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Abstract. Unsupervised anomaly detection on image data is notori-
ously unstable. We believe this is because many classical anomaly detec-
tors implicitly assume data is low dimensional. However, image data is
always high dimensional. Images can be projected to a low dimensional
embedding but such projections rely on global transformations that trun-
cate minor variations. As anomalies are rare, the final embedding often
lacks the key variations needed to distinguish anomalies from normal
instances. This paper proposes a new embedding using a set of locally
varying data projections, with each projection responsible for persever-
ing the variations that distinguish a local cluster of instances from all
other instances. The locally varying embedding ensures the variations
that distinguish anomalies are preserved, while simultaneously allowing
the probability that an instance belongs to a cluster, to be statistically
inferred from the one-dimensional, local projection associated with the
cluster. Statistical agglomeration of an instance’s cluster membership
probabilities, creates a global measure of its affinity to the dataset and
causes anomalies to emerge, as instances whose affinity scores are sur-
prisingly low.

Keywords: anomaly detection, unsupervised, high dimensions, Bayesian

1 Introduction

As our attention is limited, we are often forced to trust data labels. What if
the labels are wrong? The Internet’s growth is driving an explosion of data and
demands on our attention. This in turn creates a growing need for automated
anomaly detectors to aid data curation. Unfortunately, visual (image based)
anomaly detectors are notoriously unstable. This paper attempts to explain this
instability and suggest a solution.

As anomalies are rare, most traditional anomaly detectors assume anomalous
regions of a sample space are significantly less densely populated than normal
regions, a cue which can be discovered through density (statistical) analysis.
Unfortunately, the assumption is inappropriate for image data. Other things

Unless otherwise stated, the term anomaly detection is used to refer to unsupervised
anomaly detection, where training data is unavailable [10].
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Fig. 1. Performance of anomaly detectors that are: distance based, Isolation Forest [34];
manifold based, OC-SVM [12]; and deep-learned, DAGMM [51], RSRAE [26]. Error
bars represent performance fluctuations within the dataset. LVAD is notably robust to
changes in feature, dataset and anomaly percentage.

being equal, statistical sample spaces grow exponentially with the number of
dimensions. As image data is high dimensional, image sample spaces tend to
be so huge that all regions are sparsely populated, making traditional, density
based anomaly detection ill-conditioned.

The conventional solution is to re-establish density by projecting image data
to a low dimensional embedding. This can be achieved through global projec-
tions like representation learning [33, 20, 42] and dimensionality reduction [18,
36, 3]. This approach has proven to be effective on many vision problems but is
inappropriate for anomaly detection. Anomalies are relatively rare. Thus, their
associated variations make up a correspondingly minor fraction of the dataset’s
total variation. As dimensionality reduction algorithms can only preserve the
major variations, the final embedding may well lack the minor variations that
distinguish anomalies from normal instances.

This paper proposes an alternative approach to embedding. Let us assume
local data clusters are outcomes of individual, high dimensional generative pro-
cesses. Shell theory [30] suggests that instances of each generative process will be
uniquely close to their mean. Thus, the likelihood an instance belongs to a spe-
cific cluster can be determined from its distance to the cluster mean. This leads
to an embedding scheme in which data is embedded as a set of one-dimensional
distance-from-mean projections, with each projection representing a space in
which members of its associated cluster (generative process) are separable from
all other instances.

Integrating shell theory [30] with Bayes Rule, we can infer the probability
a given instance is a member of its associated cluster, from the sample density
of its distance projection. Agglomerating the probabilities yields a statistical
quantification of the affinity of each instance to the dataset. Instances with
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surprisingly low affinity scores are deemed anomalous. We term this Locally
Varying Anomaly Detection or LVAD.

Unlike traditional anomaly detectors which infer class membership using all
dimensions simultaneously, LVAD uses a bottom up inference scheme in which
local cluster membership is inferred from individual, one dimensional projections.
These inferences are then merged into an estimate of class membership. This
effectively decouples inference stability from the number of projections, allowing
LVAD to employ large numbers of local projections to model data variations as
faithfully as possible. Experiments show LVAD is effective on a wide range of
datasets, features and anomaly percentages.

1.1 Related Works

Conceptually, LVAD has many similarities with cluster based learning tech-
niques [32, 24, 22, 50]. These are widely employed in machine learning but are
seldom used in anomaly detection. This may be because anomalous instances
can potentially have low variance clusters which allow for self-validation. This
would introduce instabilities that eliminate the gains made through clustering’s
ability to learn the normality structure. LVAD counteracts this trend through
its statistical agglomeration process, creating an anomaly detector whose per-
formance steadily improves with the number of clusters.

