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1 Algorithm Description of Test-Time Model Adaption

Algorithm 1 Inference with Test-Time Model Adaption

Input: Measurement sample y*; Sensing matrix ®*; Pre-trained parameters @
Parameter: Learning rate 7; Epoch number T’

Output: Reconstructed image x*

1. Initialize w* with @.

2. fori=1,---,T, update w* on test sample:

3. Wt = w — TV LY (w?).

4. return z* = fe-(y*;w”).

2 Proof of Proposition 1

Here we only provide the proof regarding the connection between £Measure and
Ex e~||®fa(y +v) — ®z||3. The proof regarding the connection between L£mase

and E ¢ | f&(®(z + 7)) — |3 is the same. Firstly, rewrite £Measure by
EMeasure :Em,en’ [”q)f@ (y + 7) - @mHg (1)
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where the last term Eg e (v —€) (7 — €) is a constant irrelevant to the value
of the NN parameters w. Since v and € conditioned on « are independent and
follow the same distribution P;(:|x), we have
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Thus the second term on the right hand side of Eqn. (1) is zero, which leads to
LM = By o || ® fa(y + ) — |3 + const.

The proof is done.

3 Proof of E(rTe) =0
As Es; =0 and s is independent from e and €', we can obtain

E(r'e)=E(e ®s) e= ZEsiegei = Z(Esi)(]Eegei) =0. (3)

4 Proof of Proposition 2

Since € and € are i.i.d. Gaussian noise of zero mean and independent from x,
we have
E, e/(e/)Ty =Eg e (Gl)T((I)x +¢€) =0.

)

It yields that
Ey7el(£SURE+ (w) _ £Measure)

:Ey7€/{202tr(¢'HW> — 2(6’)T (@f@(y + € w)) + 2(6’)Ty - (6’)Te’}

:]Ey,er{QJQtr(QHW) —2(¢)T (@ faly + e’;w))} — Mo2,

(4)

Thus, we only need to prove that

i Moy +¢w)

Ey,el aQtr( 8y

) =Eye(€) (Bfa(y +€;w)). (5)
For ease of notation, we denote g(y + €) = ®fg(y + €';w), and we have

n0fe(y +€;w)
S )

diveg = divyg = tr(
Then we can rewrite (5) as
Eyeo’diveg =E, o (€)"g. (6)
It is enough to prove that
Eeéo—zveggi :Eegeggiv Vi e {17277M} (7)

Let 1,(-) : R — R denote the probability distribution function of univariate
normal distribution of variance o2. It is known that

Vo (2) = — 0t (2). (®)
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By integration by parts, we can obtain
E¢0°Vegi = /U2Ve;9i¢a(€§)d€§ = o’gibo ()13 — /U2giv¢a(€§)d€2

= o’givo. (€12 + /gieg%(fﬁ)dé = /gifg%(eﬁ)dei = Ec gi€;.
(9)

Note that 02g;1,(€})|T32 = 0, as the exponential decay of ), is faster than the
polynomial growth of g;. The proof is done.

5 Visual Comparison on More Samples

FISTA BCNN EI Our-NA Our-TA GT

Fig. 1. Results of CT reconstruction.

MACNet BCNN Ours-NA Ours-TA

Fig. 2. Results of noisy MRI reconstruction with the radial mask of CS ratio 25%.
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MACNet EI BCNN Ours-NA Ours-TA GT

Fig. 3. Results of noiseless MRI reconstruction with the radial mask of CS ratio 25%.

COAST SSLIP REI BCNN Ours-NA Ours-TA

Fig. 4. Results of noisy NIR from Gaussian measurements of CS ratio 40%.

COAST SSLIP Ours-NA Ours-TA

Fig. 5. Results of NIR from Gaussian measurements of CS ratio 25%. The upper row
is for the noiseless setting and the bottom row for the noisy setting.

Fig. 6. Results of NIR from Gaussian measurements of CS ratio 10%. The upper row
is for the noiseless setting and the bottom row for the noisy setting.



