competitive results by simply
pushing the positive pairs together. Recently, vision transformer based archi-
tectures [14, 31] have been validated in a wide range of visual tasks compared
with traditional convolutional networks. To improve the transfer performance of
vision transformers, some self-supervised works [3, 7] were further proposed for
effectively pre-training the vision transformer backbones.

As masked language modeling (MLM) based methods [11, 20] achieve great
success in the natural language processing field, more and more researchers ex-
pect to design similar pretext tasks to enhance the visual pre-training models.
Motivated by this, masked image modeling (MIM) based approaches have been
designed recently and achieved competitive results. For example, by simply de-
signing a pretext task with the visual token prediction of each masked image
patch, BEIT [2] heavily enhanced the transfer performance of visual models.
Moreover, with the pixel-level information reconstruction of each masked patch,
MAE [16] further improved the final results. Concurrently, some similar MIM-
based schemes [37, 34, 5] have been proposed and pushed forward the develop-
ment of visual pre-training. In this work, we also utilize the MIM-based frame-
work but design a special multimodality-driven pretext task to guide the visual
models learning more multimodal semantic knowledge.

2.2 Multimodal Pre-training

Information is commonly reserved as different modalities in real scenarios. Be-
cause of its increasing importance, multimodal pre-training has been attract-
ing more and more researchers [26, 19, 21, 8, 22]. The existing multimodal pre-
training works can be mainly summarized with two mainstream directions ac-
cording to the network architecture, i.e., one-stream multimodal network archi-
tecture based methods and two-stream multimodal network architecture based
methods. For most works with one-stream multimodal architecture [22, 8, 21],
they usually encoded the language and image into discrete tokens, and then
fused the information of these tokens in the early stage of network. Though these
works can perform well on fusing different modalities, their inference efficiencies
are relatively poor. To address this challenge, researchers tend to utilize two-
stream network architecture [26, 19] for processing the interaction of different
modalities. For example, CLIP [26], a recent state-of-the-art multimodal pre-
training approach, extracted each modality information with one alone branch,



MVP: Multimodality-guided Visual Pre-training 5

and then simply aligned the extracted feature from each branch into a common
multimodal representation space. Benefiting from it pre-trained on 400 million
image-text pairs, CLIP heavily pushed forward the transfer performance of mul-
timodal models on a wide range of downstream tasks. In this work, we have no
expects to design a new multimodal pre-training framework, but utilize a pre-
trained multimodal model to guide the semantic knowledge learning of visual
pre-training models.

3 Our Approach

3.1 Problem Setting

Given a large-scale image dataset D = {In}Nn=1, the goal of visual pre-training
is to guide a computational model to learn transferable knowledge on D. After
pre-training, the visual backbone with pre-trained parameters will be trans-
ferred into different visual downstream tasks for improving the corresponding
performances. Currently, many self-supervised visual pre-training schemes are
proposed to enhance the transfer performance of models by designing different
pretext tasks. Given a pretext task as L(·) and visual model as fvis(In;θ), the
goal of self-supervised visual pre-training can be written as:

min
θ

EIn∈D[L(In, fvis(·;θ))], (1)

where EIn∈D[·] denotes the expectation on the entire training dataset, D.

3.2 Masked Image Modeling with Tokenizer

As presented in Eqn (1), the core of self-supervised visual pre-training is to design
a proper pretext task. As vision transformers [14, 3] achieve competitive results
on visual recognition tasks, researchers [2, 12] resort to BERT-style schemes in
natural language processing and design masked image modeling (MIM) based
pretext tasks to guide the visual pre-training. Given an image I ∈ RH×W×3, it
can be divided into several image patches {p1,p2, . . . ,pM}, where M represents
the number of patches, and these patches are further encoded as isolated tokens
{t1, t2, . . . , tM} in the vision transformer backbone. MIM-based methods usually
mask percentages of tokens as {t1, . . . , t̂m, . . . , tM}, where t̂m represents that the
m-th token is replaced by a MASK token. Then, MIM-based methods [12, 2, 34]
utilize the pretext by predicting the information (provided by the Tokenizer) of
these masked tokens for pre-training visual models.