LVAD can be considered a classical anomaly detector. However, unlike most
classical techniques, LVAD’s distance based statistical formulation can accom-
modate high dimensions. This reduces the reliance on heuristic’s like manifold
fitting [12, 31, 40] or nearest neighbor assignment [5, 34]; and avoids density based
statistics [39, 6, 7] that are ill-conditioned in high dimensions. This statistically
grounded approach may be contributing to LVAD’s notably graceful degrada-
tion, with high accuracy on easy tasks, where anomaly percentages are low; and
a slow drop in accuracy as anomaly percentages increase.

Beyond classical anomaly detectors, there is a range of deep anomaly detec-
tors [15, 9, 49, 51, 26, 28, 8, 37, 43] which seek to simultaneously refine the image’s
feature representation and discover anomalies. This approach can lead to surpris-
ingly high accuracy but can also cause unexpected failures, which arise because
we lack a mathematical framework to analyze such detectors. LVAD is more con-
servative and assumes the image’s feature representation is given. Nonetheless,
LVAD’s performance is respectable, with evaluations on a wide range of datasets
and anomaly percentages, showing it to be consistently the best or close to the
best algorithm.

While the focus is often of the anomaly detection algorithm, the impact of
normalization pre-processing can be just as large. This has been noted in many
papers [30, 16, 46]; however, there is no consensus regarding which normalization
scheme is most appropriate [25]. We contribute to this debate with a theoretical
argument in favor of layer (instance) normalization [2], which significantly im-
proves the performance of LVAD and many other traditional anomaly detectors.

Finally, LVAD draws inspiration from sources beyond the field of image
anomaly detection. Most directly, we are influenced by adjacent fields of semi-
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A. STL-10 (ResNet-50 features [21]) B. MNIST (rasterized pixel features)

10 1100 101

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

AU
RO

C
1. KDE 

 dim: 100, 
 width: 0.2.

10 1100 101

2 .KDE 
 dim: 1, 

 width: 0.2.

10 1100 101

Anomaly Percentage

3. KDE 
 dim: 5, 

 width: 0.2.

10 1100 101

4. KDE 
 dim: 100, 
 width: 1.

10 1100 101

5. LVAD 
 (Ours)

10 1100 101

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

AU
RO

C

1. KDE 
 dim: 100, 
 width: 0.2.

10 1100 101

2 .KDE 
 dim: 1, 

 width: 0.2.

10 1100 101

Anomaly Percentage

3. KDE 
 dim: 5, 

 width: 0.2.

10 1100 101

4. KDE 
 dim: 100, 
 width: 1.

10 1100 101

5. LVAD 
 (Ours)

Fig. 2. Understanding anomaly detection with a naive algorithm. Kernel density esti-
mation, KDE [39] is applied after normalizing the data (see Sec. 3.4) and projecting
it onto Principal Components [18]. Density is used as the anomaly score. Number of
dimensions and KDE bandwidth are given as dim and width respectively.

supervised anomaly detection [4, 44, 23, 41] and video anomaly detection [47, 38].
From a theoretical perspective, our framework draws on works from high dimen-
sional statistics [30, 32, 42] and dimensionality reduction [18, 36, 3]. We also take
inspiration from many empirical studies, such as evaluation of data normaliza-
tion [30, 2, 25, 13], cluster based projections [11, 1] and general discussions on
open-set learning [45].

2 Understanding Anomaly Detection

We begin by studying a naive anomaly detector to better understand the problem
of visual anomaly detection.

Let S be a set of images, a minority of which are anomalous. The ith image
in S is denoted xi ∈ S, with the binary random variable, Y , indicating if a given
instance is anomalous:

Y =

{
1, if instance is normal;

0, if instance is anomalous.
(1)

Our goal is to develop an anomaly detection function, a(x), that gives the like-
lihood an instance is normal. Ideally,

a(x) = p (Y = 1 |x), (2)

where p (Y = 1 |x) is the probability x is normal.
Assuming normal and anomalous instances are different and anomalies are

in the minority, an estimated sample density can be a proxy for likelihood and
thus anomaly probability; i.e. :

a(x) = kde(x), (3)
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where kde(.) denotes the kernel density estimate, KDE [39].
As explained in the introduction, image data inhabits a huge, high dimen-

sional sample space where data-points are sparsely scattered. Thus, we follow
conventional wisdom, and re-establish density using PCA [18], to project data
onto a low dimension embedding. The kernel density is estimated on the embed-
ding. The performance of this naive anomaly detector is plotted in Fig. 2.

In Fig. 2A.1., density is estimated on the relatively high 100 dimensions. As
predicted by conventional wisdom, the high dimensional density estimation is
ill conditioned; and detector accuracy declines rapidly as anomaly percentages
increase. Figure 2A.2. and Fig. 2A.3. are more interesting. In this case, a very
low dimensional embedding is used. The resultant detector exhibits performance
reversal, and is accurate on difficult cases, where anomaly percentages are high;
but fails on simple cases, where anomaly percentages are low.

We suggest that performance reversal is caused by PCA’s dimensionality
reduction. Like many other dimensionality reduction algorithms, PCA achieves
the low dimensional embedding by truncating away minor data variations. As
anomalies form a small fraction of the dataset, the final embedding may no
longer have the variations which distinguish anomalous instances, morphing an
easy problem into a difficult one. When the anomaly percentage becomes large,
dimensionality reduction is more stable and detection accuracy rises accordingly.

Figure 2A.4. and Fig. 2B.4. show another twist. If the number of dimensions
is high but the density kernel is large enough to agglomerate almost all points,
the naive anomaly detector is stable but somewhat inaccurate. The inaccuracies
likely arise from an overly coarse agglomeration. Perhaps the key to anomaly
detection lies in statically meaningful, fine-grained agglomeration.

3 Our Approach

Drawing a lesson from the previous section, we avoid explicit detection of anoma-
lies, as this can be unstable when anomaly percentages are low. Rather, we seek
to establish an affinity score between instances, with the goal of having anomalies
emerge as instances whose affinity scores are surprisingly low.

3.1 The Anomaly Scoring Function

Let us assume each image instance, xi ∈ S is the outcome of one of m high
dimensional generative processes:

{aj ,µj | j ∈ {1, 2, . . . ,m}}, (4)

where aj is the probability that the jth generative process is normal and µj is
the generative process’s mean. Yj is used to indicate if a given instance is an
outcome of the jth generator.

Yj =

{
1, if the instance derives from the jth generative process;

0, otherwise.
(5)
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Thus, the anomaly detection function of Eq. (2) becomes a sum of the probability
of the given instance, x, arising from each generative process, multiplied by the
probability that the generative process is normal:

a(x) = p (Y = 1 |x) =
m∑
j=1

aj × p (Yj = 1 |x). (6)

As explained in the introduction, the high dimensional nature of x means
p (Yj = 1 |x) is difficult to estimate directly. Thus, our first task is to find a low
dimensional projection where the individual p (Yj = 1 |x) terms can be estimated
from data. These can then be agglomerated into an overall anomaly score.

Shell theory [30] argues that coincidental similarity between high dimensional
instances is unlikely. Thus, each high dimensional generative process will have
an associated distinctive-shell centered on it’s mean. Instances of the generative
process will almost surely lie on the distinctive-shell; and all other instances will
almost surely fall outside the shell. i.e.

p (Yj = 1 |x) =

{
1, if dj(x) = rj ;

0, otherwise.
p (Yj = 0 |x) =

{
1, if dj(x) > rj ;

0, otherwise.
(7)

where µj is the mean of the jth generator; rj is the radius of its distinctive shell;
and dj(x) = ∥µj − x∥ is the distance of an instance x from µj .

Equation (7) suggests p (Yj = 1 | dj(x)), which we term the distance density
functions, may be an excellent function for scoring membership in generator-j.
This is because of two reasons. Firstly, the distance density functions is defined
on one dimension and thus can potentially be estimated from data. Secondly,
the distance density functions is highly sensitive to an instance’s membership
with generator-j:

p (Yj = 1 |x) = p (Yj = 1 | dj(x)) = 1, if x ∈ generator-j;

p (Yj = 1 |x) = p (Yj = 0 | dj(x)) = 0, if x /∈ generator-j.
(8)

Unfortunately, the distance density function is usually too sensitive to be practi-
cal, with minor errors in density estimation inducing large errors in the anomaly
score. This motivates us to develop the bounded density function, which can
identify generator membership but uses gentler penalty function.

Let τj denote some upper bound of an instance’s distance to µj . An instance,
x, is considered to satisfy τj if:

dj(x) ≤ τj . (9)

Given an instance satisfies τj , with some abuse of notation, the probability that
it is also a member of generator-j, is written as:

p (Yj = 1 | τj) =
∫ τj
0

p (Yj = 1 | dj(x) = θj) dθj∫ τj
0

p (Yj = 0 | dj(x) = θj) dθj +
∫ τj
0

p (Yj = 1 | dj(x) = θj) dθj
.

(10)
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We term this the bounded probability density function.
From Eq. (7) and Eq. (10), we know the bounded probability density function

is 1 when the bound is at the shell radius, τj = rj ; and declines gradually as
τj increases beyond rj . Thus, if we set the bound to the actual distance of
an instance x from µj , the density function can indicate if x is a member of
generator-j:

p (Yj = 1 | τj = dj(x)) = 1, if x ∈ generator-j;

p (Yj = 1 | τj = dj(x)) < 1, if x /∈ generator-j.
(11)

Unlike the distance probability density of Eq. (8), the bounded probability den-
sity’s non-member penalty is gentler, making it somewhat forgiving of errors in
the estimated pdf.