Take BEIT (a current state-of-the-art MIM-based method) as an example,
the optimization goal of MIM with Tokenizer can be formulated as:

LBEIT
.
= −

∑
m∈M log(zGT

m |zvism ), (2)

where the loss is computed between the extracted features,

{zvis1 , . . . , zvism , . . . , zvisM } = fhead(fvis({tCLS, t1, .., t̂m.., tM})), (3)
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Fig. 2. Framework of the proposed MVP, where each M (MASK) denotes a masked
token, and Fvis

m /Gvis
m (or Fvis

CLS/G
vis
CLS) denotes the extracted features of each normal (or

CLS) token. MVP is designed with the token-level multimodal information prediction
pretext task to guide the pre-training of visual model.

and ground-truth guidance,

{zGT
1 , . . . , zGT

m , . . . , zGT
M } = Tokenizer({p1, . . . ,pm, . . . ,pM}). (4)

In the above equations,M denotes the set of masked tokens, Tokenizer(·) denotes
the utilized vision tokenizer (e.g., d-VAE in BEIT) to extract visual features
from the given patches, fhead(·;θ) represents the prediction head, and tCLS

denotes the CLS token in the vision transformer, respectively. In this work, we
also utilize a similar framework with BEIT but modify the prediction target with
the guidance of multimodal knowledge.

3.3 Multimodality-guided Visual Pre-training

As described in Section 1, the semantic discrimination of representation learned
by previous MIM-based methods is relatively weak, for that they lack explicit
semantics learning guidance. Target to address this problem, we require the
tokenizer in MIM-based methods [2, 12] to be aware of semantic information.
To leverage weak supervision but not bias towards a specific semantic space, we
decide to use a tokenizer pre-trained by multimodal data. Specially, we resort to a
pre-trained multimodal model to extract semantic knowledge of each token, and
then pre-train visual models with a multimodal knowledge prediction task. The
proposed scheme is named Multimodality-guided Visual Pre-training (MVP),
and the overview of MVP is shown in Figure 2. In the following, we will introduce
the details of each module in MVP.

Multimodal Semantics Extraction. The goal of this module is to extract
discriminative semantic knowledge but not bias towards a specific semantic space
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for the visual pre-training purpose. As shown in Figure 1, the language can better
describe the semantics inside each image compared with the single annotated
label. Motivated by this, our MVP utilizes a recent state-of-the-art multimodal
pre-training model (CLIP, which has been pre-trained on 400 million image-text
pairs) to extract multimodal semantic knowledge. Given the large-scale image-
text pairs as {(Tn,Jn)}N

′

n=1, where Tn describes the semantic content of each
image Jn (to be distinguished from In), the optimization goal of CLIP can be
simply formulated as:

Dist(Jn,Tn) < ∀n′ ̸=nDis(Jn,Tn′), (5)

in which

Dis(Jn,Tn′) = ⟨gvis(Jn), g
lang(Tn′)⟩, (6)

where ⟨·, ·⟩ denotes the cosine distance measurement. gvis(·) and glang(·) rep-
resent the vision and language branch of the multimodal model (i.e., CLIP),
respectively. Benefiting from Eqn (5), whether the visual feature extracted by
the vision branch or the text feature extracted by the language branch is finally
projected into a common multimodal space, and the semantics of this space is
discriminative undoubtedly for it pre-training on the huge image-text pairs.

To integrate with the MIM framework, our MVP chooses the transformer
architecture as vision branch of CLIP to extract multimodal semantics. Thus, the
corresponding extracted multimodal knowledge of each token can be represented
as:

{Gvis
CLS,G

vis
1 , . . . ,Gvis

m , . . . ,Gvis
M } = gvis({tCLS, t1, . . . , tm, . . . , tM}), (7)

where Gvis
m denotes the feature of visual token tm, and Gvis

CLS represents the
global feature extracted on the CLS token.

Multimodal Information Prediction. After obtaining the multimodal fea-
ture of each token, MVP further utilizes the designed multimodal information
prediction pretext task to guide the pre-training of visual models. Same with
BEIT, MVP firstly uses the Blockwise Masking scheme [2] to mask percentages
of tokens, and then inputs these masked tokens and remained unmasked tokens
into the visual model to extract visual features. Furthermore, one extra predic-
tion head P head(·) as BEIT is added to project these token-level visual features
into the multimodal space. Therefore, the predicted multimodal information of
each visual token can be formulated as:

{Fvis
CLS,F

vis
1 , . . . ,Fvis

m , . . . ,Fvis
M } = fhead(fvis({tCLS, t1 . . . , t̂m, . . . , tM})), (8)

where Fvis
m denotes the predicted multimodal feature of visual token t̂m accord-

ing to the visual models, and Fvis
CLS represents the predicted global multimodal

feature of the CLS token.
After obtaining the predicted multimodal feature of each token according to

Eqn (8) and the corresponding ground truth generated by Eqn (7), MVP can
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guide the pre-training of visual models by achieving the token-level alignment
of these features:

LMVP
.
= −

⟨Fvis
CLS,G

vis
CLS⟩+

∑M
m=1⟨Fvis

m ,Gvis
m ⟩

M + 1
, (9)

Driven by the alignment of Eqn (9), MVP can guide the candidate visual
model well to learn the common semantic knowledge of different modalities both
in the global level (the alignment on the CLS token) and patch level (the align-
ment on each visual token). Thus, compared with recent self-supervised visual
pre-training approaches, the pre-trained knowledge of visual models driven by
MVP will contain more discriminative but relatively unbiased information. More
evaluation and analysis of MVP are introduced in Section 4.

Implementation Details. Following most MIM-based approaches [16, 2, 12],
we mainly utilize a series of ViT backbones [14] to evaluate the effectiveness
of MVP. To achieve the token-level alignment as Eqn (9), we directly utilize
the vision branch with ViT-Base/16 backbone of CLIP, to extract multimodal
knowledge. Notably, whether pre-training the visual model with ViT-Base/16
or ViT-Large/16 backbone, the backbone of vision branch in CLIP is always
selected with ViT-Base/16. During pre-training, the parameters of vision branch
in CLIP are frozen, and only of the parameters in candidate pre-trained visual
model are tuned. For all variants of ViT in this paper, the image resolution
of the input is set as 224 × 224, and Blockwise Masking scheme is employed
to mask 75 visual tokens as BEIT [2]. Additionally, AdamW optimizer and a
cosine decay learning rate scheduler are utilized. The initial learning rate and
weight decay are set as 1.5e-3 and 5e-2, respectively. Same with most previous
works [3, 34], MVP is pre-trained on ImageNet-1K lasting for 300 epochs. In the
following of this paper, we denote ViT-Base/16 as ViT-B/16, and ViT-Large/16
as ViT-L/16 for short, respectively.

3.4 Relationship to Prior Work

Some concurrent works [10, 38] seem similar to our MVP, which also utilize
language to guide the pre-training of visual models. However, there are still
differences in motivations and implementations with ours. Virtex [10] utilized a
heavy-weight textual prediction head (vision transformer architecture) to process
the visual feature extracted by the convolutional network, and then predict the
corresponding caption of each image. Though Virtex has achieved competitive
transfer performances on different visual downstream tasks, there still exists a
problem that the pre-training capability of visual models heavily relies on the
textual head. However, the image caption prediction task is very challenging
for that each image can be described by different texts. Therefore, Virtex is
hard to be pre-trained on super large-scale image-text datasets. Differently, our
MVP simply designs the multimodal semantics prediction task on visual models
with an additional light-weight prediction head (only one fully-connected layer),
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which guides the pre-training of visual models to learn the common semantic
knowledge of different modalities (provided by CLIP).

Additionally, MaskFeat [34] is the most similar work with ours currently.
It also designs a feature prediction task based on the masked image modeling
framework. However, MaskFeat only utilizes the visual feature (e.g., HOG fea-
ture) to supervise the pre-training of visual models, which is relatively weak from
the view of semantics discrimination. Differently, the motivation of our MVP is
resorting to the semantics guidance of different modalities. To achieve this, MVP
utilizes a pre-trained multimodal model to replace the tokenizer in BEIT, and
designs a corresponding feature prediction pretext task. Extensive experiments
show our MVP enjoys lots of benefits on a wide range of downstream tasks
compared with MaskFeat.