Replacing the estimation of membership probability in Eq. (6) with the
bounded probability density, we have the final anomaly score:

ab(x) =

m∑
j=1

aj × p (Yj = 1 | τj = dj(x)). (12)

Note that the anomaly score in Eq. (12) is slightly different but arguably more
practical than the idealized score in Eq. (6).

3.2 Estimating the Bounded Probability Density Function

Bayes rule allows the bounded probability density to be decomposed into cumu-
lative density functions which can be estimated from the data:

p (Yj = 1 | τj) =
p (τj |Yj = 1) p (Yj = 1)

p (τj)
. (13)

where p (τj) is the probability that an instance is closer to mean µj than the
bound τj ; and p (τj |Yj = 1) is the probability that an instance of generator-j is
closer to µj than τj .

Unfortunately, when τj is less than rj , Eq. (13) becomes numerically unstable.
This is because, as shown in Eq. (7), distinctive-shells are hollow. Thus, if τo < rj ,

p (τj = τo |Yj = 1) ≈ 0, p (τj = τo) ≈ 0, (14)

making both the numerator and denominator of Eq. (13) approximately zero.
Such instability is not a problem in the ideal case, as the bound, τo will never be
used for inference. However, in practice, instances are occasionally much closer
to the shell mean, than the shell radius. If so, inference with Eq. (13) involves
a numerically unstable division of two small numbers. To address this problem,
we modify the bounded probability estimate to:

p (Yj = 1 | τj) =
p (τj |Yj = 1) + ϵ

(p (τj |Yj = 1) + ϵ) + p (τj |Yj = 0)× p(Yj=0)
p(Yj=1)

. (15)
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where ϵ is a small constant. As p (τj = τo|Yj = 0) ≪ p (τj = τo|Yj = 1), Eq. (15)
ensures p (Yj = 1 | τj = τo) ≈ 1, simultaneously providing numerical stability
and intuitively validating instances that are usually close to µj , as members
of generator-j.

3.3 Algorithmic Implementation

Pre-processing : By default, ResNet-50 features [21] are used as image represen-
tation; this is followed by instance (layer) normalization [2], detailed in Sec. 3.4.

Generator parameters, aj ,µj : These generator parameters from Eq. (4) are ob-
tained through K-Means clustering of the given features; where the default value
for cluster number is 300. aj is the fraction of features assigned to cluster-j; µj

is the mean of cluster-j.

Bounded Density Function, p (Yj = 1 | τj): This is estimated using Eq. (15). Com-
putation of individual components is as follows:

1. p (Yj = 1): The probability an instance is created by the generator underlying
cluster Yj . As data is over-clustered, instances of a generator may be divided
among multiple clusters. This can usually be ignored as subsequent agglomer-
ation cancels out the effects of over-clustering. p (Yj = 1) is the exception and
requires the actual fraction of instances deriving from the underlying generator.

Let nj be the number of instances in cluster-j; rj be the estimated shell
radius of cluster-j; and sj the standard deviation of cluster-j’s points’ distance
to its mean µj from rj ,

rj =
1

nj

∑
i

∥xi − µj∥, ∀xi ∈ cluster-j,

sj = std{∥dj(xi)− rj∥ | xi ∈ cluster-j}.
(16)

For all instances in the dataset, S, we compute their distances from µj . If the
distance falls within 3 times the standard deviation sj , the instance is consid-
ered to belong to the generative process underlying Yj . Thus, p (Yj = 1) is the
percentage of instances in the dataset satisfying

∥dj(x)− rj∥ ≤ 3sj , x ∈ S. (17)

2.
p(Yj=0)
p(Yj=1) =

1−p(Yj=1)
p(Yj=1) . For stability, the fraction is capped at 100.

3. p (τj |Yj = 1) is the cumulative density function of within-cluster-j instance’s
distances to µj . p (τj |Yj = 0) is the cumulative density function of out-of-cluster-
j instance’s distances to µj .

Inference: The anomaly score of an instance x is inferred from Eq. (12) us-
ing the estimated bounded probability density functions, p (Yj = 1 | τj), and the
estimated fraction of instances in each cluster, aj .

Code is available at: https://www.kind-of-works.com/
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3.4 Normalization

LVAD relies on shell theory [30], which assumes normalized data. Unfortunately,
traditional normalization cannot be used in anomaly detection tasks. This leads
us to suggest instance (layer) normalization [2] as an alternative.

Let x denote a normalized feature and x̃ its raw counterpart. x is related to
x̃ via:

x = n(x̃,v) =
x̃− v

∥x̃− v∥
, (18)

where v is the normalization vector, which in tradiotnal normalization, is set to
the dataset mean. From the perspective of shell theory, generative processes arise
form a natural hierarchy, rooted in a generator-of-everything. In this model, v,
should be the mean of a common ancestral generator of all normal and anomalous
instances; and the worst possible choice of v is the mean of the normal generator.
Unfortunately, as anomalies make up a small fraction of the dataset, in anomaly
detection tasks, the dataset mean is likely the normal generator’s mean. This
makes traditional normalization terrible for anomaly detection tasks.