4 Experimental Results

4.1 Datasets and Downstream Evaluation Setup

Same with most previous works [2, 16, 12], MVP is mainly evaluated on im-
age classification and semantic segmentation tasks. The details of our utilized
datasets and experimental settings are introduced in the next.

Datasets. In this paper, MVP is mainly evaluated on the image classification
task of ImageNet-1K, which contains about 130 million labeled images. Addi-
tionally, ADE20K [40] is a relatively challenging semantic segmentation dataset,
and it contains 25K images of 150 categories. In this paper, we also conduct
evaluations on the semantic segmentation task of ADE20K.

Image Classification Setup. While end-to-end fine-tuning the visual mod-
els pre-trained by MVP, we follow the most of hyper-parameter settings in the
work [2]. AdamW optimizer is utilized, and the weight decay is set as 5e-2. The
initial learning rate is set with 4e-3 for ViT-B/16, and 1e-3 for ViT-L/16, re-
spectively. Additionally, a cosine decay learning rate scheduler is applied. We
fine-tune the ViT-B/16 last for 100 epochs with 20 warm-up epochs, and 50
epochs with 5 warm-up epochs for ViT-L/16.

Semantic Segmentation Setup. While fine-tuning the pre-trained visual
models on semantic segmentation task of ADE20K, we also follow the most of
hyper-parameter settings in BEIT [2], in which the resolution of input image is
set as 512× 512, AdamW optimizer is applied and the initial learning rate is set
as 3e-4 for ViT-B/16, and 2e-5 for ViT-L/16, respectively. The batch size is set
as 16, and the models are fine-tuned last for 160K steps.

4.2 Comparisons on Image Classification

In this section, we firstly conduct comparisons with recent state-of-the-art vi-
sual pre-training approaches on ImageNet-1K with end-to-end fine-tuning mode.
As shown in Table 1, our MVP achieves consistently competitive results while
pre-training different visual models. For example, MVP achieves 84.4% Top-1
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Table 1. Comparison to the state-of-the-arts on ImageNet-1K. All entries are firstly
pre-trained on ImageNet-1K, and then further fine-tuned with end-to-end mode. The
image resolution of the input for all entries is set as 224× 224.

Method Model Pre-training Epochs Top-1 (%)

DINO [3] ViT-B/16 300 82.8
BEIT [2] ViT-B/16 800 83.2
MAE [16] ViT-B/16 1600 83.6

MaskFeat [34] ViT-B/16 1600 84.0
MVP (ours) ViT-B/16 300 84.4

BEIT [2] ViT-L/16 800 85.2
MAE [16] ViT-L/16 1600 85.9

MVP (ours) ViT-L/16 300 86.3

accuracy of ViT-B/16 on ImageNet-1K, which outperforms the baseline (BEIT)
with 1.2%. As for the ViT/L-16 backbone, MVP also surpasses BEIT with 1.1%
on Top-1 accuracy. Additionally, compared with MaskFeat, which also utilizes
a feature prediction scheme similar to MVP, our work still shows better trans-
fer performances while fine-tuning on ImageNet-1K, e.g, 0.4% improvement on
ViT/B-16 and 0.6% improvement on ViT/L-16, respectively.

MVP is also evaluated on the linear probing test of ImageNet-1K, and it
achieves 75.4% Top-1 accuracy, which significantly outperforms the current MIM-
based methods (e.g., BEIT reports a 37.6% accuracy and MAE achieves a 67.8%
accuracy). The above consistent improvements clearly demonstrate the superi-
ority of our multimodality-guided visual pre-training scheme. More evaluations
and analysis can be seen in Section 4.4. We admit that there is still a weak per-
formance gap in the linear probing task of MVP compared with previous self-
supervised learning approaches (e.g., DINO reports a 78.2% accuracy), which
could own to the MIM framework and will be left for future study.