We suggest an alternative, inspired by the common signal processing assump-
tion that generative processes are ergodic in their mean. If so, the mean of the
hypothesized, distribution-of-everything can be estimated by averaging over all
features and all instances. We term this ergodic-set normalization:

vset =
[
me me . . . me

]T
, me =

1

n× d

n∑
i=1

d∑
k=1

x̃i[k]. (19)

Ergodic-set normalization is similar to layer normalization [2] commonly em-
ployed in machine learning. In layer normalization, the averaging over the entire
dataset is replaced with an average over the dimensions of each instance, giving
each instance an individual normalization vector:

vi =
[
mi mi . . . mi

]T
, mi =

1

d

d∑
k=1

x̃i[k]. (20)

As LVAD has no layers, we term layer normalization as ergodic-instance nor-
malization or instance normalization for short. As instance and ergodic-set nor-
malization yield similar results, we use instance normalization to be our default,
since readers will be more familiar with it. Its impact on anomaly detection tasks
is illustrated in Fig. 3.

4 Experiment

Experiments are divided into four sections: traditional anomaly detection, Sec. 4.1;
an ablation study, Sec. 4.2; multi-normal anomaly detection, Sec. 4.3; and qual-
itative evaluation, Sec. 4.4.
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Fig. 3. Impact of normalization on LVAD, evaluated on STL-10 [14]. Our suggested
instance normalization is notably effective.

4.1 Traditional Anomaly Detection Task

Unsupervised visual anomaly detectors are evaluated in Table 1. Both traditional
and deep-learning anomaly detectors use ResNet-50 [21] as the image represen-
tation. Whenever possible, an instance (layer) normalization [2] is applied to
the data. Although the deep-learning algorithms have the potential to discover
the best representation from raw images, the performance is much worse on this
setting; thus, it is not included in the evaluations.

For each dataset, one class at a time is chosen to provide normal instances;
instances from the other classes are treated as anomalies. A test set is created
by mixing anomalous and normal instances. The percentage of anomalies in the
test set is varied from a low of 0.1% to a high of 30%. The anomaly detector is
tasked with quantifying the normality of each instance. Algorithm performance
is measured in terms of its Area Under Receiver Operating Characteristic curve
(AUROC).

Deviation from Standard Protocol: Readers familiar with anomaly detec-
tion may find that some algorithms perform surprisingly well. This is partly
because our focus is unsupervised anomaly detection, rather than the semi-
supervised anomaly detection studied in most other papers. However, it may
also stem from different experimental protocols. The changes we make in this
paper are:

– Evaluations often do not normalize data [51, 28, 19], in part because the
correct normalization for anomaly detection is unknown, as explained in
Sec. 3.4. We alter the protocol by applying an instance (layer) normaliza-
tion [2] whenever possible. This greatly improves the performance of some
algorithms like OC-SVM [12] and RSRAE [26].

– Many papers designate only one class per dataset as normal [28, 4, 48]. This
sometimes results in skipping of difficult cases, such as digit 5 of MNIST [27].
In our evaluation, the designation of normal is rotated through every class
in the dataset.

– Evaluations are often performed at a single anomaly percentage [51, 4, 28] or
across a narrow range of anomaly percentages [26]. As discussed in Sec. 2,
many algorithms are sensitive to the percentage of anomalies. To capture
this, we allow anomaly percentages to range from 0.1% to 30%.
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Discussion: Interestingly, many algorithms in Table 1 exhibit the same perfor-
mance reversal as the naive anomaly detector from Sec. 2. Thus, many of the best
performing algorithms at high anomaly percentages, fail badly on low anomaly
percentages. Notable examples are, Shell-Renormalization [30], DAGMM [51]
and Deep-Unsup. [28]. While performance reversal is unfortunate, these results
show that anomaly detection can be robust to high anomaly percentages.

The remaining anomaly detection algorithms appear to behave naturally,
with performance declining as anomaly percentages increase. Notable examples
being OC-SVM [12], LOF [5] and RSRAE [26]. Although increasing anomaly
percentages is expected to induce performance degradation, the performance
decline of many algorithms may be too sharp. After all, the previously discussed
algorithms were clearly robust to high anomaly percentages.

LVAD seems to represents a good compromise between this two performance
characteristics. While not always the best algorithm, LVAD is notably stable
at low and high anomaly percentages, with performance that is usually quite
close to the best. LVAD’s performance on the MNIST dataset [27], where its
AUROC on raw pixels, is easily comparable to deep learned solutions that learn
an improved image representation.

4.2 Ablation Study

The experiments thus far have established LVAD as an effective anomaly detec-
tor. However, given the traditional brittleness of anomaly detection algorithms,
there remains a concern regarding how sensitive the algorithm is to its two pri-
mary parameters: number of clusters and choice of features.