4.3 Comparisons on Semantic Segmentation

Different from the image classification where the single object is present in each
image, semantic segmentation is a more challenging task and each image con-
tains multiple instances. Given that the text can fully describe the presented
instances and their relationships inside each image, our MVP driven by multi-
modal information should achieve much better transfer performance on semantic
segmentation datasets.

To evaluate this, we conduct extensive comparisons with recent state-of-the-
arts on ADE20K. As shown in Table 2, our MVP shows significant advantages
on this task. For example, as for the recent MIM-based methods with different
visual feature or pixel information reconstruction pretext tasks, they achieve the
nearly same transfer performance, e.g., 45.6% mIoU of BEIT and 48.1% mIoU
of MAE on ViT/B-16, respectively. Differently, with the guidance of multimodal
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Table 2. Comparison to the state-of-the-arts on ADE20K. All models are pre-trained
on ImageNet-1K and fine-tuned on ADE20K. The image resolution of the input for all
entries is set as 512× 512.

Method Model Pre-training Epochs mIoU (%)

BEIT [2] ViT-B/16 800 45.6
MAE [16] ViT-B/16 1600 48.1

MVP (ours) ViT-B/16 300 52.4

Table 3. Comparisons of BEIT and our MVP pre-trained on different datasets. All
evaluations are conducted on ADE20K, and the image resolution of the input for all
models is set as 512× 512. BEIT∗ represents that we reproduce its result on ADE20K
with the officially released model.

Method Model Pre-training Dataset mIoU (%)

BEIT∗ [2] ViT-B/16 ImageNet-21K 46.3
MVP (ours) ViT-B/16 ImageNet-1K 52.4

BEIT∗ [2] ViT-L/16 ImageNet-21K 51.8
MVP (ours) ViT-L/16 ImageNet-1K 54.3

semantic knowledge, our MVP heavily pushes forward the transfer results, e.g.,
3.6% improvement compared with the previous best reported performance of
ViT-B/16.

It is admitted that the above significant improvements of our MVP could
own to the super large-scale multimodal dataset while pre-training CLIP. To
valid this, we also conduct comparisons with the BEIT model pre-trained on
ImageNet-21K, which contains about 21K classes. As shown in Table 3, MVP
still shows consistent advantages in transferring pre-trained knowledge. Notably,
there are lots of coarse aligned image-text pairs on websites, and they are nearly
free to be available. Therefore, the requirement of MVP with a pre-trained mul-
timodal model is not a hard constrain for the visual pre-training community.

4.4 Ablation Study

The effect of different pre-training epochs. In this section, we first verify
the effect of different pre-training epochs on MVP. As shown in Table 4, with
the pre-training epochs increasing, the transfer performance of MVP is gradually
improved, e.g., while enlarging the pre-training epochs from 100 to 300, there is
a 0.5% improvement on Top-1 accuracy of ImageNet-1K and 0.4% improvement
on mIoU metric of ADE20K, respectively.
The effect of guidance with different knowledge. There is another question
is whether the improvement of MVP is taken by the designed feature prediction
pretext task or the guidance of multimodal semantic knowledge. One indirect
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Table 4. The effect of different pre-training epochs on MVP.

Model Epochs ImageNet-1K(Top-1) ADE20K(mIoU)

ViT-B/16 100 83.9 52.0
ViT-B/16 300 84.4 52.4

Table 5. The effect of utilizing different guidance on MVP.

Guidance Model Epochs ImageNet-1K(Top-1) ADE20K(mIoU)

DINO ViT-B/16 300 83.6 47.0
CLIP ViT-B/16 300 84.4 52.4

evidence is that our MVP achieves much better transfer performances on down-
stream tasks compared with MaskFeat, a recent state-of-the-art with the pretext
task of reconstructing the HOG feature. However, the discrimination of HOG
feature is relatively weak. To better evaluate it, we resort to the guidance of a
recent self-supervised visual pre-training method, DINO [3]. Similar to MVP, we
firstly utilize the ViT-B/16 backbone pre-trained by DINO to extract its visual
feature of each token, and then these features are regarded as the prediction
target to guide the visual models pre-training. The comparisons are shown in
Table 5. Generally, the model with guidance of a pre-trained multimodal model
can achieve much better results compared with the model driven by visual pre-
training model, especially evaluated on dense vision downstream task, i.e., 5.4%
improvement on ADE20K. The above significant improvement further evaluates
the superiority of our multimodality-guided visual pre-training scheme.