Number of Clusters: It was suggested in the introduction that LVAD decou-
ples inference stability from the number of projections, allowing the use of huge
number of projections to faithfully model data variations. If true, LVAD’s per-
formance should improve with the number of clusters (and hence projections).
Figure 4 shows this to be the case. Thus, the number of clusters used in LVAD
should be as large as practical; the primary limitations being quantity of avail-
able data and computational time. Our default number of clusters is 300.
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Fig. 4. Given sufficient
data, LVAD’s performance
improves with the number
of clusters used, as more
clusters allow finer modeling
of data variation.

Feature Representation: Table 2 illustrates LVAD’s performance with differ-
ent features. The performance varies little with feature choice. As such, we use



12 W.Y. Lin, Z. Liu and S. Liu

Dataset Algorithm
Anomaly Percentage (%)

Ave. Diff.0.1 1 10 20 30

STL-10
(ResNet-50)

LVAD (Ours) 0.998 0.993 0.979 0.983 0.977 0.986 0.021
Shell-Renorm. [30] 0.803 0.829 0.997 0.999 0.999 0.925 0.196
OC-SVM [12] 0.996 0.995 0.967 0.877 0.777 0.922 0.219
IF [34] 0.890 0.917 0.797 0.718 0.638 0.792 0.279
KDE [39] 0.566 0.516 0.578 0.560 0.546 0.553 0.062
LOF [5] 0.996 0.878 0.388 0.393 0.428 0.617 0.608
ECOD [29] 0.965 0.964 0.937 0.894 0.846 0.921 0.119
DAGMM [51] 0.574 0.477 0.826 0.911 0.883 0.734 0.434
Deep-Unsup. [28] 0.384 0.956 0.906 0.869 0.866 0.796 0.572
RSRAE [26] 0.995 0.992 0.972 0.971 0.944 0.975 0.051

Internet STL-10
(ResNet-50)

LVAD (Ours) 0.997 0.997 0.996 0.985 0.981 0.991 0.016
Shell-Renorm. [30] 0.803 0.829 0.997 0.999 0.999 0.925 0.196
OC-SVM [12] 0.999 0.997 0.985 0.908 0.817 0.941 0.182
IF [34] 0.847 0.903 0.859 0.790 0.732 0.826 0.171
KDE [39] 0.267 0.634 0.652 0.652 0.628 0.567 0.385
LOF [5] 0.989 0.790 0.468 0.503 0.521 0.654 0.521
ECOD [29] 0.926 0.949 0.913 0.868 0.804 0.892 0.145
DAGMM [51] 0.543 0.512 0.791 0.836 0.921 0.721 0.409
Deep-Unsup. [28] 0.429 0.960 0.867 0.855 0.849 0.792 0.531
RSRAE [26] 0.998 0.997 0.979 0.993 0.973 0.988 0.025

MIT-Places-5
(RestNet-50)

LVAD (Ours) 0.955 0.941 0.922 0.891 0.867 0.915 0.088
Shell-Renorm. [30] 0.676 0.794 0.996 0.995 0.978 0.888 0.302
OC-SVM [12] 0.966 0.908 0.834 0.727 0.683 0.824 0.283
IF [34] 0.779 0.659 0.600 0.545 0.522 0.621 0.257
KDE [39] 0.614 0.457 0.330 0.336 0.355 0.418 0.284
LOF [5] 0.926 0.640 0.368 0.414 0.420 0.554 0.558
ECOD [29] 0.945 0.887 0.792 0.711 0.637 0.794 0.308
DAGMM [51] 0.433 0.423 0.835 0.851 0.767 0.662 0.428
Deep-Unsup. [28] 0.685 0.890 0.772 0.792 0.795 0.787 0.205
RSRAE [26] 0.965 0.928 0.893 0.686 0.605 0.815 0.360

CIFAR-10
(ResNet-50)

LVAD (Ours) 0.930 0.940 0.903 0.854 0.816 0.889 0.124
Shell-Renorm. [30] 0.740 0.756 0.895 0.896 0.894 0.836 0.156
OC-SVM [12] 0.913 0.922 0.869 0.801 0.742 0.849 0.180
IF [34] 0.894 0.876 0.786 0.721 0.661 0.788 0.233
KDE [39] 0.649 0.590 0.575 0.561 0.552 0.585 0.097
LOF [5] 0.907 0.613 0.477 0.485 0.497 0.596 0.430
ECOD [29] 0.852 0.910 0.883 0.837 0.791 0.855 0.119
DAGMM [51] 0.494 0.503 0.778 0.883 0.850 0.702 0.389
Deep Unsup. [28] 0.841 0.847 0.732 0.702 0.689 0.762 0.158
RSRAE [26] 0.901 0.911 0.800 0.814 0.739 0.833 0.172

CatVsDog
(ResNet-50)

LVAD (Ours) 0.981 0.978 0.927 0.851 0.780 0.903 0.201
Shell-Renorm. [30] 0.866 0.846 0.996 0.953 0.617 0.856 0.379
OC-SVM [12] 0.989 0.982 0.892 0.799 0.737 0.880 0.252
IF [34] 0.925 0.878 0.798 0.706 0.690 0.799 0.235
KDE [39] 0.497 0.489 0.481 0.470 0.489 0.485 0.027
LOF [5] 0.895 0.412 0.407 0.439 0.437 0.518 0.488
ECOD [29] 0.936 0.905 0.852 0.793 0.738 0.845 0.198
DAGMM [51] 0.784 0.710 0.960 0.914 0.846 0.843 0.250
Deep-Unsup. [28] 0.545 0.862 0.801 0.773 0.740 0.744 0.317
RSRAE [26] 0.982 0.981 0.961 0.917 0.835 0.935 0.147

MNIST
(Rasterized Pixels)

LVAD (Ours) 0.974 0.948 0.938 0.923 0.904 0.937 0.070
OC-SVM [12] 0.937 0.901 0.885 0.856 0.824 0.881 0.113
IF [34] 0.777 0.846 0.821 0.812 0.797 0.811 0.069
KDE [39] 0.636 0.488 0.489 0.487 0.489 0.518 0.149
LOF [5] 0.982 0.932 0.540 0.507 0.505 0.693 0.477
ECOD [29] 0.855 0.779 0.740 0.723 0.709 0.761 0.146
DRAE [43] 0.739 0.794 0.669 0.672 0.657 0.706 0.137
DAGMM [51] 0.624 0.708 0.629 0.616 0.613 0.638 0.095
Deep-Unsup. [28] 0.525 0.891 0.847 0.779 0.835 0.775 0.366
RSRAE [26] 0.966 0.948 0.851 0.794 0.763 0.864 0.203
NCAE-UAD [46] 0.909 0.831 0.805 0.759 0.728 0.806 0.181

Fashion-MNIST
(Rasterized Pixels)

LVAD (Ours) 0.896 0.909 0.899 0.884 0.868 0.891 0.041
OC-SVM [12] 0.875 0.898 0.889 0.867 0.843 0.874 0.055
IF [34] 0.908 0.917 0.915 0.902 0.889 0.906 0.028
KDE [39] 0.437 0.511 0.507 0.511 0.515 0.496 0.078
LOF [5] 0.756 0.522 0.433 0.429 0.441 0.516 0.327
ECOD [29] 0.890 0.866 0.850 0.825 0.806 0.847 0.084
DRAE [43] 0.870 0.815 0.671 0.657 0.680 0.739 0.231
DAGMM [51] 0.784 0.793 0.788 0.780 0.769 0.783 0.024
Deep-Unsup. [28] 0.765 0.868 0.878 0.884 0.856 0.850 0.119
RSRAE [26] 0.900 0.854 0.748 0.711 0.689 0.780 0.211
NCAE-UAD [46] 0.885 0.833 0.799 0.786 0.730 0.807 0.155

Table 1. Average AUROC of unsupervised visual anomaly detectors. Ave. is the av-
erage score on a dataset; a high Ave. indicates accuracy. Diff. is the difference between
the highest and lowest scores on a dataset; a small Diff. indicates stability. LVAD is
consistently one of the best algorithms.
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the classic, ResNet-50 [21] feature, as the default image representation, since
most researchers are familiar with its characteristics.

Dataset Feature Representation LVAD: Ave. AUROC

MIT-Places-
Small

ResNet-50 [21] 0.891
ViT [17] 0.870

SWIN-B [35] 0.899

STL-10
ResNet-50 [21] 0.983

ViT [17] 0.922
SWIN-B [35] 0.963

Table 2. LVAD works
well with different fea-
ture representations.
Evaluations are per-
formed with 20%
anomalies per test set.

Dataset
Algorithm

Anomaly Percentage (%)
Ave. Diff.{normal class

combination} 0.1 1 10 20 30

STL-10
LVAD (Ours) 0.986 0.943 0.924 0.880 0.814 0.909 0.172
IF [34] 0.834 0.730 0.649 0.554 0.489 0.651 0.345

{(0,1,2), (5,6,7), Shell-Renorm. [30] 0.646 0.632 0.722 0.925 0.908 0.767 0.293
(1,4,8)} OC-SVM [12] 0.956 0.915 0.797 0.652 0.568 0.778 0.388

DAGMM [51] 0.469 0.567 0.671 0.452 0.464 0.525 0.219
RSRAE [26] 0.897 0.879 0.779 0.684 0.647 0.777 0.250

Internet STL-10
LVAD (Ours) 0.987 0.992 0.960 0.938 0.927 0.961 0.065
IF [34] 0.775 0.879 0.772 0.721 0.703 0.770 0.176