Analysis of representation learning in MVP. Though MVP achieves excel-
lent transfer performances on different downstream tasks, there remains a ques-
tion of whether it learns dense visual features as the corresponding language
describes. To evaluate this, we conduct visualization analysis on the representa-
tion of MVP. For that there is no explicit constrain on CLS token of BEIT to
extract the global feature, we cannot conduct comparisons on the learned global
representation of BEIT and our MVP. To analyze the character of representa-
tion in MVP, we utilize DINO, a recent state-of-the-art self-supervised learning
method, to compare. For both MVP and DINO, we use CLS token as the query
to look for the corresponding response map. We average their attention maps of
all heads in ViT-B/16 backbone and then present the results in Figure 3.

Generally, the previous self-supervised learning method (DINO) only focuses
on the specified foreground (e.g., the dog and the polar bear), but ignores other
useful information. Differently, MVP can better describe the overall scene and
instances inside each image, e,g., “a man and his dog play together in the sofa”,
“the dog is seeing the sunset”, and etc. Moreover, as for the complex images in
ADE20K, e.g, ”there are two chairs and one table in this room” and “peoples
are looking at the multiple murals on the wall”, MVP seems to have the ability
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Fig. 3. Visualization of representation learned by different visual pre-training methods.
The presented feature map is generated by averaging their attention maps of all heads in
ViT-B/16 with CLS token as the query. Images in the first row are from ImageNet-1K,
and images of the fourth and seventh row are from ADE20K. Generally, the previous
self-supervised visual pre-training method (DINO) only attends on limited regions.
Differently, with the guidance of multimodal semantics, MVP can handle the complex
image and better describe the overall scene and instances inside each image.
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to extract the whole of its content inside each image from the view of attention
map, which could be the reason of that MVP performs much better than previous
visual pre-training works on the semantic segmentation task.

As discussed above, it is concluded that MVP can better learn the multi-
grained dense semantic knowledge inside each image. This phenomenon further
reflects the superiority of visual pre-training driven by multimodal semantic
knowledge. In the future, we will evaluate our MVP on more dense vision down-
stream tasks.

4.5 Discussions and Future Perspectives

First, we shall recognize that MVP relies on the representation ability brought
by multimodal pre-training. Therefore, the comparison between MVP and pure
vision pre-training algorithms is not completely fair. However, this paper hopes
to deliver the message that pure vision pre-training, especially the recent MIM-
based approaches [2, 16], suffers the limitations of learning semantic information
– this seems not to be solved by simply using larger datasets (e.g., ImageNet-
21K, used by BEIT). We advocate for using of multimodal information towards
a potential breakthrough.

Second, we notice that MVP, like BEIT, is built upon a pre-trained tokenizer
and thus incurs extra training costs. On the other hand, provided a multimodal
pre-trained model, MVP enjoys a higher training efficiency in the pure vision
domain. Going further along this direction may enlighten the community to es-
tablish multimodal pre-training as an upstream task of single-modal pre-training.
In the future, it will be interesting to extend the idea to more languages [23] and
even more data modalities [1], observing their contribution to visual representa-
tion learning.

5 Conclusion

In this paper, we present Multimodality-guided Visual Pre-training (MVP), the
first work to introduce guidance from other modalities on masked image mod-
eling. By replacing the tokenizer with the vision branch of CLIP on BEIT and
simply modifying the prediction task, MVP can better learn the multimodal
semantic knowledge inside each image. Extensive experiments on a wide range
of visual downstream tasks have clearly shown the effectiveness of MVP on pre-
training visual models. Importantly, this work points a new direction for visual
pre-training with other modalities. In the future, the effective visual pre-training
schemes with more data modalities guidance will be designed.
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