{(0,1,2), (5,6,7), Shell-Renorm. [30] 0.697 0.726 0.992 0.979 0.948 0.868 0.295
(1,4,8)} OC-SVM [12] 0.995 0.988 0.887 0.779 0.746 0.879 0.249

DAGMM [51] 0.346 0.539 0.632 0.473 0.440 0.486 0.286
RSRAE [26] 0.988 0.988 0.714 0.934 0.729 0.871 0.274

MIT-Places-5 LVAD (Ours) 0.910 0.888 0.808 0.726 0.687 0.804 0.223
IF [34] 0.653 0.575 0.516 0.490 0.498 0.546 0.163

{(0, 2), (1,4), Shell-Renorm. [30] 0.784 0.758 0.845 0.833 0.812 0.806 0.087
(3,4)} OC-SVM [12] 0.888 0.895 0.709 0.640 0.616 0.750 0.279

DAGMM [51] 0.363 0.476 0.589 0.582 0.627 0.527 0.264
RSRAE [26] 0.871 0.900 0.671 0.641 0.585 0.734 0.315

CIFAR-10
LVAD (Ours) 0.850 0.833 0.770 0.702 0.648 0.761 0.202
IF [34] 0.747 0.720 0.606 0.558 0.507 0.628 0.240

{(0,1,2), (5,6,7), Shell-Renorm. [30] 0.554 0.533 0.463 0.461 0.433 0.489 0.121
(1,4,8)} OC-SVM [12] 0.828 0.789 0.718 0.646 0.595 0.715 0.233

DAGMM [51] 0.288 0.284 0.404 0.432 0.495 0.381 0.211
RSRAE [26] 0.749 0.769 0.741 0.690 0.655 0.721 0.114

MNIST
LVAD (Ours) 0.849 0.804 0.765 0.735 0.710 0.773 0.139
Isolation Forest [34] 0.665 0.640 0.613 0.596 0.585 0.620 0.080

{(0,5,7), (2,7,9), Shell-Renorm. [30] - - - - - - -
(0,7,8)} OC-SVM [12] 0.676 0.701 0.687 0.657 0.633 0.671 0.068

DAGMM [51] 0.426 0.425 0.445 0.441 0.437 0.435 0.020
RSRAE [26] 0.897 0.809 0.773 0.720 0.657 0.771 0.240

Fashion-MNIST
LVAD (Ours) 0.842 0.831 0.796 0.783 0.757 0.802 0.085
IF [34] 0.819 0.853 0.843 0.816 0.790 0.824 0.063

{(0,6,8), (0,7,9), Shell-Renorm. [30] - - - - - - -
(1,2,4)} OC-SVM [12] 0.789 0.773 0.740 0.719 0.699 0.744 0.090

DAGMM [51] 0.270 0.265 0.342 0.345 0.358 0.316 0.093
RSRAE [26] 0.855 0.801 0.771 0.767 0.749 0.789 0.106

Table 3. Multi-normal Anomaly Detection evaluated in terms of AUROC. For each
dataset, a random set of classes are designated normal.
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4.3 Quantifying Surprise: Multi-normal Anomaly Detection

Thus far the focus has been on traditional anomaly detection, where only one
class is designated to be normal. This is reasonable in data curation; however,
it does not correspond to a human’s definition of an anomaly. We see many
different classes in our daily lives; yet, we still have the capacity to be surprised.
We hypothesize that the human definition of anomalies / surprise, corresponds to
the very understudied field of multi-normal anomaly detection. If so, LVAD may
be a good candidate for quantifying surprise, as its cluster based formulation is
innately accommodative of multi-modal normality.

Table 3 provides preliminary results, which show all algorithms suffering
a notable decline in performance. This may be inevitable, as multi-normality
makes unsupervised anomaly detection less well conditioned. However, it can
also be an indication of deeper flaws in current algorithms.

As expected, LVAD’s multi-normal anomaly detection is relatively good; and
it is noticeably more accurate than its close rival, OCSVM [12]. However, there
is still considerable room for improvement.

4.4 Qualitative Results

LVAD performs well on numerical evaluations; however, it is also important to
assurance ourselves that the evaluation metrics correspond to human intuition.
Figure 5 shows LVAD’s ranking of internet crawled cars by their anomalousness.
The result appears intuitive and suggest LVAD may be useful in data curation.
It also provides a final sanity check of the earlier, numerical evaluations.

Fig. 5. Images crawled from the internet with search keyword “plane”. Images are
sorted by LVAD’s normality score. Normality increases from left to right, top to bottom.

5 Conclusion

This paper proposes LVAD, a statistically grounded scheme for anomaly detec-
tion. Experiments show LVAD to be more stable and accurate than most prior
techniques, with performance reaching levels where real world deployment may
be a possibility. Some applications include, surveillance, self-driving cars and
internet data curation.
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